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Abstract It has been established beyond doubt that giant

panda genome lacks lignin-degrading related enzyme,

gastrointestinal microbes may play a vital role in digestion

of highly fibrous bamboo diet. However, there is not much

information available about the intestinal bacteria compo-

sition in captive giant pandas with different ages. In this

study, we compared the intestinal bacterial community of

12 captive giant pandas from three different age groups

(subadults, adults, and geriatrics) through PCR-denaturing

gradient gel electrophoresis (DGGE) and real-time PCR

analysis. Results indicated that microbial diversity in the

intestine of adults was significantly higher than that of the

geriatrics (p\ 0.05), but not significant compared to the

subadults (p[ 0.05). The predominant bands in DGGE

patterns shared by the twelve pandas were related to Fir-

micutes and Proteobacteria. Additionally, in comparison to

healthy individuals, antibiotic-treated animals showed

partial microbial dysbiosis. Real-time PCR analyses con-

firmed a significantly higher abundance of the Lacto-

bacillus in the fecal microbiota of adults (p\ 0.05), while

other bacterial groups and species detected did not signif-

icantly differ among the three age groups (p[ 0.05). This

study revealed that captive giant pandas with different ages

showed different intestinal bacteria composition.
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Introduction

The giant panda (Ailuropoda melanoleuca), an endemic,

rare wild animal in China, is threatened by habitat

destruction and listed as endangered in the World Con-

servation Union’s Red List of Threatened Animals (Li

et al. 2015; Zhao et al. 2013). With the implementation of a

series of conservation strategies (Hu et al. 2011; Tang and

Zhang 2001), the population of the species in the wild has

increased from 1000 in the 1970s to 1600 in 2013, and

about 376 in captivity (breeding centers and zoos) (Huang

et al. 2015). As a highly specialized herbivore, the giant

panda spends an average of 25 % of their daily time to

consume up to 6 % of body weight in dry matter per day,

which consists of 99 % bamboo (Mainka and Zhang 1994).

In contrast to other herbivores, the giant panda retains a

typical carnivorous digestive system (Li et al. 1984). The

short and simple gastrointestinal tract (GIT) indicates an

extremely rapid transit of digesta and is regarded as an

inefficient digester (\20 % dry matter digestibility)

(Dierenfeld et al. 1982). Previous studies have suggested

that the giant panda genome lacks the coding enzyme that

is essential for cellulose digestion (Li et al. 2010), whereas

enzymes related to lignin degradation have been discov-

ered in the fecal microbiome of the giant panda through

metagenomic library screening (Fang et al. 2012; Zhu et al.

2011). Therefore, intestine microbes play a vital role in the

digestive strategy of the giant panda.
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As a path to an efficient conservation scheme of giant

pandas, a comprehensive investigation of the ecology of

the complex intestinal microbiota is crucial. It is known

that the intestine microbial composition of cubs signifi-

cantly distinct from that of adults and juveniles, with a shift

from dominance by Lactobacillus to genera within Enter-

obacteriaceae (Hirayama et al. 1989; Xue et al. 2015) that

attribute to a change in diet from protein-rich to fibrous.

Seasonal foraging behaviors for processing and consuming

bamboo (Hansen et al. 2010; Tarou et al. 2005; Nie et al.

2015) also affect the composition and diversity of the

intestinal microbiota (Williams et al. 2013; Xue et al.

2015), especially changes in abundance of Lactobacillus,

Enterococcus and Streptococcus. The differences between

the captive and the wild pandas’ diet contribute to the

different intestinal microbiota, and wild animals have a

higher ratio of Firmicutes/Proteobacteria than captive

animals (Zhu et al. 2011). Although the associations

between the microbiome and diet shift have been exten-

sively studied, investigation into structural changes and

compositional evolution from the subadults to geriatrics

has just begun recently. Comparisons have been conducted

and some considerable differences were detected between

geriatric and adult giant pandas (Tun et al. 2014), but rarely

involved subadults. The differences of intestinal bacteria

composition from three age groups (subadults, adults, and

geriatrics) have not been extensively examined.

