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Abstract a-Toxin, a pore-forming toxin secreted by most

Staphylococcus aureus, plays critical role in the patho-

genesis associated with various infectious diseases. The

USA300 which is a major international epidemic methi-

cilin-resisrant S. aureus has spread rapidly to multiple

countries and become an emerging public health concern.

In this study, the in vitro efficacy of Dracorhodin

Perochlorate (DP) against USA300 virulence was evalu-

ated. Using susceptibility testing, immunoblots, rabbit

blood haemolytic assay and real-time RT-PCR, we

observed that the a-toxin production was decreased when

USA300 was co-cultured with different sub-inhibitory

concentration of DP. Further, the protective effect of DP

against USA300-mediated injury of human alveolar

epithelial cells (A549) and MH-S cells was evaluated by

cytotoxicity assays, and the result revealed that DP, at final

concentration of 16 lg/ml, is a potent antagonist for

USA300-mediated cell damage. Importantly, those bene-

ficial effects might partially correlate with hla and RNAIII

suppression by DP, leading to the inhibition of a-toxin
production in culture supernatant. Overall, these results

suggest that DP could attenuate the virulence of USA300

by decreasing a-toxin production without inhibiting bac-

terial growth, and this compound may represent an ideal

candidate for the development of anti-virulence agent

combating S. aureus infection.

Keywords a-Toxin � Staphylococcus aureus � USA300 �
Anti-virulence � Dracorhodin Perochlorate

Introduction

Staphylococcus aureus (S. aureus), an ubiquitous oppor-

tunistic pathogen, has been a serious threat to public health

with persistent colonization of approximately 20 % of the

human population. This gram positive bacterium can lead

to both superficial infections including skin and soft-tissue

infections, and invasive and life-threatening infectious

diseases with significant mortality, such as necrotizing

pneumonia, bacteremia and sepsis (Foster et al. 2014). Ever

since S. aureus was first described by Sir Alexander Ogston

over 130 years ago, it has continued to decimate millions

of patients and rapidly spread internationally (Rigby and

DeLeo 2012). Due to this bacteria’s remarkable ability to

acquire resistance to various antibiotics, numerous lineages

of methicilin-resisrant Staphylococcus aureus (MRSA)

have emerged on every continent and growing prevalence,

most notably strain and well-documented strain is

USA300, which makes S. aureus infection diseases more

difficult to treat (Mediavilla et al. 2012).

MRSA was first reported only 2 years after methicillin

was recommended to treat S. aureus which is resistant to

penicillin late 1960s and this resistant strain has wildly

disseminated in many counties since the early 2000s, such as

Western Australia, Europe, India, and United States (Enright
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et al. 2002; Stefani et al. 2012). Molecular-based epidemi-

ologic studies have demonstrated that among clinically

significant S. aureus infectious diseases, about 51 % were

identified as MRSA and the most common strain is

USA300. The USA300 genotype, with increasingly accu-

mulated resistance to a variety of commonly prescribed

antibiotics, is a major cause of heath care-associated blood

stream infections. Meanwhile, previous studies have

described that MRSA is associated with 72 % of commu-

nity-onset S. aureus skin and soft-tissue infections, almost

87 % of which were caused by USA300 (Diekema et al.

2014; Seybold et al. 2006; Strommenger et al. 2014). Fur-

thermore, corresponding with the large number of S. aureus

infections, MRSA is also responsible for long-term hospital

staying and the most abundant cause of hospital-associated

infections. For example, an international prospective cohort

study showed that compared with Meticillin-susceptible S.

aureus,MRSA bacteremia can lead to almost double odds of

30-day mortality (Gould et al. 2012). What’s more, another

study showed that there was approximately half a million

patients were infected by S. aureus in USA every year, and

the cost for S. aureus healthcare-associated infection dis-

eases was more than 14 billion dollars in 2003 (Rigby and

DeLeo 2012). Furthermore, the widespread clinical use of

antimicrobial therapy for S. aureus infections has already

contributed to high selective pressure for S. aureus, leading

to the rapid development of antibiotic-resistant strain, like

MRSA, even mutidrug-resistant strains. Taken together, the

development of alternative treatment represents an urgent

unmet medical need.

