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Abstract
Pseudomonas species are the most versatile of all known bacteria for metabolic flexibility and the extent of host range from 
plants to humans that remains unmatched. The evolution of diverse metabolic strategies in these species to adapt to the 
fluctuating environment guarantees high fitness as well as the ability to withstand stress at multiple levels. These abilities 
in Pseudomonas species are imprinted by an adaptable genetic repertoire through the integration of external and internal 
signals via complex regulatory networks. One of the main regulatory networks that lead to optimal growth, survival and 
cellular robustness is the phenomenon of carbon catabolite repression (CCR). Even though a large array of information is 
available, the molecular machinery and the mechanism of CCR in Pseudomonas are distinctly diverse from Escherichia coli 
and Bacillus subtilis. In Pseudomonas, the Crc and Hfq proteins, CbrAB two-component systems and the CrcZ/CrcY small 
RNA are key components of CCR. The main focus of this review is to elucidate the mechanism of CCR and the accessories 
involved in regulation of preferred carbon source utilisation over non-preferred ones and how CCR influences the virulence, 
antibiotic resistance, bioremediation and plant growth promotion pathways. Furthermore, we have also tried to shed some 
light on the “omics” approaches which can provide deep mechanistic insights into the regulation of CCR. Understanding the 
mechanistic picture of key regulatory entities and mechanism responsible for metabolic flexibility will create opportunities 
for exploitation of these versatile prokaryotes in several biotechnological processes.
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Introduction

Bacteria sense environmental changes by perceiving extra-
cellular hints such as the concentration of nutrients for exam-
ple, carbon, nitrogen, phosphate, iron, sulphur, and growth 
conditions for instance pH, temperature, oxygen availability, 
osmotic stress and survive in response to these perturbations 
(Shimizu 2014). The environmental perturbations send sig-
nal to the cells sensing the change which induces the secre-
tion of auto-inducer molecules leading to the sensitisation of 
whole community. This allows the bacterial community to 
synchronise gene expression, and thereby carry out collec-
tive activities for growth and survival. Induction of changes 
sensed by individual cells may lead to changes in the whole 
community, through quorum sensing. The signals provided 

to the transcriptional regulatory systems shape the physi-
ological and morphological adjustments that facilitate effec-
tive adaptation and survival of the whole bacterial commu-
nity (Seshasayee 2006). This metabolic versatility shapes the 
ecological fitness of an organism by coordinating a number 
of distinctive global regulatory networks leading to expres-
sion (Shimizu 2014).

In a face-changing environment where numerous carbon 
sources are available at concentrations that define the sur-
vival of microorganisms, bacterial species activate universal 
regulation systems that synchronise metabolism. The pres-
ence of variety of substrates in a natural environment allows 
bacteria to either co-utilise carbon sources or utilise prefer-
ential ones that are most effective for growth. The selection 
of a preferred carbon source over others and inhibition of the 
uptake machinery or genes essential for the catabolism of 
non-preferred ones at the same time is regulated precisely. 
The regulated selection of preferred carbon source over 
non-preferred ones is termed as carbon catabolite repression 
(CCR). Originally CCR was illustrated in Escherichia coli 
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for utilisation of sugars in a hierarchical manner (Magasanik 
1970). CCR can be carried out in two ways: first, inhibition 
of expression of enzymes of the pathways for non-preferred 
carbon source and second, reshuffling of metabolism for 
activation of appropriate genes leading to the assimilation 
of preferred carbon sources (Rojo 2010). Being a complex 
mechanism, CCR can be arbitrated by various regulatory 
systems. The fundamental molecular regulatory networks 
differ among individual bacterial groups. The underlying 
machinery and the regulatory partners required for CCR 
have been studied extensively in Enterobacteria, Firmicutes 
and in Pseudomonas (reviewed in Gorke and Stulke 2008).

CCR in Pseudomonas: the general 
mechanism

Pseudomonas is a genus of ubiquitous bacteria found in 
a wide range of habitats such as soil, water, animals and 
plant influencing them either positively or negatively. Some 
well-known examples include opportunistic animal pathogen 
P. aeruginosa (Sonnleitner et al. 2017); plant pathogen P. 
syringiae (Chakravarthy et al. 2017; Filiatrault et al. 2013); 
bioremediation agent P. putida (Basu et al. 2006) and P. 
fluorescens as plant growth promoting and bio-control agent 
(Liu et al. 2017). Pseudomonas is well adapted to various 
environments as they can utilise a wide array of carbon 
sources (Dos Santos et al. 2004; Molina et al. 2000) but are 
reported to utilise a limited number of sugars such as glu-
cose, glucuronic acid and fructose (Daddaoua et al. 2009; 
Silby et al. 2011). The metabolic patterns in these microbes 
also govern a lifestyle that acclimatises to environmen-
tal conditions where sugars are in limited concentrations. 
Glucose utilisation machinery is organised in three-tiered 
metabolic system that generates 6-phosphogluconate and has 
remarkable differences as compared to Escherichia coli and 
Bacillus species. The glucose is transported and metabolised 
through the phosphoenolpyruvate phosphotransferase sys-
tem (PTS) in these bacteria whereas in Pseudomonas, glu-
cose crosses the outer membrane into the periplasmic space 
through the OprB-1 porin and is directly transported into the 
cell or can be oxidised to gluconate or 2-ketogluconate in 
the periplasmic space. All the metabolites produced during 
periplasmic glucose oxidation have their own transporters 
through which they can be transported inside the cell. Once 
imported inside the cell, glucose, gluconate and 2-ketoglu-
conate are oxidised through the Entner–Doudoroff pathway 
(Del Castillo et al. 2007). Differences in transport of glucose 
also influence the regulation of catabolism in Pseudomonas. 
In E. coli, the PTS, a multi-protein phosphorylation cas-
cade helps in glucose uptake and metabolism. Whereas in 
Pseudomonas, glucose metabolism is regulated by one-
component systems (OCSs) HexR, PtxS, PtxR and GntR 

