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Abstract The threat of heavy metal pollution to environ-

mental health is getting worldwide attention due to their

persistence and non-biodegradable nature. Ineffectiveness

of various physicochemical methods due to economical

and technical constraints resulted in the search for a cost-

effective and eco-friendly biological technique for heavy

metal removal from the environment. The two effective

biotic methods used are biosorption and bioaccumulation.

A comparison between these two processes demonstrated

that biosorption is a better heavy metal removal process

than bioaccumulation. This is due to the intoxication of

heavy metal by inhibiting their entry into the microbial

cell. Genes and enzymes related to bioremoval process are

also discussed. On comparing the removal rate, bacteria are

surpassed by algae and fungi. The aim of this review is to

understand the biotic processes and to compare their metal

removal efficiency.

Keywords Bioaccumulation � Biosorption � Dead/inactive
cells � Heavy metals � Living cells � Physicochemical

methods

Introduction

Industrialization has improved the living conditions, how-

ever has also affected the environment due to the release of

large volume of contaminants to it. There are two broad

classes of contaminants: organic and inorganic. Organic

pollutants, for example industrial solvents, insecticides,

pesticides and food processing wastes can be degraded.

Whereas, inorganic pollutants such as metals, fertilizers,

industrial discharges, etc. are indelible and will be present

indefinitely in the environment, which may result in

potential accumulation and human exposure via food chain.

According to physiological point of view, metals are

categorized into three main categories: (1) essential and

non-toxic (e.g. Ca and Mg), (2) essential, but harmful

above threshold limit (e.g. Fe, Mn, Zn, Cu, Co, Ni and

Mo), and (3) toxic (e.g. Hg and Cd) (Dutton and Fisher

2011). Many metals seem to serve no biologically relevant

function, causing damage due to their avidity for the

sulfhydryl (–C–SH or –R–SH) groups of proteins, which

they block and deactivate (Valls and De Lorenzo 2002).

Therefore, it has become indispensable for metal contam-

inated environment to find an eco-friendly option to clean

up and preserve the health of the deteriorating ecosystem.

The demand for environmental protection and removal/

recovery of heavy metals has resulted in the application of

various methods. Mainly abiotic and biotic methods have

been employed for the elimination of heavy metals from

the environment. The abiotic methods consist of several

conventional processes which are summarized in Table 1.

These methods are ineffective in terms of process cost,

energy and chemical products consumption, generation of

toxic sludge and disposal problems (Wang and Chen 2009).

The disadvantages and complexities of abiotic methods

resulted in an alternative technique, which is both eco-

nomical and efficient. Bioremediation, an inexpensive and

socially acceptable biotic method, involves the use of

biological materials to deal with heavy metal problems in

an environment-friendly manner (Volesky 2001). Biologi-

cal methods are advantageous due to their low operative
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cost, selectivity for specific metal, minimization of the

volume of chemical and biological sludge and high effi-

ciency in detoxifying very dilute effluents. Among the

different biological methods, biosorption and bioaccumu-

lation have been demonstrated as an economical alternative

to conventional methods, possessing good potential for

metal removal (Chojnacka 2010). This review emphasizes

on the comparison between biosorption and bioaccumula-

tion processes in order to determine the most efficient

technique between these two. Their use in wastewater

treatment process was also discussed.

Metal removal using biotic methods

The metal removal process using biotic methods involves

high affinity biomaterials and solvent containing metal

ions. The high affinity of the biomaterials towards metal

ions resulted in the interaction, binding in the cell wall and

transport across the cell membrane. According to the cells’

metabolism, biological processes may be classified into

two types (Fig. 1):

• biosorption

• bioaccumulation

Biosorption

It is a quick, independent and metabolically passive process

responsible for the selective sequestration of heavy metal

ions by dead/inactive biomaterials. It is a simple physico-

chemical phenomenon resembling to conventional

adsorption or ion exchange method. The only difference is

the nature of sorbent which in this case is the material of

biological origin known as biosorbent. Biosorbents may be

viewed as natural ion-exchange materials that primarily

Table 1 Advantages and disadvantages of physicochemical methods applied for metal recovery (O’Connell et al. 2008)

Method Advantages Disadvantages

Chemical precipitation and filtration Simple Difficult separation

Inexpensive Large amount of sludge production

Suitable for most metals Suitable for high metal concentrations

Disposal problems

Chemical oxidation or reduction Mineralization Chemicals required are not universal

Slow biological system

Climate sensitive

Electrochemical treatment No consumption of chemicals Suitable for high metal concentrations