S. aureus is a well-armed pathogen that can produce a

broad range of virulence factors which is essential for

adhesion, invasion, immune evasion, and cell damage, such

as adhesins, a-toxin, Panton-Valentine leukokcidin (PVL)

etc. Among these virulence factors, a-toxin is a versatile

water-soluble virulence factor that plays an important role in

skin and soft tissue infections, necrotizing pneumonia, and

fatal sepsis. Several studies have demonstrated that a-toxin
mutants displayed less virulence in animal models of

pneumonia, dermonecrotic skin infection, sepsis, peritonitis,

and infection of the cornea, central nervous system, endo-

cardium, and the mammary gland (Berube and Bubeck

Wardenburg 2013). The gene encoding a-toxin is hla which

is mainly controlled by the Agr two-component system and

also modulated by other regulator systems, such as SaeR,

SarZ, Rot, Sart etc. Cellular lysis is the typically biological

activity of a-toxin. After being expressed at the exponential

phase of growth as a water-soluble monomer, a-toxin bind

on the surface of susceptible host cell membrane, and fully

assembled oligomeric structure to form a beta-barrel pore,

finally leading to cell death and lysis (Tavares et al. 2014).

Alarmingly, the current epidemic clone-USA300 appears to

exhibit more virulent as well as be more capable of

colonizing multiple body sites and stronger resistance to the

environmental surfaces (Chen et al. 2015; DeLeo et al. 2010;

Strommenger et al. 2014). The essential role of a-toxin in

the pathogenicity of S. aureus infection suggests that tar-

geting this virulence factor would be a promising strategy

for the discovery of anti-virulence agents against USA300

infection.

Dracorhodin Perochlorate (DP, Fig. 1), a natural com-

pound isolated from the fruit named Daemonorops draco,

has been demonstrated to be capable of inducing apoptosis

in Hela cells and human breast cancer MCF-7 cells (Xia

et al. 2004; Yu et al. 2013). In the present work, we dis-

covered that DP, at final concentration of 16 lg/ml, sig-

nificantly inhibits a-toxin expression by down-regulating

the transcription of hla and RNAIII, the effector of the Agr

two-component system. Furthermore, the addition of DP

effectively protects A549 cells and MH-S cells from cell

injury induced by S. aureus. Our results may offer a new

agent and novel strategy for the development of anti-vir-

ulence agents against MRSA infection.

Materials and methods

Bacterial strains, culture condition and regents

MRSA strain USA300, purchased from the American Type

Culture Collection (ATCC), was used for all experiments.

UAS300 cells were grown in 2 ml of tryptic soy broth

(TSB, Sigma-Aldrich) at 37 �C for 12 h, subsequently; all

pre-culture bacterium were transferred to 150 ml TSB

medium in a 250-ml flask. For immunoblots, rabbit blood

haemolytic assay and real-time RT-PCR testing, USA300

cells were cultured at 37 �C in TSB medium with the

indicated concentrations of DP to post-exponential growth

phase (about OD600 nm of 2.5) and pelleted (2 min,

10009g, room temperature). For the cell infection, 100 ml

USA300 cells was grown at 37 �C in TSB in a 250-ml flask

to OD600 nm of 1.0 and washed twice with PBS; subse-

quently, 10 ml of the cells was harvested as described

Fig. 1 Chemical structure of Dracorhodin Perochlorate (CAS No.

125536-25-6)
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above and resuspended with Dulbecco’s modified Eagle’s

medium (DMEM) or RPMI 1640 medium to

5 9 107 CFU/ml without antibiotic. DP, which was com-

mercially obtained from Chengdu Herbpurify CO, LTD

(Chengdu, China), was prepared by dissolution in DMSO

(Sigma-Aldrich) to make a stock solution.

Susceptibility testing

The broth microdilution method was employed as previ-

ously described (Zhou et al. 2015) to determine the mini-

mal inhibitory concentration (MIC) of DP for USA300.

Growth curve assay

UAS300 cells were grown in 2 ml of TSB overnight and

transferred to 150 ml TSB in a 250-ml flask 2 h to reach

OD600 of 0.3 at 37 �C with shaking. For each sample,

10-ml aliquots of the bacterial suspensions were placed in a

50-ml flask without DP or with various concentrations of

DP, and all the cells were further grown at 37 �C with

shaking. The bacterial growth was determined at

OD600 nm per 60 min.