transcriptional factors as well as two-component system 
(TCS) GltR/GtrS transcriptional factor which are induced 
by intermediates of the ED pathway (Udaondo et al. 2018).

Escherichia coli utilises glucose as a preferred carbon 
source suppressing catabolic pathways of glycerol, organic 
acids and amino acids by CCR (Postma et al. 1993). On 
the other hand, metabolism of glucose is under catabolic 
repression in Pseudomonas because organic acids are pre-
ferred over carbohydrates. The repression in Pseudomonas is 
reverse of the phenomenon followed in enteric bacteria and 
it is often referred to as “reverse CCR”. For instance, pres-
ence of succinate and glucose creates CCR conditions where 
expression of glucose catabolism enzymes of P. aeruginosa 
was inhibited until succinate was available (Collier et al. 
1996). This phenomenon of physiological hierarchy to nutri-
ent accessibility that leads to the preferential utilisation of 
succinate over other carbon sources for growth is termed as 
succinate mediated catabolite repression (SMCR). Organic 
acids succinate and acetate are known to repress enzymes for 
utilisation of gluconate, glycerol, fructose and mannitol. The 
sequential hierarchy among amino acid utilisation has also 
been reported in P. putida (Hester et al. 2000a, b; Moreno 
2007; Rojo 2010). P. putida strain CSV86 has unique ability 
to utilise aromatic compounds such as naphthalene prior to 
glucose where succinate does not limit naphthalene degrada-
tion but impairs transport system and enzymes for glucose 
assimilation (Basu et al. 2006, 2007). In presence of succi-
nate and benzoate, benzoate was preferentially metabolised 
while glucose transport and its metabolism were suppressed 
in P. putida CSV86 (Choudhary et al. 2017).

The CCR mediators

At present, the regulatory system of CCR in Pseudomonas 
encompasses the following components: Crc and Hfq pro-
teins, the TCS: CbrAB and sRNAs: CrcY/CrcZ. The subse-
quent sections of the review summarise how these compo-
nents cooperate and function to execute CCR.

Crc protein: the global regulator

Catabolite repression control (Crc) protein was originally 
reported in P. aeruginosa during random mutagenesis 
experiments intended to find catabolite repression relieved 
mutants of amidase (MacGregor 1991; Wolff 1991). Some 
crc mutants were relieved of repression imparted by suc-
cinate over mannitol and glucose transport and enzymes 
involved in their catabolism. The Crc protein shares up to 
25 to 32% sequence homology with DNA repair enzymes 
of other bacteria but does not show any endonuclease or 
DNA binding ability (MacGregor 1996). In P. putida and 
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P. aeruginosa, Crc regulates induction of bkd operons for 
branched-chain keto acid dehydrogenases. Consequently, in 
several other Pseudomonas species, Crc was described as 
the regulator of catabolite repression of branched-chain keto 
acid dehydrogenase (Hester et al. 2000a) enzyme for deg-
radation of alkane (Yuste and Rojo 2001), toluene (Aranda-
Olmedo 2005), aromatic compounds (Morales et al. 2004) 
and biofilm formation (O’Toole et al. 2000). The difference 
in growth conditions was shown to have differential impact 
on the expression of crc (Ruiz-Manzano et al. 2005). In P. 
putida, Crc binds to benR and alkS mRNAs and inhibit the 
translation leading to repression of benzoate and alkane deg-
radation genes respectively (Moreno 2007, 2008). However, 
the crystal structure of Crc from P. aeruginosa lacked nucle-
ase activity (Milojevic et al. 2013). This suggested that there 
must be some other proteins helping the regulatory action 
being carried out during CCR. Crc exerts a positive impact 
on the type III secretion system (T3SS) in P. aeruginosa 
where the master regulator ExsA and the Cbr/Crc signal-
ling system regulate T3SS (Dong et al. 2013). Crc is also 
an up-regulator of rhamnolipid production in P. aeruginosa 
(Yang et al. 2015). Some recent studies have identified Crc 
as a regulator of muconate production in P. putida KT2440 
where levels of 4-hydroxybenzoate and vanillate were 
reduced upon crc deletion (Johnson et al. 2017). Virulence 
of P. syringae pv. Tomato DC3000 was influenced by Crc 
(Chakravarthy et al. 2017) which was also reported to coor-
dinate the overall response to oxidative stress by means of 
reorganisation of central metabolism in P. aeruginosa PAO1 
(Corona et al. 2018, 2019).