Denaturing gradient gel electrophoresis (DGGE) is an

effective tool to visually compare and analyze the domi-

nant bacterial composition of different habitats, including

soil (Siles et al. 2015), water (Danishta 2013), food

(Alonso et al. 2015), animals gastrointestinal tract (Duyt-

schaever et al. 2013). Meanwhile, real-time PCR is a

powerful advancement of the basic PCR technique with

highly sensitive and specific, and it allows for the rapid

determination the level of a particular bacterial species/

strain in samples through the design of specific primer sets

(Furet et al. 2009). In this current study, we aimed to make

a comparative analysis of intestinal bacterial communities

in giant pandas under three different age groups (subadults,

adults, and geriatrics) using a combination of PCR-dena-

turing gradient gel electrophoresis (DGGE) fingerprinting

of the 16S rDNA V3 regions and real-time PCR.

Materials and methods

Animals

In November 2014, twelve fecal samples were obtained

from twelve captive giant pandas, including four subadults

(subjects A1–A4), four adults (subjects B1–B4), and four

geriatrics (subjects C1–C4). Subject B4 and C3 were

housed in Chengdu Zoo, whereas the other giant pandas

were housed in the Chengdu Research Base of Giant Panda

Breeding. Table 1 provides details of the twelve animals

characterized in this study. Tables 2 and 3 show the

detailed diet composition of giant panda. For adult panda

B4, diagnosed with enteric disease during our sampling

period, honey water was given as a supplementary food in

addition to the normal diet.

Fecal collection, preparation and DNA extraction

All fecal samples were collected immediately after defe-

cation, placed into an icebox, transported to the laboratory,

and pretreated according to previously reported methods

(Wei, et al. 2007). Briefly, 100 g of fecal sample was

suspended in 500 mL of sterile 0.05 M phosphate-buffered

saline (PBS, pH 7.4), and residual bamboo leaves were

filtered after vigorous vortexing. The suspension was cen-

trifuged three times at 2009g for 5 min to remove coarse

particles. Supernatants were collected and pooled. Bacte-

rial cells were then collected and washed three times

through centrifugation at 90009g for 5 min with 20 mL of

sterile PBS. Bacterial precipitation was finally resuspended

in 10 mL of sterile PBS, and 1 mL aliquots were stored at

-80 �C for further analysis. All samples were subjected to

DNA extraction by using the E.Z.N.A.� Stool DNA kit

(Omega Biotechnology, USA) according to the protocol for

isolation of DNA for pathogen detection. The isolated

DNA was eluted in 100 lL of elution buffer and then

stored at -20 �C.

PCR amplification for DGGE analysis

The V3 region of the 16S rDNA gene (position 339–539 in

Escherichia coli gene) was amplified with the primers

HDA1-GC (50-GC clamp-ACT CCT ACG GGA GGC

AGC AGT-30) and HDA2 (50-GTA TTA CCG CGG CTG

CTG GCA C-30) (Walter et al. 2001) by using MyCyclerTM

Thermal Cycler (Bio-Rad Laboratories, USA). Each 25 lL
of the reaction mixture contained 12.5 lL of 29 Taq

Master Mix (Tiangen Biotechnology, China), 1 lL of each

primer (Invitrogen Life Technologies, China), and 1 lL of

template DNA of the fecal samples. Amplification program

was as follows: 94 �C for 4 min; followed by 30 cycles of

94 �C for 30 s, 58 �C for 30 s, and 72 �C for 2 min; and a

final extension of 10 min at 72 �C.

