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Engineering these regulatory mechanisms will open a pos-
sibility of exploiting the full capability of production of 
biofuel and high added-value oil. In the present review, we 
will describe the characteristics and potential of these algae 
as biotechnological seeds.
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Introduction

Biomass production has been important resources for 
human activity both as nutrition, materials and energy 
source. Traditionally, crop plants served as nutritional 
sources, whereas woody plants or trees were used as con-
struction materials and fuels. Algae have rarely been 
regarded as probable materials for either nutrition or con-
struction, while no one had ever imagined using algae as 
fuels before the break of current trends in biofuel produc-
tion (Menetrez 2012; De Bhowmick et al. 2015). Currently, 
extensive efforts have been made on the biotechnology of 
microalgae, notably, green algae such as Chlamydomonas 
reinhardtii (Merchant et al. 2012; Li-Beisson et al. 2015), 
or marine algae such as Nannochloropsis (Pal et al. 2011; 
Iwai et al. 2015).

In the Japanese tradition, however, people have long 
been exploiting various macrophyte marine algae from the 
beginning of the ancient imperial era (more than 1300 years 
ago as documented in the oldest chronicle Kojiki pub-
lished in 712): the red alga Pyropia yezoensis known as 
“(Asakusa) Nori” (“Asakusa” refers to the algae grown in 
Tokyo Bay in Edo Era), the brown algae in Laminariaceae, 
notably Saccharina japonica known as “Konbu”, the brown 
algae Sargassum fusiforme (formerly Hizikia) known as 
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“Hiziki” and Undaria pinnatifida known as “Wakame” are 
still common food stuff in daily Japanese life (Fig. 1). The 
red algae in Gelidiaceae, typically Gelidium crinale known 
as “Tengusa”, are used to produce agar or “Kanten”, which 
is used as gelling additives in food production or industry 
(as well as in microbiology laboratories!). Cyanobacterial 
mat of Aphanothece sacrum known as “Suizenji nori” is at 
the crisis of extinction in the natural habitats, but has been 
used as delicacy in the local cuisine.

In spite of this tradition of seaweed or algal consump-
tion, Japanese people did not try to use seaweeds or algae 
as fuels, not only because marine products are wet, but also 
due to their low content of oil. They were mainly used as 
food and mineral resources. This does not mean that the 
algae do not produce oil. In the present review, we will pre-
sent recent understandings on the lipid biosynthesis and the 
production of triacylglycerol (TAG) in red algae, or spe-
cifically in red microalgae in the hope of using this knowl-
edge in biotechnological developments. Oils can be used 
as either high added-value products or biofuel depending 
on its composition. Readers are referred to some reviews 
on algal lipids in general (see e.g., Guschina and Harwood 
2006; Qin et al. 2012; Zienkiewiz et al. 2016).

Two types of red algal oils

Red algae are taxonomically classified into two classes, 
Cyanidiales that include unicellular species that are blue-
green in appearance and found in hot springs (such as 
Cyanidioschyzon merolae) and Rhodophytina that include 

marine species of both unicellular (such as Porphyridium) 
and macrophyte (such as Pyropia) forms. Apart from taxo-
nomic classification, there are two types of red algae that 
produce different kinds of oil. Most marine red algae (and 
some Cyanidiales species) produce oil containing high lev-
els of polyunsaturated fatty acids (PUFA), whereas the oil 
of C. merolae contains no PUFA and suited for biofuel. 
PUFA such as arachidonic (20:4 or ARA) and eicosapen-
taenoic (20:5 or EPA) acids are more suited for nutrients or 
healthy products rather than biofuel. We first explain gen-
eral characteristics of lipid biosynthesis in red algae, and 
then present individual red algae and their potential bio-
technological use.

