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Introduction

Since they were first observed in human semen in 1678 by 
Antonie van Leeuwenhoek in the form of spermine phos-
phate and identified by Schreiner in 1878, polyamines have 
been of great interest to many researchers. They were identi-
fied in every living organism except two orders of Archaea, 
Methanobacteriales and Halobacteriales (Hamana and Mat-
suzaki 1992). This ubiquitous nature of polyamines indicates 
the significance of these small molecules in the organisms 
ranging from unicellular microorganisms to higher eukary-
otes. This review specifically focuses on the roles of poly-
amines in microorganisms. Biosynthetic and regulatory 
pathways are also briefly explained to provide better under-
standing of the polyamine diversity, differential functions, 
significance of their roles and polyamine-based therapeutic 
approaches. The review covers the physiologically signifi-
cant intracellular functions of polyamines such as cell divi-
sion, stabilization of nucleic acids or gene expression as well 
as their involvement in cell-environment interactions such 
as stress response and pathogenic activity, in reference to 
their molecular structure, prevalence and ecological context.

Polyamines are aliphatic hydrocarbon chains with one or 
more amine groups. They are positively charged at physio-
logical pH, which enables their interaction with polyanionic 
molecules such as DNA, RNA, phospholipid head groups in 
cell membrane or cell wall components. Putrescine, spermi-
dine and spermine constitute the most common polyamines 
with some exceptions in bacteria and fungi. In bacteria such 
as Escherichia coli, putrescine is the most prominent poly-
amine, while in eukaryotes spermine and spermidine exist in 
higher concentrations. Yet in fungi Saccharomycotina sub-
phylum, spermine is not detected at all. The other forms of 
polyamines involve long-chain and branched-chain polyam-
ines, which are predominantly synthesized in thermophiles. 
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Polyamines, which vary in terms of molecular structure, 
valence and prevalence undertake different roles in the cells 
such as survival, growth, gene expression, stress response, 
cell division and parasidic activity (Miller-Fleming et al. 
2015; Michael 2016). Thus, polyamine levels should be kept 
under strict control in the cells to enable the efficiency of 
these cellular functions. Polyamine biosynthesis and cellular 
transport are the major routes to regulate polyamine levels in 
the cells. Hence these mechanisms have been crucial targets 
for the experimental approaches to understand the roles of 
polyamines.

The universal polyamine biosynthetic pathway in eukary-
otes including Protozoa and Fungi, initiates by conversion 
of l-ornithine into putrescine by ornithine decarboxylase 
(ODC). Putrescine is converted into spermidine and then 
spermine by the successive transfer of aminopropyl groups, 
which are donated by decarboxylated AdoMet (dcAdoMet). 
The key enzymes in this pathway are (1) S-adenosylmethio-
nine decarboxylase (AdoMetDC), which catalyzes the for-
mation of dcAdoMet, (2) spermidine synthase (SpdSyn), 
which catalyzes conversion of putrescine into spermidine, 
and (3) spermine synthase (SpmSyn), which catalyzes con-
version of spermidine into spermine. ODC and AdoMetDC 
catalyze the rate limiting steps of the biosynthetic pathway 
and deletion of one of these enzymes are frequently used in 
experiments to deplete polyamines in the cells. Although 
ODC, AdoMetDC and SpdSyn forms a universal polyamine 
biosynthetic pathway (Michael 2016), one interesting excep-
tion is the parasidic Protozoan Trypanosoma brucei, which 
doesn’t possess ODC gene and therefore needs to uptake 
putrescine from its host. It, however, has AdoMetDC and 
SpdSyn to convert putrescine to spermidine. Spermine bio-
synthesis is thought to have evolved independently from 
putrescine and spermidine. Although it exists in Saccharo-
mycotina yeasts, spermine doesn’t exist in the rest of the 
fungi or Protozoa parasites T. brucei, Trypanosoma cruzi, 
Leishmania and P. falciparum. Also in bacteria the most 
common polyamines are putrescine, spermidine and cadav-
erine, leaving spermine out. Spermine is only found in the 
pathogenic bacteria if it is already present in the medium. 
In E.coli, for instance, spermine is not synthesized de novo, 
but exogenous spermine can be used in the cells (Dubin 
and Rosenthal 1960). These data indicate a transport sys-
tem for the spermine without de novo synthesis in bacteria. 
An alternative biosynthetic pathway that can be observed 
in Bacteria and also in Archaea is the arginine decarboxy-
lase (ADC) pathway. ADC converts arginine into agmatine, 
which is subsequently converted into putrescine by agman-
tinase. Putrescine is then converted into spermidine via 
AdoMetDC/SpdSyn route. Mutations of biosynthetic path-
way components is a widely used experimental approach to 
deplete polyamines and understand their roles. For instance 
polyamine depletion via biosynthetic pathway mutants lead 