Pure metals can be obtained Expensive

Reverse osmosis Pure effluent metal recovery for recycle Requires high pressures

Membrane scaling

Expensive

Ion exchange Effective Sensitive to particles

Possibility of pure effluent metal recovery Less number of metal ions recovery

Only effective for\10 mg/L

High regeneration of materials pH dependent (2–6)

No sludge disposal required Pretreatment required

Expensive resins

Adsorption using active carbon Suitable for most metals No regeneration possible

High efficiency ([99 %) Performance depends upon adsorbent

Expensive

Coagulation–flocculation Good sludge settling

Dewatering

pH dependent (11–11.5)

Large amount of sludge production

Only treats metal concentrations\100 or[1000 mg/L

Large consumption of chemicals

Expensive

Membrane technologies Less solid waste produced Low flow rates

Less chemical consumption Recovery decrease with the presence of other metals

High efficiency ([95 % for single metal) Expensive
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contain weakly acidic and basic groups, the chelation

process being unspecific. These are the renewable biolog-

ical materials responsible for the heavy metal removal from

environment due to their metal sequestering properties

(Wang and Chen 2009). Selection of biosorbent depends on

the origin, availability and cost-effectiveness of biomass.

They can be collected directly from the environment or

specially developed by several modification processes

(Dhankhar and Hooda 2011; Vijayaraghavan and Yun

2008).

Biosorbents can be modified physically, chemically or

genetically to enhance their biosorptive properties. Physi-

cal modification such as heat treatment may results in

better biosorption capacity of the biomass by removal of

surface impurities and production of active metal binding

sites via denaturation of cell wall protein (Cabuk et al.

2005). Khosa and co-workers reported that chemical

modification of chicken feathers by esterification of –

COOH functional groups have a maximum arsenic uptake

of 85–90 % as compared to non-modified chicken feathers

(Khosa et al. 2013). Modification offers several advantages

including better reusability, high biomass loading and

minimal clogging in continuous flow systems, however,

care must be taken to avoid mass transfer limitations and

additional process costs.

The advantages of an ideal biosorption process includes

low cost, short operation time, absence of toxicity limita-

tions, absence of requirements for nutrients, avoidance of

sudden death of biomass and easy mathematical modelling

of metal uptake by reactors (Ahluwalia and Goyal 2007).

Biosorption or passive biosorption also has some

disadvantages, such as early saturation and limitation in

biological process.

Biosorption mechanism

Biosorption is a rapid mechanism of metal uptake on the

cell surface, known as extracellular binding. In this pro-

cess, metal adheres to surface molecules such as S-layer

protein (SLP) (Gerbino et al. 2015). The binding occurs by

any one or a combination of the processes includes:

physical adsorption, van der Waals forces, ion exchange,

complexation or inorganic microprecipitation (Fig. 2)

(Srinath et al. 2002).

The first step, physical adsorption is associated with the

presence of Van der Waal’s forces (Crowell 1966). Ozer

and Ozer (2003) reported that Pb(II), Ni(II) and Cr(VI) ions

onto Saccharomyces cerevisiae is based on physical

adsorption and exothermic nature of the reaction. Cell wall

is the first component that comes in contact with the metal

ions and also acted as a defense against metal toxicity.

Therefore, the chemical makeup of the microbial cell wall

is an important factor responsible for the adsorption of

metal ions on the biomass’ surface, which varies among

different groups of micro-organisms results in significant

difference in the metal binding type.

Cellulose is the major component of algal cell wall. So,

the potential binding groups in this class of microbes are

carboxylates, amines and imidazoles (Ozer and Ozer

2003). However, chitin and chitosan (contains amino,

amido and hydroxyl groups) isolated from fungus has a

great potential of heavy metal removal in polluted

Fig. 1 Classification of

biological processes according

to cells’ metabolism (Veglio

and Beolchini 1997)
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environment (Franco et al. 2004). Bacteria make excellent

biosorbents because of their high surface to volume ratios

and presence of potentially active chemiosorption sites

(teichoic acids) in their cell walls (Beveridge 1989; Vija-

yaraghavan and Yun 2008). Gram-positive bacterial cell

wall has teichoic acids containing phosphoryl and hydroxyl

groups, which deprotonate into negative charge in alkaline

condition acting as cation adsorption site. In gram-negative

bacteria, the phosphate groups within lipopolysaccharides

(LPSs) and phospholipids have been demonstrated to be the

primary sites for metal interaction (Remacle 1990).

Huang and Liu (2013) and Davis et al. (2003) reported

that surface binding is the principle phenomenon for

biosorption of metal ions, which occurs due to ion-ex-

change mechanism of biomass. Ion exchange involves

competition between protons and metal cations for the

binding sites. Matheickal et al. (1997) reported that dom-

inant mechanism of Cu(II) biosorption by Ecklonia radiata

is ion exchange mechanism involves exchange of Ca2? and

Mg2? ions present in their cell wall.