PCR-DGGE analysis

The 16S rDNA V3 PCR products were separated through

DGGE using a D-Code TM universal mutation detection

system (Bio-Rad Laboratories, USA). Polyacrylamide

(8 %) gels formed with 35–65 % linear DNA-denaturing
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gradients [100 % denaturant consisted of 40 % (vol/vol)

formamide and 7.0 M urea] were run with 19 Tris-acetate-

EDTA (pH 7.4). 10 lL PCR products were loaded on the

DGGE gel. Electrophoresis was performed at 100 V and

60 �C for approximately 16 h. After electrophoresis, the

gel was stained with 0.2 % (w/v) AgNO3 (van Orsouw

et al. 1997) and scanned using a Bio-Rad GS-800 Cali-

brated Imaging Densitometer. PCR-DGGE profiles were

digitized and normalized with Quantity One analysis

software version 4.6.2 (Bio-Rad). A dendrogram was

obtained through unweighted pair group mean average

with NTSYS-pc software version 2.10 (Applied Biostatis-

tics, Inc.). Shannon–Wiener index (H0), Species evenness

index (E) and Species richness index (R) were calculated

with the following formulas (Zwielehner et al. 2009):

H0 ¼ �
X

pið Þ ln pið Þ; E ¼ H0= ln Smax; R ¼ S

where pi is the proportional abundance of the species i and

S is the number of bands.

Sequencing of characteristic DGGE bands

Nineteen characteristic bands were excised from gels by

observing the changes in the presence/absence or in the

variation of intensity of a single band (Ibekwe et al. 2001).

The bands diffused into 20 lL of 0.1 % Triton X-100

buffer overnight at 4 �C. 1 lL of eluted DNA of excised

bands was amplified with the primers HDA1-GC and

HDA2 under similar PCR conditions and purified through

DGGE until a single band with a specific mobility was

obtained. Same primers omitted from their GC clamp were

used to amplify the excised DNA by using PCR. The

purified PCR products were ligated into pMD�19-T simple

vector (TaKaRa Biotechnology, China) and then trans-

formed into E. coli DH5a cells (TianGen, Beijing, China).

Colony PCR was used to validate positive clones which

were sequenced (BGI Technologies Co., Ltd) using Sanger

by an ABI-3730xl (Applied Biosystems). Searches in

GenBank databases were performed using BLASTn to

identify closest relatives. All sequences determined in this

study were deposited in GenBank (http://www.ncbi.nlm.

nih.gov/Genbank) under accession numbers KR363133–

KR363144 and KU510542–KU510545.

Table 1 Clinical characteristics of the twelve giant pandas

Animals Age Captive

years

Gender Health

problems

Chewing

difficulties

Taste and

Smell sensation

Nutritional

status

Antibiotic

history*

Discernable

bands

A1 (Ai Li) 3 3 F None No Good Good None 21

A2 (Qiao Qiao) 3 3 M None No Good Good None 30

A3 (Jun Jun) 3 3 F None No Good Good None 22

A4 (Xing Mei) 3 3 F None No Good Good None 29

B1 (Ya lin) 6 6 F None No Good Good None 27

B2 (Gong Zai) 6 6 M None No Good Good None 27

B3 (Ji Li) 7 7 F None No Good Good None 31

B4 (Ya Shuang) 12 12 F Enteritis No Good Good 2014.11 33

C1 (Bing Bing) 28 28 F None No Good Good None 22

C2 (Su Su) 31 28 F None No Normal Good None 23

C3 (Xiao Pingping) 27 27 M Enteritis No Normal Good 2014.10 26

C4 (Qing Qing) 30 30 F Cataract Difficult Normal Poor None 22

* Antibiotic treatment history in the 2 months prior to sampling

Table 2 Diet of giant panda

Ingredient Subadult Adult Geriatric

Apple (g) 300 300 300

Carrot (g) 500 500 500

Bamboo (kg) 30–50 50–70 30–50

Concentrate (g) 300–600 600–1200 600–800

Table 3 Composition and energy levels of concentrate

Composition Energy levels Content

Corn flour Total energy (MJ/Kg) 10.21

Soy flour Protein 9.36 %

Rice flour Fat 4.1 %

Wheat flour Calcium 0.42 %

Oatmeal Phosphorus 0.26 %

Vegetable oil

Salt

CaCO3

CaHPO4�2H2O

Adult centrum
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Quantification of microflora by quantitative PCR