Rabbit blood haemolytic assay

200 ll cell-free culture supernatants as described above

coupled with 25 ll defibrinated rabbit red cells were mixed

with 775 ll PBS and the mixture system was incubated for

10 min at 37 �C. Following concentration (2 min,

10,0009g, room temperature), the haemolytic activity of

each sample were qualified by measuring the absorbance of

the supernatant at OD543 nm. PBS treatment sample and

1 % Triton-X 100 treatment sample were used as the

negative control (0 % haemolysis) and positive control

(100 % haemolysis), respectively.

To evaluate whether DP could directly neutralize a-
toxin-induced haemolysis, 200 ll cell-free culture super-

natant of USA300 was incubated with various concentra-

tions of DP for 20 min at 37 �C and mixed with 775 ll
PBS and 25 ll defibrinated rabbit red cells. The haemolytic

activity of each sample was determined as described above.

Immunoblot analysis

Immunoblot analysis was performed to test the impact of

DP on a-toxin production in the presence of graded con-

centrations of DP as previous study. Briefly, 20 ll of cul-
ture supernatant was mixed with 5 ll 5 9 concentrated

sample buffer, heated at 100 �C for 10 min and resolved

via SDS-PAGE (12 % acrylamide). Proteins were trans-

ferred to PVDF membrane, incubated with primary anti-

body to a-toxin (1:8000; Sigma-Aldrich) and secondary

horseradish peroxidase-conjugated anti-rabbit antiserum

(1:4000; Sigma-Aldrich) and revealed with ECL chemilu-

minescence reagents.

Real-time RT-PCR

The RNA from pelleted S. aureus USA300 was isolated

with Qiagen RNeasy Maxi columns and the cDNA was

generated from isolated RNA by using the Takara RNA

PCR kit (AMV), ver. 3.0 (Takara, Kyoto, Japan) as descri-

bed previously (Zhou et al. 2015). Each PCR reaction was

conducted in 50 ll volumes by using SYBR Pre-mix Ex Taq

TM (Takara), according with the manufacturer’s instruc-

tions. The PCR amplification of each sample was carried out

using the 7000 Sequence Detection System (Applied

Biosystems, Courtaboeuf, France). All samples were ana-

lyzed in triplicate, and the 16S rRNA was used as an

endogenous control to normalize the expressional levels

between samples. The relative expression levels of hla and

RNAIII of each sample were assessed using the DDCT

method (Tavares et al. 2014). The primer sequences used in

this assay as following: hla: Forward primer TTGGT

GCAAATGTTTC, reverse primer TCACTTTCCAGCCTA

CT; RNAIII: forward primer TTCACTGTGTCGATAATC

CA, reverse primer GGAAGGAGTGATTTCAATGG;

16sRNA: forward primer GCTGCCCTTTGTATTGTC,

reverse primer AGATGTTGGGTTAAGTCCC.

Cytotoxicity assays

Human alveolar epithelial cells (A549) were maintained in

DMEM (Sigma-Aldrich) containing 10 % fetal calf serum

(Biological Industries), plated in 96-well cell culture dishes

with a density of 2.0 9 104 cells per well and infected with

200 ll of bacterial suspension as described above at 37 �C
for 5 h with the indicated concentrations of DP. Following

concentration (10 min, 10009g, room temperature), the

LDH released into supernatants was determined by using

Cytotoxicity Detection Kit (Roche) according to the man-

ufacturer’s directions. Additionally, A549 cells were

stained by live/dead (green/red) reagent (Roche) and the

morphology was captured using a confocal laser scanning

microscope (Nikon, Tokyo, Japan).

The protective effect of DP against USA 300-induced

MH-S cells injury in RPMI 1640 medium was also deter-

mined by examining the level of LDH in supernatants as

described above.

Statistical analysis

Data were represented as mean values ± standard error of

the mean (SEM) and analyzed by an independent Student’s

t test. P values were considered as significant if P values
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were lower than 0.5, indicating a significant difference

between two samples.

Results

DP has no influence on USA300 growth

Susceptibility testing and growth curve assay were devel-

oped to determine the anti-S. aureus activity of DP. The

minimal inhibitory concentration (MIC) value of DP

against USA300 was 256 lg/ml. No visible effect was

observed between DP-treatment groups (sub-MIC levels of

DP, ranging from 2 to 16 lg/ml) and DP-free group for

bacterial growth curve (Fig. 2). Taken together, our result

established that DP, with weak anti-S. aureus activity,

almost has no inhibitory effects on USA300 growth at the

concentrations of 2–16 lg/ml.