Hfq: the “RNA matchmaker”

The Hfq protein was initially discovered as a host factor 
essential for replication of bacteriophage Qβ in E. coli 
(August et al. 1970). Hfq is a hexameric protein belonging 
to the class of Sm-family of RNA binding proteins in many 
bacteria (Zhang et al. 2002) and has a proximal and distal 
RNA binding site (Sauer and Weichenrieder 2011). Hfq is 
a regulator in Gram-negative bacteria that assists the regu-
latory RNA mediated post-transcriptional gene regulation 
during CCR (Sonnleitner and Blasi 2014; Kambara et al. 
2018). During CCR in P. aeruginosa, the translation of tar-
get transcripts was inhibited directly by Hfq-Crc complex. 
Crc bound Hfq on its distal part binds to the A-rich motifs 
on target mRNA near to ribosome binding site (RBS) and 
regulates the translation (Sonnleitner et al. 2018b).

Being a global regulator, Hfq interacts with sRNAs 
ranging in size from 37 to 500 nucleotide and stimulate or 
restrain mRNA translation through positive or negative regu-
latory mechanisms (Santiago‐Frangos and Woodson 2018). 
The size, conformation and combination of complementary 

sequences of RNA differ when Hfq mediated regulation is 
considered. During Hfq-dependent regulation, mRNA and 
sRNA bind to Hfq on different sites. It has been reported that 
Hfq binding to the mRNA with or without sRNA influence 
the fate of mRNAs. For example, during negative regulation, 
Hfq assists stabilisation and recruitment of sRNA and help 
to recruit ribonucleases which ultimately degrade mRNAs. 
In positive regulation sRNAs and Hfq binding stabilises 
mRNA by changing mRNA folding which allows ribosome 
access or blocking access of a ribonuclease to protect the 
mRNA (Kavita et al. 2018). The RNA ligands are highly 
varied in nature which is reflected in cognate protein part-
ners that comprise of an array of functions related to various 
enzymes (Butland et al. 2005). Hfq functions as a stabiliser 
of regulatory sRNAs like CrcZ and CrcX in the absence 
of their target transcripts by facilitating base-pairing to the 
mRNAs (Zhang et al. 2002); it helps in the repression of 
translation and also mRNA activation (Gottesman and Storz 
2011; Vogel and Luisi 2011). Thus, the selectivity of sub-
strate for Hfq has to be flexible enough to cooperate with 
a range of RNA-protein complexes to find a perfect match 
(Updegrove et al. 2016; Kavita et al. 2018; Santiago-Frangos 
and Woodson 2018).

The function of Hfq has been established by generation of 
Hfq deletion strain of P. aeruginosa which influences antibi-
otic susceptibility, energy metabolism, cell wall composition 
and the levels of c-di-GMP (Sonnleitner et al. 2018b). In 
P. aeruginosa PAO1, Hfq represses three mRNAs namely 
amiE (encoding an aliphatic amidase), estA (esterase) and 
phzM (phenazine-specific methyltransferase) (Sonnleitner 
and Blasi 2014). The translational inhibition applied by Crc 
operates in association with the Hfq protein to reduce trans-
lation of DmpR regulator of the Dmp-pathway (dimethyl-
phenol) for catabolism of phenol in P. putida (Wirebrand 
et al. 2018). Functional characterisation of Acinetobacter 
baumannii lacking Hfq revealed its role in environmental 
adjustment and virulence by amending stress responses, 
morphology and virulence factors (Kuo et al. 2017). In 
Azotobacter vinelandii, the gene gluP encoding glucose 
transporter has A-rich Hfq-binding motif and thus glucose 
transport is under CCR through Crc/Hfq and CbrA/CbrB 
regulatory systems (Quiroz-Rocha et al. 2017). Hfq protein 
has a pivotal role as a pleiotropic regulator mediating com-
plex CCR regulation that influences metabolism, virulence, 
quorum sensing and stress response in Pseudomonas and 
related bacterial species.

CrcZ, CrcY: the regulatory sRNAs

The role of small RNAs (sRNAs) (~ 50–300 nucleotides) 
has been determinedly established as important regula-
tors of metabolism in bacteria. The sRNAs are known for 
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regulating bacterial environmental response pathways and 
the most comprehensively studied sRNAs are known to 
regulate mRNAs of target genes by defective and short 
base pairing as trans-encoded sRNAs. Some sRNAs bind 
at or near the RBS and block translation by obstructing 
ribosomes. Additional types of sRNAs bind far-away 
from the target site and interfere with ribosome binding 
through either inhibiting formation of secondary structures 
or altering mRNA stability (Storz et al. 2011). The group 
of sRNAs that sequester and titrate the RNA binding pro-
teins of CsrA/RsmA family control translation initiation. 
These small proteins explicitly bind to GGA trinucleotide 
situated in the 5′ leader sequence of target mRNAs and 
inhibit their translation.