(qPCR)

All bacterial groups detected and specific primers used are

listed in Table 4. qPCR calibration was performed on a

Bio-Rad CFX96TM real-time PCR Detection System with

CFX Manager Software version 2.0 (Bio-Rad Laboratories,

USA). Each reaction was performed in triplicate in 25 lL
of the reaction mixture contained 12.5 lL of SYBR�

Premix Ex TaqTM II (TaKaRa Biotechnology, China), 1 lL
of each primer (Invitrogen Life Technologies, China), 1 lL
of fecal sample DNA, and 9.5 lL of sterile deionized

water. The PCR program consisted of 95 �C for 1 min, 35

cycles of 95 �C for 15 s, annealing at the optimal tem-

perature (Table 4) for 30 s, 72 �C for 30 s, and finally

95 �C for 15 s. Melting curve analyses were performed by

slow heating from 55 to 95 �C (1 �C per cycle of 10 s) to

monitor purity of the PCR product.

PCR products of different primers were purified by

using a TIANgel Midi Purification Kit (TianGen, China),

and cloned into the pMD19-T vector (TaKaRa, Dalian,

China), then transformed into DH5a (TianGen, Beijing,

China) for amplification as described Rinttilä et al. (2004).

LB agar medium with X-gal (100 lg ml-1; TianGen,

Beijing, China), ampicillin (100 lg ml-1; TianGen, Bei-

jing, China) and IPTG (100 lg ml-1; TianGen, Beijing,

China) was used to screen the positive clones. Clones

containing correct recombinant plasmid were confirmed by

PCR amplification and sequenced to further verify the

specificity of the primers. Plasmid DNA was extracted by

using the E.Z.N.A.TM plasmid mini kit (Omega Bio-Tek),

and the concentration was measured using a Nano Drop

spectrophotometer (Nano Drop Technologies, Wilmington,

DE). The standard curves were generated by tenfold serial

dilutions of plasmid DNA. Measurements were performed

in triplicate. Plasmid DNA was used in the positive control

wells, while a well containing no template DNA was

served as a negative control. Copy numbers of the target

bacteria were calculated according to the standard curves.

Statistical analysis

All alphanumeric data were expressed as mean ± standard

deviation. SPSS 17.0 software (SPSS Inc., Chicago, Illi-

nois, USA) was used for statistical analyses using one-way

ANOVA and Duncan’s range test to compare the three age

groups. Statistical significance was set at p B 0.05.

Results

Diversity and similarity of bacterial community

of fecal samples from the three age groups

A total of twelve fecal samples from three different age

giant pandas were analyzed by DGGE fingerprinting to

characterize and compare their bacterial community com-

positions. As shown in Fig. 1, the PCR-DGGE profiles of

the different age groups revealed significant differences in

the structure and composition of the fecal microflora. An

average of 23 and 25 discernable bands were observed in

the geriatric and subadult pandas, respectively, whereas an

Table 4 Primers used for real-time PCR analysis

Target species Primer sequence (50 ? 30) Tm (�C) Amplicon

size (bp)

Reference

Bacteroides–Prevotella–Porphyromonas F-GGTGTCGGCTTAAGTGCCAT

R-CGGA(C/T)GTAAGGGCCGTGC

52 140 Rinttilä et al. (2004)

Streptococcus spp. F-AGAGTTTGATCCTCCGTCAG

R-GTTAGCCGTCCCTTTCTGG

52 144 Fiesel et al. (2014)

Enterococcus spp. F-CCCTTATTGTTAGTTGCCATCATT

R-ACTCGTTGTACTTCCCATTGT

52 144 Rinttilä et al. (2004)

Lactobacillus group F-AGCAGTAGGGAATCTTCCA

R- CACCGCTACACATGGAG

55 341 Rinttilä et al. (2004)