to reduced growth rate or even growth arrest in many differ-
ent organisms such as Yersinia pestis, Vibrio cholerae and 
Salmonella typhimurium and Thermococcus kodakaraensis 
(Michael 2015).

Although less characterized than the biosynthetic path-
way, polyamine transport is also involved in the regulation 
of intracellular polyamine levels. Polyamine transporters 
can be found in the plasma membrane or in organelle mem-
branes, and they can provide influx or efflux of polyamines 
contributing to the polyamine homeostasis. For instance, 
deletion of yeast polyamine export protein Tpo1 showed 
sensitivity to excessive polyamine levels, while its overex-
pression increases tolerance to excess polyamine (Albertsen 
et al. 2003). These transporters are especialy important for 
organisms like T. cruzi, who lack ODC and depend on envi-
ronmental uptake of polyamines such as putrescine.

Stabilization of nucleic acids

Polyamines can readily bind to anions in the cells due to 
their polycationic nature. Intracellular polyamines are pre-
dominantly found as polyamine-RNA complex rather than 
binding to cytoplasmic proteins. For instance in case of E. 
coli, 90% of the spermidine and 48% of the putrescine are 
found in RNA complex in the cells. In addition to the RNA, 
polyamines were also reported to bind to and stabilize dou-
ble stranded DNA. Polyamine interaction with DNA and 
RNA, however, have different consequences. It was shown 
that polyamines stabilized the RNA by keeping it in a par-
ticular conformation, in which RNA stays soluble and capa-
ble of interacting with other molecules. In case of DNA, 
polyamines bind externally to the DNA, enabling inter-
molecular interactions (Katz et al. 2017). Stabilization of 
nucleic acids by polyamines is especially important in ther-
mophilic microorganisms, which grow optimal at 50–60 °C 
temperature and in hyperthermophiles, which grow better at 
80 °C or higher. There is growing evidence that polyamines 
contribute to their heat resistance.

Thermophilic Archaea and Bacteria have unusual long-
chain (e.g. homocaldopentamine, caldopentamine, cal-
dohexamine and thermopentamine) and branched-chain (e.g. 
tris-(3-aminopropyl)amine, N4-aminopropylspermidine, tet-
rakis-(3-aminopropyl)ammonium and N4-bis(aminopropyl) 
spermidine) polyamines, in addition to the common poly-
amines putrecine and spermidine (Fukuda et  al. 2015). 
For instance, Pyrobaculum aerophilum and Hyperthermus 
butylicus archaea have long-chain polyamines, while T. 
kodakarensis has no linear long polyamines but branched-
chain polyamines, which was shown to stabilize compacted 
DNA and contribute to the regulation of gene expression 
(Fukuda et al. 2015). In vitro studies in aqueous solution 
showed that branched-chain polyamines forms bridges or 
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crosslinks within DNA, changing the higher order structure, 
while linear polyamines induces parallel alignment between 
DNA segments (Muramatsu et al. 2016). This could explain 
how these unusual polyamines in thermophiles contribute to 
the nucleic acid stability, which is an important part of ther-
mostability. In addition to the branched-chain polyamines, 
aminobutryl-containing polyamines and (although less effec-
tively) acetylated polyamines are known to stabilize DNA.