One such protein-RNA system is the CrcZ/Crc system 
that works in catabolite repression control in Pseudomonas 
species. In conditions where CCR is operated, Crc pro-
tein binds to AC rich motifs within or adjacent to RBS of 
target mRNAs inhibiting their translation. When CCR is 
relieved, the regulatory RNA CrcZ, CrcY/CrcZ and CrcZ/
CrcX in P. aeruginosa PAO1, P. putida, and P. syringae 
respectively are projected to bind and trap the protein 
(Sonnleitner et al. 2009; Moreno et al. 2012; Filiatrault 
et al. 2013). However, the structural and biochemical stud-
ies posed a question against the role of Crc mediated CCR 
in P. aeruginosa PAO1 as purified Crc was neither able to 
bind the aliphatic amidase encoding amiE mRNA (target 
mRNA) nor to CrcZ sRNA (Milojevic et al. 2013). Numer-
ous genes of P. aeruginosa involved in catabolic pathways 
are known to be inhibited post-transcriptionally by Hfq by 
binding on the distal face of Hfq during growth on suc-
cinate (Sonnleitner et al. 2018b). The Hfq binds to CrcZ 
and Crc protein which as a complex exert regulation (Rojo 
2010; Sonnleitner and Blasi 2014). The response of a bac-
terium to a particular signal is influenced by the concur-
rent cellular environment of Hfq-dependent sRNAs, Crc 
protein, target mRNAs and the capability of these RNAs 
to compete with each other so that precise regulatory path-
ways are arranged on a priority basis (Santiago‐Frangos 
and Woodson 2018). To understand the interdependence 
of Hfq-sRNA mediated control in P. aeruginosa, the pos-
sibility whether the regulatory RNA CrcZ can interfere 
with riboregulation mediated by the sRNAs PrrF1-2 was 
checked. antR mRNA encoding a transcriptional activator 
of the antABC operon is required for anthranilate degra-
dation and is known to be controlled by PrrF1-2 sRNA. 
CrcZ cross-regulates mRNAs of antR with Hfq-mediated 
riboregulation. In iron limitation and growth on preferred 
carbon source, antR translation was repressed by PrrF1-2 
and Hfq. In non-CCR conditions, CrcZ competes for Hfq 
binding which interferes with PrrF1-2 binding, activating 
antR translation and degradation of anthranilate (Sonn-
leitner et al. 2017).

CbrA‑CbrB: the two‑component system

The immense versatility and ability to quickly adapt to 
the fluctuating nutritional environment is due to the pres-
ence of well-regulated two-component systems (TCSs) 
programmed in genomes of bacteria. The TCSs encom-
passes a sensor kinase (SK) and a response regulator (RR). 
The autophosphorylation caused in the histidine kinase 
(HK) domain of the SK is induced by environmental 
stimulus leading to subsequent transfer of phosphate to 
the acceptor domain of RR triggering activation of regu-
lator protein (von Bodman et al. 2008). Thus, activated 
RR stimulates expression of genes critical for adjustment 
towards the altered environmental condition. This adap-
tation of bacterial cells through activation of TCS leads 
to change in physiological functions aiding utilisation of 
alternative sources when certain nutrients become limit-
ing. When nitrogen or phosphate is limiting the NtrB-NtrC 
and the PhoR-PhoB are activated for nitrogen and phos-
phate assimilation, respectively (Bourret and Silversmith 
2010). Generally, the N-terminal periplasmic domain of 
SK senses nutrients or external stimuli priming the activa-
tion of respective genes by the RR. Another TCS known as 
CbrAB has ability to regulate carbon and nitrogen catabo-
lism in Pseudomonas and plays a global regulatory role 
(Nishijyo et al. 2001; Zhang and Rainey 2008). In CbrAB 
TCS, CbrA is HK and CbrB is RR that regulates and estab-
lishes a healthy carbon/nitrogen balance (Sonnleitner et al. 
2009, 2012b; Moreno et al. 2012). CbrB is an NtrC family 
RR that activates the transcription of sRNAs (Nishijyo 
et al. 2001; Sonnleitner et al. 2012a). The CbrA/CbrB sys-
tem has several functions in Pseudomonas species such as 
regulation of swarming motility, biofilm formation, anti-
biotic and stress resistance (Amador et al. 2010; Yeung 
et al. 2011). The phenotypic analysis in CbrAB mutants 
of P. fluorescens SBW25 resulted in growth deficiency on 
various carbohydrates and amino acids (Zhang and Rainey 
2008). It was also found that the leucine metabolism in P. 
aeruginosa is also under the influence of CbrB/Crc regula-
tion. Leucine is metabolised by enzymes encoded in the 
liuRABCDE gene cluster, where LiuR is the regulator. In 
the presence of leucine, LiuD was strongly expressed but 
repressed in the presence of glucose or succinate. These 
results indicate that in absence of Crc, LiuD expression 
was independent of the presence of carbon source, how-
ever, its expression was impaired in cbrB- mutant (Díaz-
Pérez et al. 2018). The mutants of cbrAB of opportunistic 
human pathogen P. aeruginosa PAO1 also had growth 
defects (Nishijyo et al. 2001). CbrAB along with Crc reg-
ulates the carbohydrate metabolism as well as the amino 
acid metabolism.
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The definite mechanism of CCR 
in Pseudomonas