Clostridium cluster XIVa F-AAATGACGGTACCTGACTAA

R-CTTTGAGTTTCATTCTTGCGAA

60 440 Matsuki et al. (2002)

Enterobacteriaceae family F-ATTGACGTTACCCGCAGAAGAAGC

R-CTCTACGAGACTCAAGCTTGC

52 195 Bartosch et al. (2004)

Bifidobacterium spp. F-TCGCGTC(C/T)GGTGTGAAAG

R-CCACATCCAGC(A/G)TCCAC

62 243 Rinttilä et al. (2004)

Domain bacteria F-CGG(C/T)CCAGACTCCTACGGG

R-TTACCGCGGCTGCTGGCAC

60 200 Wise and Siragusa (2007)
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average of 29 bands was observed in adult pandas. More-

over, in comparison to healthy individuals, PCR-DGGE

profiles of adult panda B4 and geriatric panda C3 appeared

more complex bacterial communities. Diversity index of

the fecal microbiota on DGGE profiles was shown in

Fig. 2. The species richness index, species evenness index

and Shannon–Weiner diversity index of DGGE profiles

ranged from 21 to 33, 0.73 to 0.84 and 3.04 to 3.50,

respectively. Significant difference was observed between

adults and geriatrics (p\ 0.05), but not between the sub-

adults and adults (p[ 0.05). Dice coefficient of the DGGE

profiles was determined by NTSYS-pc (Fig. 3). Banding

patterns from different individuals presented a dice simi-

larity coefficient between 40 and 88 %, with a mean of

64 %. However, the similarity between C2 and the other

individuals was only 40 %.

Sequence analysis

Based on the PCR-DGGE profiles, 19 characteristic bands

were selected to investigate the predominant intestinal

bacteria in captive giant panda (Fig. 1). Bands 5, 9 and 13

could not be re-amplified and therefore no sequences were

achieved. Table 5 shows all the identified bands. Almost

all sequenced bands were closely related that of Pro-

teobacteria (62.5 %), Firmicutes (12.5 %), and uncultured

bacterium (25.0 %). Meanwhile, Acinetobacter johnsonii

was appeared in subadults and geriatrics. Clostridium sp.

was restricted to adults. Acidovorax sp., Citrobacter fre-

undii, Klebsiella pneumoniae, and Klebsiella variicola

were presented in geriatrics.

Quantification of bacterial populations in feces

Real-time PCR showed differences in the number of vari-

ous bacterial species in fecal samples from the three age

groups (Fig. 4). Although the dominant bacteria were rel-

atively stable in the three groups, the abundance of Lac-

tobacillus in adults was significantly higher than those in

subadults and geriatrics (p\ 0.05). Other bacterial groups

and species detected in this study showed no significant

difference among the three age groups (p[ 0.05). How-

ever, Bifidobacterium was not detected among all age

groups.

Discussion

Establishment of the intestinal flora in a host is a gradual

process, and factors affecting bacterial composition are

very complex to be completely understood at present. In

this study, we chose to use a culture-independent technique

(DGGE) to assess the differences in fecal microbial com-

munity of three different age giant pandas. In agreement

with previous reports (Tun et al. 2014), we found that

adults possessed a significantly higher bacterial diversity

Fig. 1 PCR-DGGE DNA

profiles of 16S rDNA V3 region

of fecal microbes in different

age captive pandas. A1–A4

subadults feces, B1–B4 adults

faces, C1–C2 geriatrics feces.