Translation

An important part of the requirement for polyamines in cel-
lular growth and proliferation is believed to be due to their 
influence on gene expression through translation. This func-
tion of polyamines is not through the stabilization of nucleic 
acids and that is the reason aminopropyl and aminobutryl 
groups have similar effects on DNA stability but varying 
effects on translation efficiency (Wilson and Bloomfield 
1979). The set of genes whose expression is upregulated 
by polyamines, at the level of translation is called ‘poly-
amine modulon’ (Igarashi and Kashiwagi 2006). Polyamine 
modulon in E. coli includes proteins involved in transcrip-
tion, translation, nutrient transport, cell viability and signal 
transduction. Three different mechanisms were proposed to 
explain the effect of polyamines on translation: (1) polyam-
ines exert structural changes and facilitate the formation of 
the initiation complex when Shine-Dalgarno (SD) sequence 
is far from the initiation codon (2) facilitate fMet-tRNA 
binding to inefficient UUG and GUG initiation codons (3) 
stimulate read-through or frameshifting. In thermophilic 
eubacteria T. thermophilus, polyamines are known to be 
indispensable for the efficient translation at temperatures 
above 65 °C, but not at 37 °C (Ono-Iwashita et al. 1975). 
Longer polyamines (e.g. homocaldopentamine, caldopen-
tamine and thermopentamine) are shown to increase trans-
lation efficiency in the cellular extracts of T. kodakarensis, 
while putrescine and spermidine had no effect. Finally, stud-
ies on polyamine biosynthesis mutant S. cerevisiae showed 
increased Cox4 gene translation upon exogenous addition of 
spermidine, which is through ribosome shunting of the hair-
pin structures during scanning of the 5′UTR of the mRNA 
(Uemura et al. 2009). This first member of yeast modulon 
is a subunit of mitochondrial respiratory chain enzyme 
cytochrome c oxidase (Complex IV), which is responsible 
for the assembly and stabilization of this complex (Coyne 
et al. 2007).

The role of polyamines in the regulation of translation 
also contributes to their own feedback control in yeast. 
(Ivanov et al. 2000; Palanimurugan et al. 2004). Antienzyme 
(AZ) is an ODC inhibitor, which mediates its degradation. 
They have two open reading frames and functional AZ pro-
tein expression requires a+1 ribosomal frameshift, which is 

stimulated by polyamines. So, AZ expression increases with 
increasing cellular polyamine levels, which in turn induces 
the breakdown of the rate limiting biosynthetic enzyme 
ODC and constitutes a negative feedback loop for polyamine 
regulation. S. pombe SPA was the first antienzyme identified 
in a unicellular organism, whose deletion caused 40 times 
accumulation of putrescine in the cells and overexpression 
caused growth inhibition with cells accumulated in the G1 
phase of the cell cycle (Ivanov et al. 2000). Another level 
of antienzyme-dependent feedback was identified in S. cer-
evisiae, in which polyamines also inhibited the ubiquitin 
dependent proteolysis of yeast antienzyme Oaz1 (Palani-
murugan et al. 2004). Antienzyme-like proteins which are 
induced by purescine and inhibit ODC were also identified 
in bacteria Selenomonas ruminantium and E. coli (Ivanov 
et al. 1998; Yamaguchi et al. 2002).

One major mechanism polyamines exert their effects on 
translation is through a unique post translational modifica-
tion of the tranlation factor eIF5A, which involves conver-
sion of its lysine residue into an unusual amino acid hypu-
sine. Hypusine is synthesized by a two step process: (1) 
cleavage and transfer of the aminobutyl group of the sper-
midine to a specific lysine residue of the precursor eIF5A 
by deoxyhypusine synthase (DHS), which yields deoxyhy-
pusine intermediate (2) conversion of the deoxyhypusine 
intermediate into hypusine containing active eIF5A by 
deoxyhypusine hydroxylase. This modification is known to 
convert inactive eIF5A into its active form and directs it to 
the cytoplasm enabling its association with ribosomes (Lee 
et al. 2009). The active form of eIF5A is shown to stimulate 
ribosome peptidyltransferase activity and especially essen-
tial for the translation of proline rich regions on the mRNA 
(Gutierrez et al. 2013). Disruption of eIF5A or DHS genes 
in S. cerevisiae are known to cause growth arrest and loss of 
viability. Additionally, S. cerevisiae polyamine biosynthesis 
mutant can grow at normal rate upon addition of polyamines 
at 0.2% of the physiological level, 54% of which was used 
for the hypusination, indicating that polyamine requirement 
in cells is mostly due to its hypusination function (Chatto-
padhyay et al. 2008). DHS gene is also known to be essential 
for protozoa such as Leishmania donovani (Chawla et al. 
2010) and T. brucei (Nguyen et al. 2013).