Genomics‑based elucidation of lipid biosynthesis 
in red algae

Composition and biosynthesis of lipids have been inten-
sively studied in model algae such as Chlamydomonas 
reinhardtii (Merchant et al. 2012; Sakurai et al. 2014; Li-
Beisson et  al. 2015; Zienkiewicz et  al. 2016) or related 
species such as C. debaryana (Toyoshima and Sato 2015), 
but understanding of entire pathways of biosynthesis of 
lipids, including TAG, was quite limited in red algae until 
recently. Simple lists of genes involved in lipid synthesis 
have been repeatedly presented: such as Riekof et al. (2005) 
and Li-Beisson et  al. (2015) for C. reinhardtii, Sato and 
Moriyama (2007) for C. merolae, and Misra et  al. (2012) 
for several algal species including these algae and two spe-
cies of Ostreococcus.

Genomic data are the key information for the estima-
tion of metabolic pathways and hence metabolic engineer-
ing. All the 121 genes involved in lipid metabolism in C. 
merolae were estimated (Mori et  al. 2016) by compara-
tive genomics based on homolog clustering (Sato 2009). 
Intracellular localization of 113 enzymes involved in the 
metabolism of fatty acids and lipids in C. merolae (except-
ing those encoded by the plastid genome) was studied 
by Mori et  al. (2016) using transient expression of GFP 
fusion proteins. The results confirmed the previous results 
of Sato and Moriyama (2007), and enabled construction 
of the complete metabolic map of lipid metabolism in C. 
merolae, which is essentially applicable to other red algae 
in Cyanidiales, as well as to red algae in general with minor 
modifications (Fig.  2). We believe that this model on red 
algae can even be extended, with minor modifications, to 
Chromophyta (brown algae, diatoms, Eustigmatophy-
ceae etc) that originated by secondary endosymbiosis of 
red algal cell (Cavalier-Smith 2003). In this model, some 
interesting characteristics emerge: lack of stearate desatura-
tion in the plastid and phycobilisomes as a source of TAG 
accumulation.

Fig. 1   Marine macro algae used in daily Japanese meal. a Nori 
(Pyropia yezoensis) as dried sheets (left) and Nori rolls (right) with 
rice and Kanpyo (a cucurbit Lagenaria siceraria var. hispida) inside, 
a kind of Sushi; b Konbu (Saccharina japonica) as dried thalli (left) 
and Kobumaki (right), cooked in soy sauce and sugar and served with 
Kanpyo (a dish for New Year); c dried Hiziki (Sargassum fusiforme), 
commonly cooked with soy beans in soy sauce and sugar; d dried 
Wakame (Undaria pinnatifida), commonly used in soy soup for Japa-
nese breakfast
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Lack of stearate desaturation in the red algal plastid

The most important trait of red algae in lipid biosynthesis 
is the lack of stearoyl acyl-carrier-protein (ACP) desatu-
rase (Fig. 2a, Table S1), which is ubiquitous in green algae 
and land plants, as well as some actinobacteria (see Clus-
ter 1324 of Dataset Gclust2012_42 in the Gclust compara-
tive genomic database at http://gclust.c.u-tokyo.ac.jp/, Sato 
2009). Since this soluble enzyme is localized in the plastid 
stroma, the primary products of plastid fatty acid synthe-
sis (FAS) are palmitic acid (16:0) and oleic acid (18:1) in 
green algae and plants (See the legends for Tables 2, 3 for 
the names of lipids and fatty acids). The plastid FAS in red 
algae produces saturated acids, such as 16:0 and stearic 

acid (18:0), which are then transported to cytosol, and acti-
vated to become acyl CoAs, which are further used in acyl 
lipid synthesis, desaturation or elongation in ER. The prod-
ucts of elongation and desaturation are dependent on algal 
species (Fig. 2b): In C. merolae, the end product of elon-
gation and desaturation is 20:2, whereas trienoic acids are 
also produced in G. sulphuraria. In marine red algae, the 
products are predominantly C20 PUFA, such as ARA and 
EPA (Guschina and Harwood 2006), which are then trans-
ported back to plastids for the synthesis of galactolipids, 
which retain most of ARA and EPA within the cell.