DP inhibits the production of a-toxin by USA300

The haemolytic activity is one of the most represented

biology properties referred to a-toxin, and multiple cell

types are target by this pore-forming toxin, including ery-

throcyte (rabbit). Furthermore, the haemolytic activity of

bacterial culture supernatants is largely depending on a-
toxin. Therefore, the potential inhibitors of a-toxin were

identified using haemolysis assay. Here, we found that after

co-cultured with DP, the haemolytic activity of culture

supernatants of S. aureus USA300 was decreased in a dose-

dependent manner (Fig. 3a). Importantly, at the concen-

trations required for such inhibition, DP has no influence

on S. aureus growth, indicating that DP-induced the

decrease of the haemolytic activity of culture supernatants

may be caused by an inhibition of a-toxin production or a

neutralization of a-toxin function by this compound.

However, in the mix systems of USA300 culture super-

natants directly co-incubated with DP for 20 min, no

inhibitory effect of DP against the haemolytic activity

induced by culture supernatants was observed, suggesting

that DP can not directly neutralize the haemolytic activity

of USA300 culture supernatants (Fig. 3b). Thus, the pro-

duction of a-toxin may be reduced by DP.

Immunoblots analysis were further employed to directly

determine whether an inhibition effect of a-toxin production
by DP. As expected, compared with control group without

DP, a-toxin production in the DP-supplemented samples

was remarkable reduced. Importantly, no band was detected

for a-toxin in the sample treated with 16 lg/ml of DP

(Fig. 3c). These results were consistent with the haemolysis

assay performed above, suggesting that DP diminished the

production of a-toxin in culture supernatants and, subse-

quently, decreased the haemolytic activity of culture

supernatants of USA300 in the experiment condition.

Real-time RT-PCR assay was performed to further

elucidate the mechanism by which DP decreases the pro-

duction of a-toxin. In addition, previous reports have

demonstrated the gene encoding a-toxin is hla, which is

positively regulated by Agr two-component system. Thus,

the transcriptional levels of hla and RNAIII, the effector of

the Agr two-component system, were both examined.

Consistent with haemolysis and immunoblots analysis

assay, when USA300 was exposed to the indicate con-

centrations of DP, the transcriptional levels of hla and

RNAIII were significantly down-regulated by this com-

pound. Following the treatment with 16 lg/ml of DP, the

transcriptional levels of hla and RNAIII were significant

decreased by DP in MRSA USA300, versus their respec-

tive controls (Fig. 3d). Taken together, these results indi-

cate that treatment with DP effective decreased a-toxin
production via down-regulating the transcription of hla and

RNAIII.

DP alleviates USA300-mediated cell injuries

a-Toxin has long been well demonstrated as an essential

virulence factor for S. aureus pneumonia, as indicated by

the fact that a-toxin mutant failed to induce cell injuries

and pneumonia (Berube and Bubeck Wardenburg 2013;

Hua et al. 2014). Therefore, a co-culture system of S.

aureus and A549 cells or MH-S cells was used to evaluate

the impact of DP-treatment on USA300-mediated cell

injuries.

A549 cells were infected with USA300 at multiplicity of

infection (MOI) of 500 in the presence of variable con-

centrations of DP for 5 h and stained with live/dead (green/

red) reagent. A549 cells without USA300 infection were all

stained in green (Fig. 4a), indicating that no cell injuries

were observed. In contract, major A549 cells were stained

Fig. 2 Growth curve for USA300 co-cultured with variable concen-

trations of DP. Filled black circle, filled white circle, filled black

triangle, inverted filled black triangle and filled black diamond stands

for USA300 grown with 0, 2, 4, 8, and 16 lg/ml of DP, respectively
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with red (Fig. 4b), suggesting that infection with USA300

for 5 h would lead to serious cell death. However, the

addition of DP in the co-culture system offered a robust

protection against such cell injuries with a dose-dependent

manner (Fig. 4c–e). Importantly, almost no cell death in

the sample treated with 16 lg/ml of DP (Fig. 4e).

Furthermore, S. aureus-induced cytotoxictiy was quali-

fied by examining LDH release in culture supernatants of

A549 cells or MH-S cells in the presence of indicated

concentrations of DP. Consistent with the results presented

as above, treatment with DP provided a dose-dependent

protection at concentrations ranging from 2 to 16 lg/ml for

S. aureus-induced cytotoxictiy (Fig. 4g). Taken together,

these results clearly demonstrated that DP, when added in

the co-culture system, inhibited USA300-mediated cell

injuries for both A549 cells and MH-S cells.