Stress response

One of the major roles of polyamines in the cells is to pro-
vide resistance to intracellular and environmental stress, 
which could be in the form of reactive oxygen species, tem-
perature changes, osmotic pressure or other toxic compunds. 
A growing number of evidence showed that intracellular pol-
yamine levels change in response to stress and depletion of 
polyamines (by chemical or genetic methods) renders cells 
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more sensitive to stress. Engineered S. cerevisiae strains 
with high spermidine levels were resistant to chemicals such 
as acetic acid and furfural, which would otherwise inhibit 
microbial growth, metabolism and ethanol fermentation 
(Kim et al. 2015). Polyamines can exert their effects as part 
of the stress response either directly (e.g. acting as reactive 
oxygen species/ROS scavengers) or indirectly (e.g. regulat-
ing the expression of stress response genes). Also in fungi 
such as Glomus mosseae, Rhizopus stolonifer, Botryodiplo-
dia theobromae, Gigaspora rosea and Glomus etunicatum, 
polyamines were shown to be involved in spore germination, 
which forms a more stress resistant form of cell compared 
to the vegetative cells (Valdes-Santiago and Ruiz-Herrera 
2013). A similar situation could be observed in E. coli, in 
which putrescine was shown to promote persister cell for-
mation by upregulating rpoS expression. Persister cells are 
known to survive lethal antibiotics such as netilmicin and 
stresses (Tkachenko et al. 2017).

Oxidative stress

Oxidative stress is caused by ROS such as hydrogen peroxide 
 (H2O2), which can be harmful for intracellular macromol-
ecules. ROS can be a byproduct of metabolism and increases 
with cellular metabolic rate, which is high in rapidly prolif-
erating cells or infective bacteria. Cells can also be exposed 
to ROS from the environment. Either way, cells respond to 
stress by increasing antioxidant proteins, arresting cell cycle 
and adjusting metabolism. Polyamines are known to help 
fight against the oxidative stress by directly interacting with 
free radicals or by altering gene expression. In fact, poly-
amines are known to be very strong ROS scavengers due 
to their positive charge. Putrescine, spermidine, spermine 
and cadaverine are shown to be very efficient against alkyl, 
hydroxyl and peroxyl radicals, while spermidine and sper-
mine can work as scanvengers against superoxides (Valdes-
Santiago and Ruiz-Herrera 2013). In E. coli, putrescine level 
was shown to increase upon oxidative stress (Tkachenko 
et al. 2001). Also putrescine and spermidine were shown 
to increase the transcription of OxyR and SoxRS, which 
are the transcription factors associated with the subsequent 
expression of stress response genes ahpC, katG and katE 
(Tkachenko and Nesterova 2003; Jung and Kim 2003). In 
fungi Ustilago maydis, polyamine mutants were shown to 
be more sensitive to environmental  H2O2 compared to wild 
type cells (Valdes-Santiago et al. 2010), while S. cerevisiae 
polyamine mutants lost viability under oxygen atmosphere 
(Balasundaram et al. 1993). Additionally, in  H2O2 exposed 
S. cerevisiae, Tpo1 polyamine transporter is shown to export 
spermidine and spermine, which in turn induces stress 
response proteins such as Hsp70, Hsp90, Hsp104 and Sod1, 
and prolongs cell cycle arrest (Krüger et al. 2013). Tpo1 is 
also shown to be involved in the resistance against benzoic 

acid (Godinho et al. 2017) and its deletion was shown to 
render the yeast cells more sensitive to environmental  H2O2, 
which could be rescued to some extent by exogenous supply 
of spermidine and spermine in the growth media.