Many previous labeling studies used labeled 18:1 or 
other unsaturated fatty acids as precursors (Nichols and 
Appleby 1969; Shiran et  al. 1996; Khozin et  al. 1997) to 

Fig. 2   Generalized pathway of 
lipid biosynthesis in red algae. a 
Generalized lipid metabolism in 
red algae. The model was based 
on Mori et al. (2016), but modi-
fied and simplified according to 
the comparative genomic data 
(Table S1). b Comparison of 
fatty acid elongation (FAE) and 
desaturation (Des) pathways 
in five red algae. Note that the 
pathway starts from 18:0, but 
not 18:1, because stearoyl-ACP 
desaturase is not present in the 
plastid in red algae. Δ + num-
ber indicates the position of 
desaturation. Abbreviations that 
are not defined in the text (see 
also legends for Tables 2 and 
3): G3P glycerol 3-phosphate, 
CDP cytidine diphosphate, 
DAG diacylglycerol, PGP 
phosphatidylglycerol phosphate, 
LPA lysophosphatidic acid, LPC 
lysophosphatidylcholine, SCD 
stearoyl-CoA Δ9-desaturase
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show the desaturation and elongation pathways, which 
are now turned out to be localized in the ER, or outside 
plastids. That is why a flow of fatty acids from TAG to 
monogalactosyl diacylglycerol (MGDG) was detected in 
P. cruentum (Khozin-Goldberg et  al. 2000). In contrast, 
labeling with acetate resulted in rapid labeling of 16:0 in 
MGDG in C. merolae (Sato and Moriyama 2007). Linoleic 
acid (18:2) is, however, provided for MGDG synthesis by 
the rapid turnover of phosphatidylcholine (PC) in the ER 
(Sato and Moriyama 2007; Sato et  al. 2016; Toyoshima 
et  al. 2016). The collaboration of plastid and ER for the 
synthesis of plastid MGDG is a unique characteristic of this 
alga.

The lack of stearoyl ACP desaturase is universal in red 
algae and Chromophyta. The abundant ARA and EPA, or 
docosahexaenoic acid (22:6 or DHA) present in marine red 
algae or chromophyte algae are all produced by the elon-
gation and desaturation pathway starting from 18:0 (but 
not from 18:1, as usually mentioned) in the ER. The only 

desaturase present in the red algal plastids is FAD4 (Cluster 
7570 in Gclust database; Gao et al. 2009), which introduces 
a trans double bond in 16:0 to produce ∆3-trans-hexade-
cenoic acid (16:1). This acid is specifically present at the 
sn-2 position of plastid phosphatidylglycerol (PG) in all 
photosynthetic eukaryotes, and the desaturation is believed 
to occur within PG molecule.

Phycobilisomes as a source of TAG accumulation

TAG is accumulated under nitrogen deprivation in C. 
merolae, as in many other algae (Fig. 3f, g; Toyoshima et al. 
2016; Takusagawa et al. 2016). Both oil bodies and starch 
granules are accumulated in the cytosol, because starch (or 
glycogen) synthesis takes place in the cytosol in red algae 
(Ball et  al. 2011). Comparison of fatty acid composition 
suggested that the acyl groups for the synthesis of TAG 
comes from PC, or acyl CoA pool which is in rapid equilib-
rium with PC. Labeling studies on C. merolae using [32P]

Fig. 3   Unicellular model red algae. Upper panels (a–g), Cyanidi-
oschyzon merolae; lower panels (h, i), Porphyridium purpureum a, 
b, h are fluorescence micrographs of 4′,6-diamidino-2-phenylindole 
(DAPI)-stained cells; c, d, i are corresponding differential interfer-