Bands that marked in the DGGE

gel were identified by cloning

and sequencing
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Fig. 2 Diversity index of the fecal microbiota on DGGE profiles. a Shannon-Wiener index (H0), b species evenness index (E), and c species

richness index (R) of GIT from three different age captive pandas

Fig. 3 Dendrograms generated

from PCR-DGGE profiles

Table 5 Sequence analysis of bands from PCR-DGGE of fecal samples from 12 captive giant pandas

Band no. Size (bp) Most closely related organism (based on partial 16S rRNA gene) Accession no. Identity (%) Source

1 157 Acinetobacter johnsonii (KC758141.1) KR363133 100 Subadults, Geriatrics

2 152 Escherichia coli strain (JF919881.1) KU510545 100 Common

3 156 Uncultured bacterium (JQ407962.1) KR363134 100 Common

4 156 Uncultured bacterium (EU771815.1) KR363135 98 Common

6 156 Uncultured Gamma proteobacterium (LC018415.1) KR363136 100 Common

7 157 Uncultured Firmicutes bacterium (GU955709.1) KR363137 98 Common

8 157 Uncultured Enterococcus sp. (KF503612.1) KU510542 100 Common

10 153 Uncultured bacterium (KF095553.1) KU510543 99 Common

11 178 Clostridium sp. (KM597174.1) KR363138 100 Adults

12 156 Uncultured bacterium (KF841678.1) KR363139 100 Adults

14 150 Uncultured proteobacterium (KF383222.1) KU510544 99 Common

15 156 Acidovorax sp. (KM252990.1) KR363141 100 Geriatrics

16 156 Escherichia coli strain (CP009106.1) KR363142 100 Common

17 156 Citrobacter freundii strain (KM880162.1) KR363140 99 Geriatrics

18 183 Klebsiella pneumoniae strain (KJ016249.1) KR363143 100 Geriatrics

19 156 Klebsiella variicola strain (CP009274.1) KR363144 100 Geriatrics
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than geriatrics (Figs. 1, 2), while the overall structure of the

microbiota in subadults was similar to adults. These age-

dependent differences in the intestinal microbiota are most

likely due to differences in diet. Compared with adults and

subadults, geriatric giant panda shown an accelerated

decline in masticatory function, smell and taste sensation

(Table 1), which may lead to decreased food consumption

(Altenhoevel et al. 2012; Nordin et al. 2007), and causing

changes in the amount of nutrients available for the host

and its intestinal bacteria (Woodmansey 2007). Given the

health benefits attributed to intestinal microbiome, their

diversity is often used as a biomarker for a well-balanced

intestine microbiota (Le Chatelier et al. 2013). Therefore,

the significant decline in microbial diversity observed in

the present study could have severe repercussions for the

geriatric’s health.

Antibiotic therapy has been demonstrated to favor the

selection of antibiotic-resistant strains and disrupt colo-

nization resistance, eliciting overgrowth of potentially

pathogenic bacteria (Al-Nassir et al. 2008; Engelbrektson

et al. 2009). Gastrointestinal diseases are the most common

causes of mortality in captive and wild giant pandas (Qiu

and Mainka 1993; Zou et al. 1998). Adult panda B4 and

geriatric panda C3 both had a history of antibiotic therapy

prior to or during the sampling period. In comparison to

healthy subjects, PCR-DGGE profiles from these two giant

pandas appeared more complex bacterial communities

(Fig. 1). Characteristic bands 18 and 19 from the fecal

sample of C3 were 100 % identical to Klebsiella (Table 5),

which has been described as a pathogen for human and

animals (Lee and Kim 2011; Mansour et al. 2014). These

findings could suggest that antibiotic use may lead to

microbial dysbiosis. In addition, DGGE bands showed that

the predominant bacteria shared in three age groups were

belonged to Firmicutes and Proteobacteria, which is con-

sistent with the results of previous studies (Tun et al. 2014;

Xue et al. 2015).