Osmotic and salt stress

Polyamines can influence the stability and permeability of 
cellular membranes by binding to the negatively charged 
phospholipid head groups or other anionic sites (including 
membrane bound proteins) on these membranes (Marton 
and Morris 1987), which is especially important in provid-
ing defense against osmotic or acidic stress. In E. coli, for 
instance, polyamines were shown to inhibit the activity of 
porins OmpF and OmpC, which results in decreased mem-
brane permeability and consequently contributes to the 
resistance against acidic or osmotic stress (Vega and Del-
cour 1996). Also in S. cerevisiae osmotic stress induced by 
NaCl, KCL or sorbitol downregulated a major high effinity 
permease AGP2, which is responsible for polyamine import 
(Lee et al. 2002; Aouida et al. 2005). Serine/threonine pro-
tein kinases Ptk1p and Ptk2 in yeast were also shown to 
regulate polyamine uptake, and disruption of ptk2 resulted 
in salt tolerance while over expression of serine/threonine 
kinase genes Ptk2 and Sky1p caused salt sensitivity (Erez 
and Kahana 2002). In cyanobacterium Synechocystis sp., 
spermine level was shown to increase upon osmotic stress, 
while spermidine level increased upon salt stress, which was 
provided by both increased expression of adc and increase 
in the uptake of putrescine and spermidine (Jantaro et al. 
2003). Additionally, in U. maydis, spdsyn and odc mutants 
were shown to decrease growth rate only in the presence 
of salt stress induced by KCl and SDS, but not at optimum 
conditions without stress (Valdes-Santiago et al. 2009).

Temperature stress

In thermophilic archaea and bacteria, long-chain and 
branched-chain polyamines are thought to contribute signifi-
cantly to thermostability. These specific polyamines contrib-
ute to the heat resistance of thermophiles. Consistent with 
their role, branched-chain polyamines are more abundant 
in thermophiles growing at high temperatures compared 
to the cells growing at lower temperatures (Fujiwara et al. 
2015). The gene disruptions that result in loss of long-chain 
and branched-chain polyamine production also decrease 
the viability of thermophiles at high temperatures (Ohnuma 
et al. 2005; Morimoto et al. 2010). In thermophilic eubacte-
rium Thermus thermophilus, for instance, long and branched 
chain synthesis mutants showed that these polyamines were 
required for viability at high temperatures and for the main-
tenance of  tRNATyr,  tRNAHis, rRNAs and 70S ribosomes 
(Nakashima et al. 2017). In addition to their essential role 
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as nucleic acid stabilizers at extreme temperatures in ther-
mophilic microorganisms, polyamines provide resistance to 
high temperatures in other organisms as well. In fungi such 
as Tapesia yallundae, U. maydis and S. cerevisiae, poly-
amine biosynthesis mutants showed sensitivity to elevated 
temperatures (Valdes-Santiago and Ruiz-Herrera 2013).

Cell cycle

Polyamines have been shown to be involved in the progres-
sion of cell cycle. Studies in S. cerevisiae showed that ODC 
enzymatic activity is highest in the exponentially growing 
cells and its activity decreases as cells approach stationary 
phase. The nongrowing cells, which are arrested at the G1 
phase also have decreased ODC activity (Kay et al. 1980). 
Also in S. pombe, spermidine depletion at the early stages 
slowed down the cell cycle with cells accumulating at the 
G1. Prolonged polyamine depletion leads to more cells 
accumulating at G1 with morphological abnormalities 
such as disruption of the actin network, absence of septum 
and disintegration of nucleus. Notably, even a very small 
amount of polyamines could restore normal growth with 
cells mostly at the G2/M stage similar to the wild type cells 
(Chattopadhyay et al. 2002). Due to the sensitivity of cell 
proliferation to intracellular metabolic activities as well as 
outer environment, polyamines also indirectly effect the cell 
division. For instance, in archae Sulfolobus acidocaldarius, 
inhibition of eIF5A hypusination, which is dependent on 
spermidine, leads to cell cycle arrest (Jansson et al. 2000). 
Or in S. cerevisiae, environmental  H2O2 exposion induces 
polyamine transport, which contributes to the induction 
of stress response proteins and consequently the timing of 
 H2O2-dependent cell cycle arrest at G2 (Krüger et al. 2013).