ence images. Panels b, d show a dividing cell. Panels e–g are elec-
tron micrographs of C. merolae cells in stationary culture (e), and 
after nitrogen deprivation for 2 days (f, g). Cp chloroplast (plastid), 
Mt mitochondrion, N nucleus, O oil body, S starch granule
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phosphate indicated slow labeling of PC (Sato et al. 2016), 
whereas the acyl groups are rapidly turned over (Sato and 
Moriyama 2007). This indicates important metabolic roles 
of PC in desaturation and lipid remodeling to provide fatty 
acids for TAG synthesis (Sato et al. 2016; Toyoshima et al. 
2016). Similar active turnover of PC is known in plants 
(Bates 2016). In contrast with C. reinhardtii, nitrogen dep-
rivation did not result in large-scale degradation of plastid 
lipids or global degeneration of plastids in C. merolae at 
least in the initial phase (Toyoshima et  al. 2016). Phyco-
bilisomes (light-harvesting pigment-protein complexes on 
the thylakoid membranes) are, however, degraded to pro-
vide nitrogen source for the cellular metabolism and carbon 
source for the synthesis of lipids and starch. The conversion 
of phycobilisomes to storage materials could be a good 
strategy of efficient oil production in red algae.

Comparative genomics of lipid biosynthesis

Enzymes involved in major lipid biosynthesis in C. merolae 
were estimated from the genome sequences (Sato and 
Moriyama 2007; Mori et  al. 2016). As a result, enzymes 
for the fatty acid and lipid biosynthesis were identified. 
The list of all genes involved in lipid metabolism was 
extended to include five red algae, and the results are pro-
vided as Table S1. In the current map, we do not include 
betaine lipid biosynthesis, because this pathway was not 
detected in the complete genome sequences (Table  S1). 

The comparative genomic database for red algae is avail-
able as Dataset Gclust2016R in the Gclust server.

Various red algae and their biotechnological 
potentials

Table 1 presents comparison of model red algae with model 
green algae, Chlamydomonas reinhardtii and their rela-
tives. Roughly speaking, the two types of algae are compa-
rable in the capacity of production of oil and carbohydrate. 
But the actual growth conditions are quite different, and 
this difference can be exploited for better cultivation. We 
briefly explain characteristics of representative red algae.

Cyanidioschyzon merolae

Cyanidioschyzon merolae is a small unicellular red alga, 
having a very simple cell structure, comprising one each of 
mitochondrion, plastid, and microbody per cell (Fig. 3a–e). 
It lives in acidic hot springs containing sulfuric acid (at 
about 40–50 °C, at pH 1.5–2.5). This growth condition 
allows culturing under open air without special cares such 
as autoclaving of the medium. Tolerance to high concen-
tration (up to 100%) of CO2 as well as nitrate and sulfate/
sulfite allows use of exhaust gas of industry for the culture. 
Temperatures higher than 40 °C favorable for its growth can 
be obtained also by exhaust heat from the industry, but this 

Table 1   Comparison of red microalgae and green microalgae as biotechnological resources

References on productivity: C. merolae Takusagawa et al. (2016), Toyoshima et al. (2016), Sumiya et al. (2015), P. purpureum Rodolfi et al. 
(2009), Satyanarayana et al. (2011), Chlamydomonas Karpagam et al. (2015), Toyoshima and Sato (2015), Satyanarayana et al. (2011), Siaut 
et al. (2011)

Red algae Green algae

Cyanidioschyzon merolae Porphyridium purpureum Chlamydomonas reinhardtii or 
other relatives

Lipid content (% dry weight biomass) 10–20 9–14 10–20
Productivity (mg L−1 day−1)
 Lipid 50–80 35 15–40
 Carbohydrate 5–20 150–180 15–150

Growth
 Sea water Up to 1/3 SW Yes Up to 1/3 SW
 Fresh water Yes Not tested Yes
 pH range 1.5–4.0 Neutral pH Neutral pH but acidophiles exist
 Temperature range (°C) 25–50 4–35 10–30
 Doubling rate (d−1) 1–2.5 About 1 1–2
 Open air (no sterilization) Yes No No

Genetic manipulation Routinely Chloroplast Routinely
Homologous recombination of nuclear genome Yes Unknown No
Major products TAG for biofuel