The metal removal from solution may also take place by

complex formation on the cell surface after the interaction

between metal cations and active groups present on the cell

surface (Han et al. 2006). Gadd and Griffiths (1978)

reported that complexation of metals such as copper,

cadmium, and zinc is possible with polygalacturonic acid,

an important constituent of the outer layers of bacterial

cells. Aksu et al. (1992) hypothesized that uptake of Cu(II)

by Chlorella vulgaris and Zoogloea ramigera takes place

through both adsorption and formation of coordination

bonds between metals and amino (–RNH2) and carboxyl (–

RCOOH) groups of cell wall polysaccharides. Complexa-

tion was found to be the only mechanism responsible for

calcium, magnesium, cadmium, zinc, copper and mercury

accumulation by Pseudomonas syringae (Cabral 1992).

Bioaccumulation

Bioaccumulation is the complex process of metal removal

by means of living cells. The process occurs in two steps,

the first step is identical with biosorption, is metabolism

independent and quick mechanism of metal uptake on the

cell surface, known as extracellular binding. The second

step is metabolism dependent, relatively slow mechanism

responsible for the penetration/transport of metal ions into

the cell membrane released from binding sites of the sur-

face and bound to intracellular structures termed as intra-

cellular binding (Chojnacka 2010).

Certain points should be considered for selection of

micro-organisms for bioaccumulation process, such as:

Fig. 2 The mechanism of

biosorption and

bioaccumulation of a microbial

cell (Veglio and Beolchini

1997)
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• isolation from polluted environment because bioaccu-

mulation by adapted microorganisms is more efficient

than by non-adapted microorgainsms (Donmez and

Kocberber 2007)

• resistant to high loads of pollutants and do not have

mechanisms for protection from excessive accumula-

tion inside the cell and (Donmez and Kocberber 2007)

• presence of mechanism for intracellular binding.

Bioaccumulation is an advantageous process as it does

not require separate biomass cultivation or harvesting

model. In bioaccumulation, it is possible to reach lower

residual concentration of sorbate because cells offer bind-

ing sites on the surface and inside the cell. Bioaccumula-

tion processes have some disadvantages, such as the cells’

metabolism responsible for the intracellular accumulation

may result in interruption to the bioaccumulation process

by death of biomass.

Bioaccumulation mechanism

Bioaccumulation is the intracellular uptake of metal ions

via ATP-driven active transport and/or via bioprecipitation

(release of sulfide or phosphate ions) associated with

metabolic functions or biotransformation (oxidation,

reduction, methylation and demethylation) (Fig. 2)

(Dhankhar and Hooda 2011; Yilmazer and Saracoglu

2009). Bioaccumulation may involve localization of the

metal ions within specific organelles; enzymatic detoxifi-

cation and efflux pump (Srinath et al. 2002). The concen-

tration of the internalized metal is regulated by metal

homeostasis system, which involves complexation of

ligands and proteins to avoid the reaction of metal ions

with biomolecules. Cells form complexation of unwanted

metal and sequester it into intracellular organelles for

eventual export from the cell by efflux systems. Toxic

effects may occur such as deterioration of biomolecules

which may change the properties of carriers and the plasma

membrane and thus the internalization of the metal.

Microorganisms also excrete compounds responsible for

complex formation of metal ions in the extracellular

medium in order to reduce their bioavailability and

bioaccumulation (Hassler et al. 2004).

The first step of bioaccumulation involves biosorption

process i.e. binding of metal ions to the functional groups

of cell’s surface, exchange of ions, complexation, and

precipitation. The second step, transport of metals across

the cell membrane is dependent on the cells’ metabolism

associated with active defense system of the microorgan-

isms. Heavy metal transport across microbial cell mem-

branes may be mediated by the same mechanism used to

convey metabolically important ions such as potassium,

magnesium and sodium. The metal transport systems may

become confused by the presence of heavy metal ions of

the same charge and ionic radius associated with essential

ions.

Bioprecipitation of metals results from the excretion of

special proteins (thiol groups rich special proteins or low

molecular weight proteins namely metallothioneins and

phytochelatins) from living bacteria that chemically reacts

with metals present in solution (metal ions) to produce an

insoluble metal compounds (hydroxides, carbonates,

phosphates and sulfides). The overexpression of metal-

lothioneins in bacterial cells induced by metal stress may

result in an enhanced metal binding and sequestration (Bae

et al. 2000). Special proteins segregate out the pollutants as

complexes, thus restricting them from interfering with the

normal metabolic processes (Martin-Gonzalez et al. 2006).