In Pseudomonas species, the hierarchy of carbon source uti-
lisation emerges through translational repression mediated 
by Crc protein. The A-rich sequences near the RBS of the 
mRNAs are crucial for the repression. Crc does not bind 
to the target mRNA directly; instead, Hfq allows the bind-
ing of the A-rich motifs to its distal face. In presence of a 
non-preferred carbon source (for example, glucose: when 
catabolite repression is not necessary), Crc/Hfq repression is 
relieved by expression of a non-coding RNA-CrcZ or CrcY, 
bearing various copies of the A-rich motif, which sequester 
Hfq-Crc complex (Fig. 1a). The presence of non-preferred 
carbon source in the medium shows a strident increase in 
the levels of CrcZ/Y leading to sequestration of Crc which 

allows ribosome binding and translation of the mRNAs for 
utilisation of non-preferred carbon source (Sonnleitner et al. 
2018b).

In presence of a favored carbon source (for example, suc-
cinate), the concentration of CrcZ/Y depletes and free Crc 
possibly remains at a concentration high enough to form 
complex with Hfq that binds to the target mRNAs holding 
back their translation (Fig. 1b) and thus inhibiting utilisation 
of non-preferred carbon sources. The level of CrcZ is regu-
lated by CbrAB which is activated to set the hierarchy of car-
bon source utilisation. Inactivation of CbrB does not show 
any influence on CrcY expression as CrcY activation relies 
largely on systems different from CbrAB. Figure 1 illus-
trates the mechanism of CCR in Pseudomonas species and 
involvement of its mediators- Crc and Hfq proteins, CrcZ/Y 
and CbrAB. The physiological traits that are governed by 

Fig. 1  Mechanism of succinate mediated catabolite repression 
(SMCR) in Pseudomonas. a In the non-CCR conditions (e.g. in pres-
ence glucose), Crc binds to Hfq bound sRNA (CrcZ/CrcY) allowing 
translation of glucose utilisation genes. b Under the CCR conditions 
(SMCR), when preferred and non-preferred carbon source (succi-
nate and glucose respectively) are both present, the Crc-Hfq complex 
binds to the RBS inhibiting translation of glucose utilisation genes. 

The repression is relived (under non-CCR conditions) via sequester-
ing of Crc and Hfq by CrcZ whose expression is activated by CbrAB 
two-component system and CrcY whose expression is controlled by 
unknown signals. This model is based on the results of the earlier 
studies (Kavita et  al. 2018; Rojo 2010; Sonnleitner and Blasi 2014; 
Sonnleitner et al. 2018a, b). A green or red arrow indicates activation 
or inhibition respectively



 World Journal of Microbiology and Biotechnology (2019) 35:140

1 3

140 Page 6 of 12

Crc, Hfq CrcZ/Y and CbrAB in various bacterial species 
are listed in Table 1.

Influence of CCR on catabolic pathways 
of Pseudomonas

The activation of a catabolic pathway depends on the com-
bined activity of several global regulators in response to 
external or internal signals generated due to the cell’s need 
to adapt and survive. The CCR interferes with the stimula-
tion of certain catabolic pathways by employing mediators 
for down-regulation of particular transcriptional regulators 
or by interfering with the ability of the regulators to control 
transcription. Rojo (2010) has extensively reviewed influ-
ence of CCR on the degradation of alkane, toluene/xylene 
and phenol degradation pathways encoded by OCT, Tol and 
pVI150 plasmids respectively in P. putida.

Influence of CCR on virulence

In P. aeruginosa which is a well known human patho-
gen, expression of virulence genes is governed by CCR. 
A pathogenic bacterium infects the host, with the prime 
aim of acquiring nutrients to survive in the environment. 
Therefore it looks for alternative carbon sources and there-
fore the metabolism is influenced by CCR. Various viru-
lence systems are known to amend the pathogenicity of P. 
aeruginosa. One of the important mechanisms for viru-
lence regulation is quorum sensing (QS) which employs 
secretion of small diffusible signal molecules in surround-
ing environment in order to synchronise gene expression 
and concerted behaviour, for example biofilm formation 
(Miller and Bassler 2001). It has been reported that the 
Pseudomonas quinolone signalling (pqs) is affected by Crc 
in a nutrient-dependent manner (Zhang et al. 2014). The 

Table 1  Crc, Hfq and sRNA mediated regulation in various bacterial species

Bacteria Physiological trait/mechanism Global regulators (proteins/
sRNAs)

References

Pseudomonas aerugenosa Swimming, swarming and twitch-
ing motility, bio film formation 
and EPS production

Crc O’Toole et al. (2000)

Pseudomonas putida Complex branched-chain keto acid 
dehydrogenase

Crc Hester et al. (2000a)

Pseudomonas putida
Pseudomonas aeruginosa

Branched-chain keto acid dehy-
drogenase (BCKAD), glucose-
5-phosphate dehydrogenase, and 
amidase

Crc Hester et al. (2000b)