Starch
Phycocyanin

TAG (ARA and EPA)
Phycoerythrin
Mucoid

TAG for biofuel
Starch
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alga can also grow at ambient temperatures. All these prop-
erties are suited for its use in biotechnology. The nuclear 
(16,546,747  bp), mitochondrial (32,211  bp) and plastid 
(149,987  bp) genomes have been completely sequenced 
(Matsuzaki et  al. 2004; Nozaki et  al. 2007). Molecular 
genetic tools for genetic manipulation are now available for 
transient expression of fluorescent proteins (Ohnuma et al. 
2014; Moriyama et  al. 2014a, b) as well as targeted gene 
disruption (Fujiwara et al. 2013).

Lipid profile of C. merolae is quite simple (Table  2). 
Unlike many other eukaryotes, phosphatidylserine (PS) 
and cardiolipin (CL) are not detected (Sato and Moriy-
ama 2007). TAG accumulates under nitrogen depletion 
(Table 2; Toyoshima et al. 2016; Takusagawa et al. 2016). 
Major fatty acids are 16:0, 18:1 and 18:2. No PUFAs are 
formed even at low temperatures (Sato and Moriyama 
2007; Toyoshima et al. 2016: Table 3). The TAG accumu-
lated under nitrogen deprivation is also rich in the three 
fatty acids, namely, 16:0, 18:1 and 18:2, and is suitable 
for biodiesel after conversion to fatty acid methyl esters. 

Currently, this is the only red alga that can produce TAG 
for biofuel. Because of its simple pathway of lipid synthe-
sis, this alga could be a good seed for further manipulation 
in biotechnology.

Porphyridium purpureum

Porphyridium purpureum (previously cruentum) is a 
marine unicellular red alga, which has also been studied 
for a long time in basic studies (Fig.  3h, i). The nuclear 
genome (19.7 Mbp; Bhattacharya et al. 2013) and the plas-
tid genome (217,694  bp; Tajima et  al. 2014) have been 
sequenced. Genetic manipulation in P. purpureum was 
reported (Lapidot et al. 1999, 2002), but no further attempts 
have been made. The plastid genome of the red algae in 
general has a large capacity of protein-coding genes (more 
than 200, see Tajima et al. 2014). Red algal plastids retain 
many prokaryotic enzymes involved in the gene expression, 
and in this respect, they are distinct from green algae and 
plants (Sato 2001). This could be a target for engineering 

Table 2   Lipid composition of 
red algae

Molar percentage values are presented as integers. – not detected or not listed
Names of lipids: MGDG monogalactosyl diacylglycerol, DGDG digalactosyl diacylglycerol, SQDG sul-
foquinovosyl diacylglycerol, PG phosphatidylglycerol, PE phosphatidylethanolamine, PC phosphatidyl-
choline, PI phosphatidylinositol, PA phosphatidic acid, TAG triacylglycerol, DGTS diacylglyceryl-N,N,N-
trimethylhomoserine, DGTA diacylglyceryl-O-2′-(hydroxymethyl)-(N,N,N-trimethyl)-β-alanine, PSC 
phosphatidylsulfocholine, PS phosphatidylserine
References:
[1] Toyoshima et al. (2016). Other data are available in Sato and Moriyama (2007)
[2] Vitova et al. (2016)
[3] Khozin-Goldbert et al. (2000). SQDG was analyzed in detail in Naumann et al. (2007)
[4] Pettitt et  al. (1989). Values are in weight percentage. Value of PC + PSC is presented as PC. PI was 
not listed. Value of PA + DAG is presented as PA. Others include free fatty acids and sterol esters as well 
as unidentified lipids. Other data are available in Melo et al. (2015) that reported the presence of DGTS, 
galactosyl ceramide and inositol phosphorylceramide
[5] Araki et al. (1986). Other data are available in Araki et al. (1987), Araki et al. (1989)

Lipid class Cyanidioschyzon 
merolae (normal)