Brierley (1990) observed that the enzymatically produced

HPO4
2- by Citrobacter sp. has been shown to precipitate

metals as phosphates. The precipitation of metals with H2S

produced by sulphate reducing bacteria (SRB) has been

proposed as an alternative process for the treatment of

metal-bearing effluents (Foucher et al. 2001).

Biotransformation of a metal is an important speciation

parameter because it can drastically affect its toxicity and

mobility. Metals can be transformed via reduction/oxida-

tion or alkylation reactions by microorganisms. For

example, many aerobic and anaerobic bacteria reduce

Cr(VI) to the less toxic and less soluble Cr(III). Mercuric

reductase (the product of the merA gene) is responsible for

the metal detoxification and enzymatic transformation of

mercury (Hg2?) into less toxic and volatile Hg0 species

(Misra 1992).

Factors affecting biosorption and bioaccumulation

The bioremoval of pollutants is a complex process and

depends upon several factors, such as, type of biomass, pH,

temperature and presence of other competing ions. There-

fore, description of the factors affecting biosorption and

bioaccumulation processes is important for the optimiza-

tion of the operating conditions of the biomass (Table 2).

Apart from the factors mentioned in Table 2, there are

some other factors affecting biosorption and bioaccumu-

lation, such as ionic strength, contact time, presence of

other pollutants and many more. Donmez and Aksu (2002)

observed that increase in the ionic strength of the solution

reduces the removal of pollutants by competing with the

adsorbate for binding sites on the biosorbent. It was found

that increasing the concentration of pollutant which is to be

accumulated poses changes in morphology and physiology

of cells (de Siloniz et al. 2002). By considering various

factors, it was observed that biosorption has certain

advantages over bioaccumulation. Table 2 demonstrated
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that there are several factors which affect the extraction

efficiency of bioremoval processes. Optimization of these

factors can improve the efficiency of the process.

Comparison between biosorption
and bioaccumulation

An efficient biological process is necessary not only to

detoxify metal-bearing effluents but also to recover metal

ions for recycling back to the consumers for its reuse. The

main attraction of biosorption is the potential ability to

regenerate the biomass, through the process called desorp-

tion. It can influence the price of the whole process and the

possibility of metal recovering from liquid phase as well,

which is very important for practical use of the process.

It is possible to remove ions from cell surfaces after

biosorption by simple non-destructive methods, but in

bioaccumulation, the metal ions can only be removed by

destructive methods like incineration or dissolution into

strong acids or alkalis. This is due to the toxicity of metal

ions towards biomass, resulting in a drop in the metal

removal capacity of the biomass following regeneration

(Vijayaraghavan and Yun 2008). For this reason, the choice

between living or dead biomass systems is important for

later metal recovery. In contrast, extracellular precipitation

of metals makes it easier to harvest the metals by collecting

the insoluble metal precipitates.

Biosorption and bioaccumulation are considered as the

potential methods for heavy metal removal. Both these pro-

cesses take place by means of biological materials; however

there are several differences in their features (Table 3) and

factors affecting their bioremoval ability (Table 2). By com-

paring their features, it was observed that biosorption has cer-

tain advantages over bioaccumulation in terms of cost,

maintenance, metal ions uptake, regeneration, toxicant recov-

ery and many more. When comparing both these processes,

bioaccumulation although performed in simpler installations,

requires difficult cultivation of the biomass in the presence of

contaminants that may pose toxicity to the biomass itself.

Some research works have been reported in the context

that biosorption is better bioremoval process than bioac-

cumulation (Table 4). Probably due to intoxication, live

cells partially lose their binding capacity and small amount

of metal subsequently released back into solution. But after

a few hours, a strong intoxication likely caused the death of

some cells, and because of that, the ratio between the living

and dead cells changed.

On the contrary, other authors describe opposite results (Al-

Garni et al. 2009; Zucconi et al. 2003) probably as a

Table 2 Factors affecting biosorption and bioaccumulation of microbial cell

Factors Biosorption Bioaccumulation References

Agitation

speed

Directly proportional to the biosorption capacity of biosorbents,

due to minimization of mass transfer resistance

Directly proportional Park et al.

(2010)

Biomass Biomass is usually inactive Live cells are used for this process Kapoor and

Viraraghavan

(1995)

Biomass size Reversible relation with biosorption process Reversible relation Park et al.