Pathogenic activity

The significance of polyamines for the survival through 
vital mechanisms such as gene expression and cell divi-
sion, makes polyamine metabolism a proper target for drug 
design against pathogenes. This idea has been successfully 
applied to Protozoa parasites such as T. brucei, T. cruzi, 
Leishmania and Plasmodium, which cause HAT (Human 
African Trypanosomiasis/sleeping sickness), American 
trypanosomiasis (Chagas disease), leishmaniasis and 
malaria, respectively. Biosynthetic enzymes such as ODC, 
AdoMetDC and SpdSyn have proved to be promising tar-
gets against these parasites. ODC inhibitor DFMO and 
AdoMetDC inhibitors (such as MDL 73811 analogues, 
aryl and heteroaryl bis-guanylhydrazones) were shown to 
efficiently cure T. brucei infections (Bitonti et al. 1990; 
Bacchi et al. 1992; Li et al. 1998; Barker et al. 2009), 

reduce Leishmania (Gradoni et al. 1989) and Plasmodium 
infection (vonBrummelen et al. 2009). In case of T. cruzi, 
which lacks ODC and depends on the uptake of the putres-
cine from the host, the inhibition of the only polyamine 
transporter TcPAT12 by isotretinoin turned out to be a 
promising treatment (Reigada et al. 2017).

A similar polyamine dependent pathogenic activity can 
be observed in fungi Penicillium marneffei (a pathogen 
for people with immune deficiency), whose pathogenesis 
is disrupted by spe (yeast ODC) mutation and Botrytis 
cinerea, whose virulence is enhanced by the expression of 
spe gene and increased polyamine levels and returned to 
normal upon polyamine inhibitor treatment (Marina et al. 
2008). Polyamine biosynthesis and transport system was 
also shown to be proper drug targets in bacteria such as 
Strestococcus pneumoniae and Salmonella enterica sero-
var Typhimurium (Shah et al. 2011; Jelsbak et al. 2012).

Emerging roles of polyamines and concluding 
remarks

Microorganisms constitute very efficient models for 
genetic manipulations (e.g. knock-out mutants of polyam-
ine biosynthesis proteins or transporters), which widened 
our general understanding of polyamines, both functional 
and structural. Understanding the functions of polyam-
ines in microorganisms serve important functions in drug 
design against pathogens or render microorganism more 
resistant to stress in case they are used for biofuel, etc. pro-
duction. Polyamines are gathering more and more atten-
tion in biotechnology due to their cationic nature and high 
catalytic activity. In nanotechnology, for instance, polyam-
ines are used in the construction of carbon fiber surfaces 
(Baumgärtner et al. 2017) or in protein based films (Sab-
bah et al. 2017). Their high proton affinity also enables 
them to be used as proton sponges in mass spectrometry 
(Wirth et al. 2017) and also chemical chaperones to sup-
press protein aggregation in biochemical methods (Kara 
et al. 2017). The use of polyamines in biotechnology also 
serves important functions in fight against diseases. Poly-
amines were recently shown to successfully target amyloid 
aggregation in Alzheimer’s Disease (Simoni et al. 2016) 
and spermidine was used to produce super-cationic carbon 
quantum eye drops for the treatment of bacterial kerati-
tis (Jian et al. 2017) as well as provide cardioprotection 
(Eisenberg et al. 2016). Finally polyamines also contrib-
ute to therapeutic applications in regenerative medicine 
as spermine coating enhanced adenoviral transduction of 
mesenchymal stem cells (Wan et al. 2016). All these exam-
ples point to the fact that polyamines will stay as hot topics 
for the following years.
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