C. merolae 
(N-depleted)

Galdieria 
sulphuraria 
(pH 2)

Porphy-
ridium 
purpureum

Chondrus crispus Pyropia 
yezoen-
sis

MGDG 25 14 1 37 17 27
DGDG 27 20 2 22 15 25
SQDG 15 8 5 13 16 11
PG 10 5 3 9 8 19
PE 8 10 14 2 2 3
PC 10 15 26 9 30 12
PI 2 2 3 2 – –
PA 1 1 2 5 2 –
TAG 3 26 Present 21 3 3
DGTS – – 16 – Present –
DGTA – – 25 – – –
PSC – – 2 – Present –
PS – – 1 – – –
Reference [1] [1] [2] [3] [4] [5]
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not only in P. purpureum (Lapidot et al. 2002) but also in 
C. merolae.

As this alga excretes highly viscous materials, char-
acterization and synthesis of polysaccharides have been 
studied (Merchuk et al. 1998; Geresh et al. 2009). Porphy-
ridium was found to contain semi-amylopectin rather than 
glycogen that was found in Cyanidium and Galdieria (Shi-
monaga et al. 2008). Lipid profile of P. purpureum (Kho-
zin-Goldbert et al. 2000) is qualitatively similar to that of 
C. merolae (Table 2). In contrast, fatty acid profile is quite 
different: P. purpureum contains high levels of ARA and 
EPA (Table 3; Nichols and Appleby 1969; Ohta et al. 1992; 
Oh et al. 2009). Putative genes for the desaturases produc-
ing ARA and EPA were identified (Table  S1). Detailed 
structural analysis of SQDG by mass spectrometry was 
reported (Naumann et al. 2007).

Process engineering of P. purpureum was studied in Pos-
ten laboratory in Germany (Fleck-Schneider et  al. 2007; 

Sastre 2010). They developed a large plant for mass culti-
vation of this alga using sunlight, with least possible energy 
input for stirring and aeration. A problem of P. purpureum 
could be the production of viscous mucilage, which pre-
vents harvesting and processing. We found that the cells 
can be grown at a reasonable rate at a temperature as high 
as 35 °C (Tajima et al. 2014), while the production of muci-
lage was reduced, although the color of the cells turns 
orange, in contrast with dark red at lower temperatures.

Other red algae

Galdieria sulphuraria is another thermophilic red alga 
belonging to Cyanidiales. Massive horizontal gene transfer 
(HGT) was found to contribute to the extremophilic proper-
ties of this alga (Schönknecht et al. 2013). HGT is not com-
mon in other thermophilic algae in Cyanidiales, such as C. 
merolae and Cyanidium caldarium (Ciniglia et  al. 2004). 

Table 3   Fatty acid composition 
of red algal lipids

Molar percentage values are presented as integers. t trace (<0.5%), – not detected or not listed
Chemical names of fatty acids: 14:0, myristic; 16:0, palmitic; 16:1, palmitoleic; 17:0, margaric; 18:0, 
stearic; 18:1(9), oleic; 18:2(9,12), linoleic; 18:3(9,12,15), α-linolenic; 18:3(6,9,12), γ-linolenic; 18:4, octa-
decatetraenoic; 20:1(11), eicosenoic; 20:2(11,14), eicosadienoic; 20:3, eicosatrienoic; 20:4, arachidonic; 
20:5, eicosapentaenoic
References:
[1] Toyoshima et al. (2016). Other data available in Sato and Moriyama (2007)
[2] Vitova et al. (2016); 20:2, 20:3, 22:0, 24:0 were also reported in Sakurai et al. (2016)
[4] Pettitt et al. (1989). Values for MGDG are those for MGlyDG2 (major one). The nature of sugar was 
not examined by the authors. Other data are available in Melo et al. (2015)
[3] Khozin-Goldbert et al. (2000). Other data available in Nichols and Appleby (1969), Oh et al. (2009)
[5] Araki et al. (1986). Other data are available in Araki et al. (1987), Araki et al. (1989)