(2010)

Biomass

dosage

Reversible relation with biosorption process Directly proportional with

bioaccumulation capacity

Li et al. (2014)

Initial metal

ion

concentration

Directly proportional to the biosorption capacity of biosorbents,

due to the elevated surface area of the biosorbent, which in turn

increases the number of binding sites

Inversely proportional to

bioaccumulation process

Li et al. (2014)

Nutrient Not required due to presence of dead/inactive biomass Directly proportional to

bioaccumulation process

Aksu and

Donmez

(2005)

Other pollutant

concentration

Inversely proportional to the biosorption capacity of biosorbents,

due to complex formation with other pollutants

Inversely proportional Li et al. (2010)

pH Directly proportional to biosorption process. However, the

process can be operated under a wide range of pH conditions

The living cells are strongly affected

under extreme pH conditions during

metal uptake

Park et al.

(2010)

Temperature Not influenced as the biomass is inactive Severely affected due to active biomass Veglio and

Beolchini

(1997)

Time Directly proportional to biosorption activity Directly proportional to

bioaccumulation activity

Li et al. (2014)
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consequence of the method used to prepare the dead biomass

and the experimental conditions, which affect significantly the

efficiency of the biosorbent. Suh et al. (1998) observed that live

cells ofSaccharomyces cerevisiae andAureobasidiumpullulans

aremore efficient for metal removal than dead cells. This is due

to thedecrease innumberofbindingsitesofPb2?byautoclaving

in case of S. cerevisiae, whereas, in case of A. pullulans, exis-

tence of extracellular polymeric substances on cell surface

resulted in difficulty in penetration into inner cellular parts.

Doshi et al. (2007) reported that both dead and live Spirulina sp.

are excellent biosorbent for cadmium, however, the live species

is found to be more potent for bioremediation. Tangaromsuk

et al. (2002) studied the uptake of Cd(II) by Sphingomonas

paucimobilis biomass and reported that the cadmium removal

capacityof live cellswasmarkedlyhigher than that ofdeadcells,

probably due to intracellular uptake of metal ions.

Genes and enzymes in heavy metal removal

The most representative class of enzyme used in the

remediation of polluted environments are hydrolases,

dehalogenases, transferases and oxidoreductases; mainly

obtained from bacteria, fungi, plants and microbe plant

associations (Rao et al. 2010). A particular gene is

responsible for production of a particular enzyme. A list of

genes and enzymes related with metal removal are listed in

Table 5.

Biological processes in heavy metal removal

from wastewater

Most heavy metal ions are water soluble and get dissolved

in wastewater, which results in health hazards and harmful

biochemical effects on human beings (Batayneh 2012).

Therefore it is essential to remove heavy metals in indus-

trial wastewater and the environment to an accept-

able level. The non-living biomass of algae, waste biomass

originated from plants and mycelial wastes from fermen-

tation industries are potential biosorbents for removal of

heavy metals from industrial effluents. Atkinson et al.

(1998) classified the industrial effluents into two broad

categories: (a) low pollutant concentration in large volume

and (b) high TDS values in small volumes. For the first

case, a biosorbent with strong affinity towards the

Table 3 Comparative features of biosorption and bioaccumulation of microbial cell (Dhankhar and Hooda 2011; Vijayaraghavan and Yun 2008)

Features Biosorption Bioaccumulation

Cellular

growth

No cellular growth Cellular growth occurs

Cost Generally low as the biosorbents used are mainly industrial, agricultural and

other type of waste biomass

Usually high. The process involves living cells

and; hence, cell maintenance is cost prone

Degree of

uptake

Extremely high As living cells are sensitive to high toxicant

concentration, uptake is usually low

Maintenance/

Storage

Easy to store and use as the biomass is inactive External metabolic energy is needed for

maintenance of the culture

Metabolism Not controlled by metabolism due to use of inactive biomass Controlled by metabolism due to the presence of

active cells

Metal binding

surface

Metals are bound to the cell surface Metals are bound to cellular surface and interior

structures

Process Single stage passive process Double stage active process

Rate of

uptake

Most biosorption mechanisms are rapid due to extracellular accumulation Usually slower than biosorption. Since

intracellular accumulation is time consuming.

Reaction

mode

Adsorption Absorption

Regeneration

and reuse

High possibility of biosorbent regeneration, with possible reuse over a

number of cycles

The chances are confined as most toxicants are

accumulated intracellularly

Selectivity Poor. However, selectivity can be improved by modification/processing of

biomass

Better than biosorption

Surface area Large Small

Toxicant

affinity

High under favorable conditions. Depends on the toxicity of the pollutant

Toxicant

recovery

With proper selection of elutant, toxicant recovery is possible. Several

instances proved that acidic or alkaline solutions are an efficient medium to

recover toxicants

Even if possible, the biomass cannot be utilized

for the next cycle

Versatility Reasonably good. The binding sites can accommodate a variety of ions Inflexible. Prone to be affected by high metal/