Pseudomonas putida GPo1 Alkane Degradation Crc Yuste and Rojo (2001)
Pseudomonas putida Alkane degradation Crc Ruiz-Manzano et al. (2005)
Pseudomonas fluorescens SBW25 Histidine utilisation CbrAB and NtrBC Zhang and Rainey (2007), Zhang 

and Rainey (2008)
Acinetobacter baylyi Protocatechuate degradation Crc Zimmermann et al. (2009)
Vibrio cholera Virulence Hfq Vincent et al. (2012)
Pseudomonas syringae pv. tomato 

DC3000
Virulence Crc, CrcZ, CrcX Chakravarthy et al. (2017), Fili-

atrault et al. (2013)
Pseudomonas aeruginosa Type III Secretion System Crc Dong et al. (2013)
Pseudomonas aeruginosa and 

Pseudomonas Putida
Hierarchical management of car-

bon sources
CbrA/B systems Valentini et al. (2014)

Pseudomonas putida KT2440 Conversion of aromatic lignin 
monomers to muconate

Crc Johnson et al. (2017)

Acinetobacter baumannii Biofilm formation, airway epithe-
lial cell adhesion and invasion, 
survival in macrophage

Hfq Kuo et al. (2017)

Pseudomonas putida KT2440 Enhanced muconate production Crc Johnson et al. (2017)
Azotobacter Vinelandii Glucose uptake through GluP 

transporter
CbrA/CbrB and Hfq-Crc systems Quiroz-Rocha et al. (2017)

Pseudomonas fluorescens SBW25 Xylose utilisation Hfq/Crc/sRNA and CbrAB Liu et al. (2017)
Pseudomonas aeruginosa Post-transcriptional regulation dur-

ing carbon catabolite repression
Hfq/Crc/sRNA complexes Sonnleitner et al. (2018b)

Pseudomonas putida Iron homeostasis Hfq/Crc/sRNA Sánchez-Hevia et al. (2018)
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RhlAB system is known for rhamnolipid synthesis which 
is a virulence factor required during P. aeruginosa lung 
infection. Several proteases and chaperones together serve 
to maintain quality control of cellular proteins that are 
known as the protein quality control (PQC) systems. The 
PQC of Gram-negative bacteria has Lon and ClpX (clp, 
caseinolytic protease) which are ATP-dependent proteases 
(Mogk and Bukau 2006). Crc induces Rhl production by 
down-modulation of Lon protease. The hfq and crc dele-
tion leads to reduced production of the QS signal molecule 
N-Butyryl-homoserine lactone (C4-HSL) in P. aeruginosa 
(Sonnleitner et al. 2006; Yang et al. 2015). The rhl QS 
signal C4-HSL production was balanced by disruption of 
Lon protease which is influenced by crc deletion. It was 
also reported that the repression of rhl QS by ClpX was 
Lon independent. In addition, ClpP protease is a negative 
regulator of rhl QS therefore, ClpPX in combination have 
a role in linking CCR and PQC mediated regulation in P. 
aeruginosa (Yang and Lan 2016).

Influence of CCR on antibiotic resistance

Apart from virulence, CCR also plays an important role in 
the development of antibiotic resistance. A steady rise in 
drug resistance among the clinical isolates poses a chal-
lenge towards treatment of various infectious diseases. It 
becomes important to understand the molecular mechanism 
of drug resistance in depth to enhance sensitivity of bac-
teria to the antibiotics in use. In P. aeruginosa antibiotics, 
amino-acids and carbon sources share same ports of entry 
for getting inside the cell and the transporter encoding genes 
are frequently controlled by CCR. In P. aeruginosa defects 
in type III secretion and motility due to Crc deletion were 
reported. The mutant strain became more susceptible to anti-
biotics such as beta-lactams, aminoglycosides, fosfomycin 
and rifampicin (Linares et al. 2010). The hfq deletion in 
P. aeruginosa strains also lead to increased susceptibility 
towards various antibiotics. During CCR i.e. by adding non-
preferred carbon source, the expression of CrcZ increased 
sequestering Hfq which lead to enhanced antibiotic sensi-
tivity (Sonnleitner et al. 2018a). Thus, CCR mediators can 
be great targets for generating ways for making P. aerugi-
nosa more sensitive to different classes of antibiotics.

Influence of CCR on bioremediation 
pathways

The molecular means of CCR are important in understanding 
the behaviour of bacterial species in the environment where 
they degrade xenobiotic compounds. These compounds 
are the ones whose concentrations are built up as they are 