Fatty acid Cyanidioschy-
zon merolae 
(plus nitrogen)

Galdieria sul-
phuraria (pH 2)

Porphyridium 
purpureum

Chondrus 
crispus

Pyropia 
yezoensis

MGDG TAG Total TAG MGDG TAG MGDG TAG MGDG TAG

14:0 – – 2 3 – – t 1 1 t
16:0 34 33 26 25 26 21 4 15 13 13
16:1 0 1 4 5 1 2 t 13 – 0
17:0 t 2 – – – – – – – –
18:0 t 15 4 6 t 2 1 3 – –
18:1 (9) 2 12 17 21 t 1 3 13 4 10
18:2 (9,12) 62 22 35 30 4 21 1 3 1 7
18:3 (9.12.15) – – 10 5 – – t 1 t t
18:3 (6,9,12) – – – – t 2 t 1 1 1
18:4 – – – – – – 1 1 t 1
20:1 (11) t t – – – – – – 1 4
20:2 (11,14) 1 t Present – – – t 1 1 2
20:3 – – Present – t 1 – 1 3 8
20:4 – – – – 6 33 23 27 2 11
20:5 – – – – 63 17 68 18 74 41
Others – – 4 4 – – t 3 t 1
Reference [1] [2] [3] [4] [5]
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This could be the reason for the facultative heterotrophy 
of G. sulphuraria (Sakurai et  al. 2016). Detailed lipid-
omic analysis (Vítová et  al. 2016) indicated that this alga 
also contains uncommon lipids, such as diacylglyceryl-
N,N,N-trimethylhomoserine (DGTS), diacylglyceryl-O-
2′-(hydroxymethyl)-(N,N,N-trimethyl)-β-alanine (DGTA), 
and phosphosulfocholine (PSC) (Table  2). DGTS and 
DGTA are known as betaine lipids, which were initially not 
detected in red algae (Sato 1992), but later reported to be 
present in several species of red algae (Dembitsky 1996). 
Curiously, however, the gene BTA1 encoding the enzyme 
catalyzing the biosynthesis of DGTS (Riekhof et al. 2005), 
or its bacterial homologs, btaA and btaB (the correspond-
ing two domains are fused in BTA1), was not detected in 
the genome sequences of G. sulphuraria or Chondrus 
crispus (Table  S1). Another point on the lipid composi-
tion of G. sulphuraria as reported by Vítová et al. (2016) is 
the unusual paucity of common plastid lipids, MGDG and 
DGDG, in autotrophic culture, in which large plastids must 
be present (Fig. 1 in Schönknecht et al. 2013). Further stud-
ies will be needed to elucidate these paradoxes. Differences 
in lipid and fatty acid composition in various growth con-
ditions (Sakurai et al. 2016) were reported. Notably, TAG 
level markedly increased (up to 11 µg mL−1) by addition of 
glucose in the heterotrophic culture.

We have to mention two marine macrophytic red algae 
that are well characterized. Lipid analysis of C. crispus was 
reported (Pettitt et al. 1989), but detailed structural studies 
were recently published (Melo et  al. 2015). Based on the 
genomic data now available (Collén et  al. 2013), we can 
identify enzymes involved in lipid metabolism (Table S1). 
Another well-characterized red alga is Pyropia (formerly 
Porphyra) yezoensis, which is an important food in Japan 
(Fig. 1a). Commercially available sheets of this alga (laver 
of “Nori”) are dry, but all lipid components are preserved 
without notable oxidation for a long time (Kayama et  al. 
1983). Lipid composition of Pyropia yezoensis was stud-
ied in detail (Araki et al. 1986, 1987, 1989). Lipid and fatty 
acid compositions in various species of Gracilaria were 
also reported from the same group (Araki et  al. 1990). 
These macrophytic red algae contain high levels of ARA 
and EPA, especially in MGDG (Table 3). The contents in 
TAG are not, however, very high.