salt conditions

World J Microbiol Biotechnol (2016) 32:170 Page 7 of 14 170

123



contaminant is mandatory; whereas the latter case requires

a biosorbent with high uptake capacity. Biosorption pro-

cesses are applicable to effluents containing low concen-

trations of heavy metals for an extended period. The

application of biosorption in the purification of wastewater

offers a high potential for large scale exploitation. The

potential of natural, abundant, and cheap microbial bio-

mass can be used successfully in selective removal of metal

ions from solutions. Very few instances are present

regarding commercialization of biosorption processes by

using biosorbents, for example., AMT-BioclaimTM, BIO-

FIX and AlgaSORB. List of microorganisms used for

wastewater treatment and their removal rate are sum-

marised in Table 6.

From the tables (Tables 4, 6), it was observed that algae

and fungi are better biosorbents than bacteria for removal

of heavy metal ions from aqueous medium. Algae and

fungi are also surpassing bacteria in terms of availability.

They are easily available from industrial waste in large

volume, which is one of the essential factors for good

biosorbents.

Use of biofilms is the another approach towards heavy

metal removal and recovery from wastewater stream

(Costley and Wallis 2001). It can be defined as an assem-

blage of bacteria, algae, fungi and protozoa enclosed in a

matrix consisting of a mixture of polymeric compounds,

primarily polysaccharides generally referred as extracel-

lular polymeric substances (EPS). Use of biofilms is effi-

cient for bioremediation process, as it absorb, immobilize

and degrade various environmental pollutants. Biofilms

contain advantages, such as protection from surrounding

environment, ability to communicate and exchange genetic

Table 4 Comparative results of biosorption and bioaccumulation potential of microbial cells

Microorganisms Metals Bioaccumulation (mg/g) Biosorption (mg/g) References

Bacteria

Bacillus cereus RC-1 Cd 24.01 31.95 Huang et al. (2013)

Bacillus megaterium (A) Cr 15.7 30.7 Srinath et al. (2002)

Bacillus coagulans (181) Cr 23.8 39.9 Srinath et al. (2002)

Pseudomonas aeruginosa ASU 6a Pb 79.0 123.0 Gabr et al. (2008)

P. aeruginosa ASU 6a Ni 70.0 113.0 Gabr et al. (2008)

Streptomyces ciscaucasicus Zn 42.75 54.0 Li et al. (2010)

Bacillus sphaericus OT4b31 Cr(VI) 25* 44.5* Velasquez and Dussan (2009)

B. sphaericus IV(4)10 Cr(VI) 32* 45* Velasquez and Dussan (2009)

Fungi

Trichoderma SP2F1 Cu 19.60 28.75 Ting and Choong (2009)

Aspergillus niger MTCC 2594 Cr(VI) 75* 83.3* Mala et al. (2006)

A. niger MTCC 2594 Cr(III) 78* 78.7* Mala et al. (2006)

Lentinus edodes Zn 33.7 57.7 Bayramoglu and Arica (2008)

L. edodes Cd 78.6 274.3 Bayramoglu and Arica (2008)

L. edodes Hg 336.3 403.0 Bayramoglu and Arica (2008)

Pichia stiptis Cr(III) 9.10 19.2 Yilmazer and Saracoglu (2009)

P. stiptis Cu 15.85 16.89 Yilmazer and Saracoglu (2009)

Trichoderma asperellum Cu 5.69 12.42 Tan and Ting (2014)

Lentinus edodes Hg 336.3 403.0 Bayramoglu and Arica (2008)

Algae

Spirulina platensis Cd 44.56 47.89 Murugesan et al. (2008)

Chlorella kessleri Cu 1.9 2.8 Kadukova and Vircikova (2005)

Chlamydomonas reinhardtii Cu 0.056 0.109 Flouty and Estephane (2012)

C. reinhardtii Pb 0.057 0.286 Flouty and Estephane (2012)

Aulacoseira varians Cu 2.29 3.03 Tien et al. (2005)

Ceratium hirundinella Cu 2.3 5.75 Tien et al. (2005)

Chlorella vulgaris Cu 3.63 4.26 Tien et al. (2005)

C. vulgaris Ni 15.4 15.6 Al-Rub et al. (2004)

* Bioaccumulation and biosorption capacity in percent

170 Page 8 of 14 World J Microbiol Biotechnol (2016) 32:170

123



Table 5 Genes and enzymes/proteins responsible for bioremoval of heavy metal ions in microorganisms

Metals Microorganisms Genes Enzymes/proteins References

Cr Ochrobactrum tritici 5bvl1 chrR, chrB, chrA, chrC and

chrF

Chromate reductase Morais et al. (2011)

Bacillus cereus SJ1 species azoR, nitR Azoreductase, nitroreductase He et al. (2010)

Bacillus subtilis BYCr-1 nfrA NfrA Zheng et al. (2015)

Pseudomonas aeruginosa chrR – Aguilar-Barajas et al.