Discussion

S. aureus infection remains a daunting challenge to public

health. Furthermore, treatment of S. aureus infection is

increasingly being hampered due to it remarkable ability of

acquiring antibiotics resistance. Antibiotic therapies using

vancoycin, linezolid, and daptomycin were considered as the

mainstay against MRSA infection. However, MRSA resis-

tance to those antibiotics has been described in clinical

settings, further worsening this situation (Skov et al. 2012).

Meanwhile, the poor therapeutic outcome about antibiotic

therapies have been increasingly reported (Abdelhady et al.

2013; van Hal and Fowler 2013). The inevitability and

increasingly development of S. aureus resistance to com-

monly prescribed antibiotics coupled with the dwindling

development of new antibiotics on behalf of an urgent need

for alternatives or adjuncts to traditional antibiotic therapies.

Currently, numerous studies have addressed the promis-

ing role of anti-virulence strategy plays in better combating

the antibiotic resistance crisis (Sully et al. 2014; Yu et al.

2014). Anti-virulence strategy that aiming at decreasing

bacterial virulence through interfering with virulence factors

relaies on host immune system to defense bacterial infection,

which would lessen the burden of increasingly infection

caused by antibiotic-resistant bacterium (Daly et al. 2015;

Khodaverdian et al. 2013). Differing from currently antibi-

otic therapy, which often killing bacteria or suppressing

bacterial growth, anti-virulence therapies disarmed the dis-

ease-causing virulence factors which were not essential for

bacterial survival, might slowing down the development of

Fig. 3 Inhibition of a-toxin expression by DP in culture supernatants.

a In the mix system of DP co-cutured with USA300, DP decreased the

haemoglobin release of USA300 in culture supernantants. b DP can

not directly neutralize a-toxin-mediated haemolytic activity. c DP

inhibited a-toxin production in the culture supernatants revealed by

immunoblots analysis. d Attenuation the transcription of hla and

RNAIII in USA300 grown with indicated concentrations of DP by RT-

PCR assay. All columns in (a), (b) and (d) stand for the average

values from three independent experiments (*P\ 0.05, **P\ 0.01)
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drug-resistant bacterium. Consist with the feature of anti-

virulence agents, the MIC value of DP on USA300 was

256 lg/ml and DP had no influence on S. aureus growth at

the concentrations of 2–16 lg/ml, indicating that DP, as an

agent with weak anti-S. aureus activity, might put less sur-

vival pressure on USA300. More importantly, some of

bactericidal effects also exerted on other non-pathogenic or

commensal bacterium, antibiotics, especially the broad-

spectrum antibiotics, might disrupt the balance between host

and commensal microbiology. Anti-virulence agents inter-

fere with virulence factors would supply less impact on

other bacterium and facility innate immune system to

eradicate invasion bacterium, suggesting a positive impact

on bacterial infection and resistance development (Watkins

et al. 2012).

The critical role of a-toxin for S. aureus virulence has

rendered this virulence factor a promising target for

developing agents for S. aureus infections, especially

MRSA. Kobayashi et al. have demonstrated that a-toxin
contributes prominently to the skin and soft tissue infec-

tion, and compared with wild-type USA300, rabbit

abscesses caused by a-toxin deletion strain had less vol-

ume and size in experiment condition (Kobayashi et al.

2011). In another animal model of S. aureus-induced

pneumonia, the mutant lacking of hla was avirulent and

failed to cause pneumonia (Bubeck Wardenburg et al.

2007), indicating that targeting this virulence factor was a

potentially strategy for S. aureus infection. Here, DP, a

natural compound with weak anti-S. aureus activity, was

identified as an effective inhibitor of a-toxin by decreas-

ing the production of a-toxin when this agent was co-

cultured with USA300. Furthermore, the transcriptional

level of hla and RNAIII was significantly inhibited in the

presence of DP. Moreover, DP afford significant cell

survival benefits to A549 cells, as well as MH-S cells

during USA300 infections, suggesting that anti-virulence

agents, such as DP, might be developed as alternative

treatment for currently used antibiotic, which were viable

and represented an urgent unmet medical need.
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