difficult to degrade and create environmental pollution. A 
number of strains of Pseudomonas had been reported for 
bioremediation potential in laboratory condition (reviewed 
in Das and Chandran 2011). However, degradation of any 
of these compounds may be influenced by the presence of 
multiple carbon sources in natural environment. Contamina-
tion by aromatic compounds poses environmental problems 
with delayed degradation as they are not the preferred carbon 
compounds for majority of bacteria. It has been reported that 
succinate being a preferred carbon source, represses deg-
radation of benzoate and alkanes in laboratory conditions, 
where the global regulator Crc has a role to play (Wang and 
Shao 2013). Crc is known to be involved in CCR caused 
by succinate that leads to repression of a number of genes 
involved in sugar metabolism in both P. aeruginosa (Col-
lier et al. 1996; MacGregor 1996) and P. putida (Hester 
et al. 2000a, b). Crc modulates alkane degradation pathway 
encoded in the OCT plasmid of P. putida with varying levels 
of Crc in accordance with the growth conditions (Ruiz-Man-
zano et al. 2005). When P. putida was grown in association 
with plant roots, the root exudates reduced phenanthrene 
degradation (Rentz et al. 2004). This is suggestive of an 
important fact that CCR may be well operational in natural 
environments where concentrations of carbon sources are 
often limiting leading to hierarchical utilisation or repression 
of certain carbon sources. An interesting approach was sug-
gested wherein the influence of trace amounts of preferred 
substrate was checked. Use of low concentrations of suc-
cinate in P. putida mt-2 batch culture improved the toluene 
removal efficiency (Tsipa et al. 2017). Similarly, strategies 
for bioremediation of other xenobiotics compounds can be 
optimised using an in-depth understanding of the molecu-
lar networks of CCR and mediators to generate a superior 
bioremediation agent.

Influence of CCR on plant growth promotion 
pathways

Microbial strains present in the rhizosphere that can improve 
growth of plants are known as plant growth promoting rhizo-
bacteria (PGPR) (Kloepper et al. 1980). The PGPR have 
been explored as bio-inoculants in the fields for several 
decades. It would be highly desirable to develop multi-trait 
PGPR strains that can fix nitrogen, solubilise phosphate, 
control disease and have other plant beneficial traits. Sev-
eral PGPR strains are routinely employed but their positive 
responses to plants are often limited to laboratory or green-
house and the results are inconsistent in field conditions. 
The plant roots secrete organic compounds in root exudates 
that help microbes for survival in the rhizosphere and they in 
return promote plant growth. The compositions of root exu-
dates vary according to the plant species and often comprise 
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complex mixtures. Presence of various organic acids and 
sugars in rhizosphere execute CCR for preferential utili-
sation of carbon sources. This facilitates the bacterium to 
compete and survive among existing microbial communities. 
While it is not yet clear how bacteria choose the substrate 
in a rhizosphere where CCR could be regulating metabo-
lism, various experiments have been conducted in vitro with 
commonly found organic acids present in the root exudates. 
For instance, succinate and malate were reported to repress 
the gluconate production which was shown to be the main 
mechanism of mineral phosphate solubilisation (MPS) in 
plant growth promoting fluorescent Pseudomonas (Patel 
et al. 2011). Similarly, in our laboratory, the biochemical 
basis of SMCR of MPS in two strains of Klebsiella (SM6 
and SM11) was established. The SMCR was operative on 
glyoxylate shunt enzymes (isocitrate lyase and glyoxylate 
oxidase) hence leading to repression of oxalate mediated 
MPS (Rajput et al. 2013). Furthermore, it was found that 
iclR repressor of aceBAK operon was the key regulator of the 
MPS repression. Therefore, generation of iclR null mutants 
in both the strains relieved repression of MPS up to 54% 
and 59% and improved PGP activities as compared to that 
of wild type strains even in presence of succinate (Rajput 
et al. 2015). A similar type of biochemical and molecular 
basis of SMCR is yet to be established in PGP Pseudomonas 
species. A strategy of similar kind may be employed when 
phosphate solubilisation or other PGP traits are influenced 
by the components of root exudates and CCR. By these 
means repression relieved strains can be developed which 
may further improve plant growth under natural soil con-
ditions also. A more comprehensive genome mining effort 
need to be carried out to unravel the genetic basis underlying 
the CCR in Pseudomonas and other rhizobacterial species 
which would be critical for generation of efficient bioferti-
lisation strategies.

Promising genome‑wide methodologies 
for rewiring the functional complexity 
between Crc, Hfq and sRNAs

The regulated expression of common responses in bacte-
ria is a consequence of simultaneous integration of multi-
ple signals conferring plasticity, versatility and efficiency. 
To explore the contribution of each and every input to the 
expression machinery, it is necessary to analyse the post-
transcriptional regulation in Pseudomonas species. The 
Crc protein, Hfq and sRNAs are the main players of the 
post-transcriptional regulation. To understand the interlaced 
regulation, a combination of many omics approaches may 
produce a broad representation of bacterial adaptation to the 
external milieu.

The potential roles of Crc, Hfq and sRNAs in different 
bacteria have been characterised by phenomic, transcrip-
tomic and proteomic analyses of knockouts of respective 
genes. Role of Hfq was established in P. aeruginosa (Sonn-
leitner et al. 2006), Sinorhizobium meliloti (Torres-Quesada 
et al. 2010), Brucella melitensis (Cui et al. 2013), Serratia 
sp. ATCC 39006 (Wilf et al. 2013), E. coli (Bilusic et al. 
2014), Clostridium difficile (Boudry et al. 2014), Yersinia 
pestis (Deng et al. 2014), Bacillus subtilis (Hämmerle et al. 
2014) by using omics approaches.