(2008)

Serratia sp. ChrT chromate reductase Deng et al. (2015)

Cupriavidus metallidurans chrA – Branco et al. (2008)

P. putida – EcdA (Soluble chromate

reductase)

Park et al. (2000)

Escherichia coli KefF Nitroreductase Prosser et al. (2010)

Escherichia coli chrR Quinone reductase Eswaramoorthy et al.

(2012)

P. putida chrR Flavoenzyme Park et al. (2000)

P. aeruginosa chrA Flavoprotein family of

reductases

Dı́az-Pérez et al. (2007)

Rhodobacter sphaeroides chr NADH-dependent Nepple et al. (2000)

Escherichia coli – YieF (chromate reductase) Ackerley et al. (2004)

Saccharomyces carlsbergensis – OYE enzyme Saito et al. (1991)

Vibrio harveyi – Flavin reductase P Zenno et al. (1998)

Escherichia coli nemA NemA Robins et al. (2013)

Escherichia coli azoR Azoreductase Robins et al. (2013)

Escherichia coli – NfsA (Nitroreductase) Ackerley et al. (2004)

V. harveyi – NfsB (Nitroreductase) Kwak et al. (2003)

Bacillus subtilis – YcnD (FMN reductase) Morokutti et al. (2005)

P. putida – EcdA (Soluble chromate

reductase)

Park et al. (2000)

Shewanella strain ANA-3 chrBAC Efflux transporter Aguilar-Barajas et al.

(2008)

Vibrio (or Photobacterium) fischeri – FRase I (FMN reductase) Zenno et al. (1994)

Cu Pseudomonas sp. NA cop Cell free Copper reductase Andreazza et al. (2011)

P. syringae copABCD, copR, copS Copper reductase Mills et al. (1993)

Escherichia coli pcoABCDE, pcoR, pcoS Copper reductase Brown et al. (1995)

P. syringae – CopD, CopB, CopA, CopC Cha and Cooksey (1991)

Enterococcus hirae copA, copB CopA, CopB Odermatt et al. (1993)

Synechococcus PCC 7942 smtA and smtB Metallothioneins (MT) Blindauer (2011)

Debaryomyces hansenii – Cell surface copper reductase Wakatsuki et al. (1991)

Hebeloma cylindrosporum HcMT1,HcMT2 – Ramesh et al. (2009)

Gigaspora margarita GmarCuZnSOD Superoxide dismutases Lanfranco et al. (2005)

G. intraradices GintCuZnSOD Superoxide dismutases

Cd and Zn Escherichia coli o732 – Goldberg et al. (1999)

P. aeruginosa CMG103 czr CzrC, CzrB, CzrA Hassan et al. (1999)

Pseudomonas aeruginosa WI-1 bmtA – Naik et al. (2012)

Cd, Zn and

Co

Alcaligens eutrophus CH34 czc CzcA, CzcB, CzcC Nies (1995)

Cd Staphylococcus aureus cadA – Nucifora et al. (1989)

B. subtilis cadA – Tsai et al. (1992)

Streptococcus thermophilus Strain

4134

cadCSt, cadASt CadCSt, CadASt Schirawski et al. (2002)

Cd, Zn and

Pb

Staphylococcus aureus cadAC CadC Busenlehner et al. (2003)
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material, nutrient availability and persistence in different

metabolic states (Costerton 1999). Biofilm based reactors

are commonly used for the treatment of large volume of

industrial and municipal wastewaters. Based on the reports,

it may be concluded that biofilms have the potentiality to

remove heavy metals from wastewaters and natural waters

containing low levels of pollutants. Biofilms are also

applied as tools for monitoring and assessment of heavy

metal pollution in water as structure and physiological

alterations of biofilms occur rapidly in presence of toxicant

(Fuchs et al. 1997). Further research area needs to be

extended on the focus of gene transfer within biofilms.