Potentials of red algae as biofuel feedstocks 
and high‑added value products

Biofuel production in microalgae is now highlighted (De 
Bhowmick et  al. 2015; Zienkiewicz et  al. 2016), but con-
ventional algal biotechnology focused on green algae, 
such as those in the genus Chlamydomonas. Table 1 com-
pares red algae and Chlamydomonas for their potentials 

in biotechnology. Obviously, red algae have potentials as 
both biofuel feedstocks and producers of high-added value 
compounds. Representative values of lipid content and 
productivity of lipids and carbohydrates are comparable 
in red and green algae. Growth properties are markedly 
different: Cyanidiales such as C. merolae grows in acidic 
hot springs, and this property makes these groups of red 
algae unique organisms suitable for biotechnology. They 
are easy to grow in an acidic medium without sterilization, 
and exhaust gas and heat of industry can be used for their 
growth (Table 1). Sea water can be tolerated to some extent 
as stressful conditions to increase the content of oil. Marine 
red algae such as P. purpureum also provide good resource 
for biotechnology, because sea water is available every-
where in a country such as Japan. This microalga is usually 
grown in sterilized artificial sea water, but growth at high 
temperature (up to 35 °C) could be favorable for its mainte-
nance in axenic state. In contrast, standard green algae such 
as Chlamydomonas reinhardtii grows in fresh water at neu-
tral pH at ambient temperature. The growth medium must 
be sterilized for their growth. However, acid-tolerant strains 
of Chlamydomonas exist. These can be used more easily in 
large-scale cultivation. Growth rate of both red algae and 
green algae depends on light intensity. The microalgae can 
grow faster under the light with higher intensity, if enough 
CO2 is provided. In this respect, very rapid growth is 
achieved in C. merolae under high light with high concen-
tration of CO2. This is realizable in open air with industrial 
exhaust gas and heat. In contrast, rapid growth and high 
yield of oil are difficult to achieve in Chlamydomonas even 
at high light and higher concentration of CO2.

Genetic manipulation is now possible in both red and 
green algae. But homologous recombination is only pos-
sible in C. merolae. A promising example of genetic 
modification of C. merolae is the introduction of cyano-
bacterial acyl-ACP reductase, which increased the accu-
mulation of TAG (Sumiya et  al. 2015). Genetic engineer-
ing in completely sequenced, unicellular microalgae has a 
great advantage in efficient development. The genome sizes 
of red algae are, in general, small (10–30  Mbp), whereas 
the genomes of Chlamydomonas are fairly larger, namely, 
about 70–140 Mbp (Hirashima et al. 2016). Although there 
are other microalgae having small genomes, red algae are 
definitely the organisms of choice for genetic modification, 
because paucity of introns also characterizes red algae. C. 
merolae has only 27 introns in the entire 4775 protein-cod-
ing nuclear genes! We do not need to isolate cDNA, and we 
can manipulate the genome just like prokaryotic genomes.

Red algae provide two types of organisms, one suitable 
for biofuels and the other suitable for high added-value 
products. C. merolae does not contain PUFA, and this prop-
erty is good as biofuel production. The simple metabolic 
pathway as well as ease in genetic manipulation makes this 
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alga a versatile photosynthetic organism to use in bioengi-
neering. Metabolic maps of lipid metabolism (Mori et  al. 
2016) and carbon metabolism (Moriyama et al. 2014a) are 
ready to use in C. merolae. ARA and EPA are representa-
tive high added-value compounds produced by many red 
algae. If the flow of these acids into plastid MGDG could 
be switched to TAG synthesis, we would expect production 
of TAG enriched in ARA and EPA. The use of the desatu-
rase genes in different organisms might also be promising.

Moreover, C. merolae serves as a model for engineering 
other red algae, both microalgae and macrophytes, in plan-
ning the strategy of genetic modification. Lipid biotechnol-
ogy in microalgae has been mostly studied in green algae, 
but it now jumped up into a new era of red algal technology.
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