The transcriptome data revealed the influence of Hfq on 
genes involved in bacterial metabolism suggesting role of 
Hfq in controlling the metabolic versatility of P. fluorescens. 
The ribosome profiling experiments were performed to dis-
sect the role of Hfq in regulation at the levels of transcript 
abundance and translation. The data revealed the negative 
role of Hfq by controlling translation of mRNAs encoding 
transport system and enzyme-based systems for amino acid 
and carbohydrate metabolism, siderophore utilisation, sec-
ondary metabolite secretary pathway (Type II and III) and 
chemotaxis-related genes. The soluble proteome of Δhfq 
revealed up-regulation of a group of putative lipoproteins 
by Hfq (Grenga et al. 2017). The role of lipoproteins has 
been reported in amino acid and carbohydrate metabolism, 
siderophore utilisation, secondary metabolite secretary and 
chemotaxis related genes in P. aeruginosa. A genome wide 
survey predicted lipoprotein PA0953 as thioredoxin, PA2993 
and PA1048 to be involved in thiamine biosynthesis and 
type VI secretion respectively, which is suggestive of the 
role of lipoprotein in amino acid metabolism, pathogenesis, 
etc. Furthermore, it was reported that the outer-membrane 
lipoproteins belonging to the OprM, OmpR, OmpJ encode 
antibiotic efflux systems; OmpQ for pyoverdine recycling 
OpmD for quorum sensing (Remans et al. 2010).

To understand the global post-transcriptional effect of 
Crc on the physiology of P. aeruginosa, transcriptome and 
proteome of a Crc deficient mutant were analysed against 
the wild type strain using a post-transcriptional variation 
(PTV) approach. This study presented a comprehensive 
map of the Crc post-transcriptional regulon and the mecha-
nism of hierarchical assimilation of carbon sources where 
Crc played a key role in keeping bacterial homeostasis and 
consequently metabolic robustness. In addition, the results 
indicated that CCR in P. aeruginosa is also involved in the 
regulation of other elements of bacterial physiology such 
as iron uptake genes, siderophore biosynthesis and uptake, 
xenosiderophore uptake and heme uptake, although the 
effect of this regulation on bacterial iron homeostasis has 
not been explored in detail (Corona et al. 2018).

Many functional studies have shown the mutual coop-
eration of global posttranscriptional regulators such as Crc 
and Hfq in controlling the destiny of targeted transcripts. A 
major loophole in existing understanding has been the lack 
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of structural considerations for cooperation between these 
global regulators for tight regulation of cellular processes. 
Pei et al (2018) reported the structural details of Crc using 
high-resolution cryo-EM structures explaining how Crc can 
support Hfq in direct translational repression when bound 
to a translational initiation region on targeted transcripts by 
forming a multi-component assembly.

RNAseq based transcriptome analysis was carried out 
with strains of P. aeruginosa PAO1 (wild type), PAO1hfqΔ 
and PAO1Δcrc. It was found that Hfq-dependent transla-
tional regulation was carried out through Crc, Hfq and RNA 
interaction. This investigation revealed a considerable over-
lapping interplay between the Crc and Hfq regulon along 
with protein–protein interaction data supporting rigorous 
activity between Crc and Hfq protein. Furthermore, the 
pull-down assays and protein–protein and protein-RNA 
interactions found that the sRNA binds to the distal surface 
of Hfq bound Crc complex. In addition to these findings, 
biochemical and biophysical studies suggest that Crc and 
Hfq assemble in the presence of RNAs with A-rich motifs 
(Sonnleitner et al. 2018b). These results were in agreement 
with the observation of Moreno et al. (2015). The strong 
interaction between Crc and Hfq enhances the stability of 
Hfq/Crc/RNA complexes facilitating Hfq-mediated transla-
tional repression. Moreover, Crc also interferes with regula-
tory RNA to Hfq complex formation and thus has a role in 
riboregulation. In P. aeruginosa hfq deletion strain, it had 
increased susceptibility to different classes of antibiotics. 
The transcriptome analyses pointed out the impact of Hfq on 
mechanisms such as import and efflux, energy metabolism, 
cell wall composition as well as on the c-di-GMP levels in 
antibiotic susceptibility. These studies hence have helped in 
understanding the role of CrcZ in sequestration of Hfq that 
ultimately enhances the sensitivity to antibiotics (Sonnleit-
ner et al. 2018a).

Conclusion

CCR allows optimum metabolism that is also energetically 
favorable to achieve efficient growth and enhance the com-
petitiveness of bacteria in their natural habitat. The Crc, Hfq 
and sRNAs regulate the gene expression in an environmental 
milieu which has implications in the degradation of vari-
ous xenobiotic compounds. Complete understanding of the 
underlying molecular mechanisms behind CCR regulatory 
networks can help in optimising agricultural, environmental 
and industrial applications, designing tailor-made biocata-
lysts and in understanding plant-pathogen or animal-path-
ogen interactions. The advanced high throughput sequenc-
ing and bioinformatics combined with novel approaches 
including quantitative proteomics, RNAseq and other omics 

techniques can present a significant breakthrough in dis-
covering and defining exciting mechanisms of regulatory 
networks.
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