Table 5 continued

Metals Microorganisms Genes Enzymes/proteins References

Zn and Co Staphylococcus aureus zntA – Xiong and Jayaswal

(1998)

Zn Saccharomyces cerevisiae ZRT1, ZRT2 Zrt1p, Zrt2p Zhao and Eide (1996)

Synechococcus PCC 7942 smtA, smtB Metallothioneins (MT) Blindauer (2011)

Table 6 Use of microorganisms for heavy metal removal from wastewater

Microorganisms Metals IMC (mg/L) Removal rate (%) References

Bacteria

Bacillus sp. JDM-2-1 Cr(VI) 100 86 Zahoor and Rehman (2009)

Staphylococcus capitis Cr(VI) 100 89 Zahoor and Rehman (2009)

Geobacillus thermodenitrificans Cr(VI) 20.22 39.2 Chatterjee et al. (2010)

G. thermodenitrificans Cu 9.24 13.03 Chatterjee et al. (2010)

G. thermodenitrificans Cd 0.73 35.88 Chatterjee et al. (2010)

G. thermodenitrificans Zn – 9.02 Chatterjee et al. (2010)

G. thermodenitrificans Fe 1.08 43.94 Chatterjee et al. (2010)

G. thermodenitrificans Pb – 18.22 Chatterjee et al. (2010)

G. thermodenitrificans Co – 11.43 Chatterjee et al. (2010)

Fungi

Aspergillus caespitosus Pb 3.95 93 Aftab et al. (2014)

Aspergillus niger Cr(VI) 47 71.18 Kumar et al. (2008)

A. sydoni Cr(VI) 47 65.32 Kumar et al. (2008)

Penicillium janthinellum Cr(VI) 47 62.59 Kumar et al. (2008)

Algae

Spirogyra condensate Cr(III) 8.26 55 Onyancha et al. (2008)

S. condensate Cr(III) 3356.7 32 Onyancha et al. (2008)

Rhizoclonium hieroglyphicum Cr(III) 8.26 65 Onyancha et al. (2008)

R. hieroglyphicum Cr(III) 3356.7 43 Onyancha et al. (2008)

Chlorella miniata Cr(III) 100 75 Han et al. (2008)

C. miniata Cr(VI) 100 100 Han et al. (2008)

Spirogyra neglecta Pb 75 [70 Singh et al. (2007)

Pithophora odeogonia Pb 75 [70 Singh et al. (2007)

Sargassum sp. Cu 30 87 Jacinto et al. (2009)

Chlorococcum sp. Cr 2 67 Jacinto et al. (2009)

Chlorella sp. Cd – 65 Matsunaga et al. (1999)

IMC initial metal concentration
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Study of biofilm communities and gene transfer within

biofilms would facilitate the development of better tech-

niques for the bioremediation of polluted sites and

wastewaters.

Conclusions

Decontamination of heavy metals from the environment is

very much essential for the maintenance of a healthy and

safe environment. Although physicochemical methods are

often used for similar purposes, biological processes

namely biosorption/bioaccumulation seems to be a

promising alternative method from the perspective of costs,

technology requirement, metal recovery efficiency, energy

requirement and environmental impacts. However, when

biosorption and bioaccumulation were compared, the for-

mer proved to be advantageous due to the use of dead/

inactive biomaterials; which inhibits the internalization of

metal through the cell wall. A comparison among bacteria,

algae and fungi showed that algae and fungi are proved to

be better biosorbents due to their high metal uptake

capacity, easy availability and high biomass generation

capacity. There is still a challenge for specific adsorption

due to the heterogeneity of microbial cell surface. Fur-

thermore, when living cells are used for heavy metal

removal, genetic engineering might be needed to enhance

the metal tolerances of microbial strains. More studies

should be carried out for better understanding of heavy

metal removal by these two processes.
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Fuchs S, Haritopoulou T, Schäfer M, Wilhelmi M (1997) Heavy

metals in freshwater ecosystems introduced by urban rainwater

runoff—monitoring of suspended solids, river sediments and

biofilms. Water Sci Technol 36:277–282

Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and

nickel by living and non-living cells of Pseudomonas aeruginosa

ASU 6a. Int Biodeter Biodegr 62:195–203

Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal

toxicity. Microb Ecol 4:303–317

Gerbino E, Carasi P, Araujo-Andrade C, Elizabeth Tymczyszyn E,

Gomez-Zavaglia A (2015) Role of S-layer proteins in the

biosorption capacity of lead by Lactobacillus kefir. World J

Microbiol Biotechnol 31:583–592

Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and

topology of CzcA, a cation/proton antiporter of the resistance-

nodulation-cell division protein family. J Biol Chem

274(37):26065–26070

Han X, Wong YS, Tam NFY (2006) Surface complexation mecha-

nism and modeling in Cr(III) biosorption by a microalgal isolate,

Chlorella miniata. J Colloid Interf Sci 303:365–371

Han X, Wong YS, Wong MH, Tam NFY (2008) Feasibility of using

microalgal biomass cultured in domestic wastewater for the

removal of chromium pollutants. Water Environ Res

80(7):647–653

Hassan M, van der Lelie D, Springael D, Römling U, Ahmed N,
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