Studies reported that the intestinal microbial composi-

tion in captive giant pandas differed significantly from

those in wild (Zhu et al. 2011). Despite in captivity for

28 years, geriatric panda C2 harbored a distinct bacterial

community relative to the other individuals (only 40 %

similarity). This apparent discrepancy may be attributed to

early intestinal bacterial colonization. It has been shown

that the fecal microbial communities from three giant

pandas with different sex, ages, and locations were similar

(similarity coefficients C60 %) (Wei et al. 2007). In the

present study, the dice similarity coefficient among the

eleven individuals born in captivity ranged from 65 to

88 %, with a mean of 76.5 %. Such high similarity may be

the result of the same diet composition. With PCR-DGGE,

we achieved a view of the intestinal bacterial diversity

from three age groups at a primary level. However, there

was a limit for detecting bands in the DGGE profiles of

complex communities (Murray et al. 1996). Some minor

bacterial populations (those representing less than 1 % of

the target organisms in terms of relative proportion) in

samples might not be detected by this method. As a result,

the DGGE fingerprinting patterns probably reflected the

relative abundance of the dominant bacterial populations,

rather than to its total richness (Muyzer and Smalla 1998).

Moreover, from the complex DGGE profiles obtained in

our study, we could not quantitatively compare the bacte-

rial populations in three different age groups. As such, we

performed real-time PCR to quantify Bacteroides–Pre-

votella–Porphyromonas, Streptococcus, Enterococcus,

Lactobacillus group, Clostridium cluster XIVa, Enter-

obacteriaceae family, Bifidobacterium, and the domain

bacteria in the giant panda.

Dietary adaptation is a major driving force for the

evolution of intestinal microbiota (Nelson et al. 2013). To

better adapt to highly fibrous diet, most herbivores have

successfully developed a series of highly diverse cellu-

lolytic obligate anaerobes to enhance nutrient absorption

(Bian et al. 2013; Hess et al. 2011; Zeng et al. 2015), such

as Ruminococcaceae, Fibrobacteresand, Clostridiales and

Bacteroides bacteria. In contrast, our results defining a

standard giant panda profile, together with previous reports,

showed that Enterobacteriaceae, Enterococcus, Strepto-

coccus and Lactobacillus represent the four dominant

groups of the giant panda fecal microbiota (Tun et al. 2014;

Wei et al. 2007; Xue et al. 2015). Subdominant groups are

Fig. 4 Real-time PCR quantitation of bacterial genome copies in

fecal samples from different age captive pandas. Duncan’s multiple-

range test was used for compare the three subject groups with each

other. Bars with different small letter superscripts mean significant

difference (p\ 0.05)
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Clostridium cluster XIVa and Bacteroides–Prevotella–

Porphyromonas (Tun et al. 2014). Clostridium cluster

XIVa is a genus of strict anaerobes associated with cellu-

lose-digesting (Zhu et al. 2011), and Bacteroides is well

known degrader of polymeric organic matter (Flint et al.

2008). In this study, the numbers of Bacteroides–Pre-

votella–Porphyromonas and Clostridium cluster XIVa

were higher in adults than that of geriatrics. Pyrotag

sequencing of fecal samples from four captive giant pandas

suggested that no significant variation of enterobacteria

composition was observed in the intestines of both geriatric

and adult pandas (Tun et al. 2014). At the family and genus

level, we also did not observe any significant differences in

the abundance of Enterobacteriaceae, Enterococcus,

Streptococcus Bacteroides–Prevotella–Porphyromonas

and Clostridium cluster XIVa among different age groups

(p[ 0.05). However, it is proper to notice that differences

may exist at strain level. Therefore, a more advanced

technique would detect significant differences among

individuals.

The genera Bifidobacterium and Lactobacillus are con-

sidered to be important in preventing pathogen coloniza-

tion and maintaining intestinal homeostasis (Turroni et al.

2014). Shifts from protein-rich diet to fibrous diets

decreased Lactobacillus populations (Hirayama et al. 1989;

Xue et al. 2015), and the absence of Bifidobacterium was

discovered in giant panda faecal samples (Tun et al. 2014;

Wei et al. 2007; Xue et al. 2015). Not surprisingly, Bifi-

dobacterium was not detected in any panda from this study.

Conversely, in the present study, the most marked differ-

ence between the adult group and the other two groups was

the number of Lactobacillus, with significantly higher 16S

rRNA gene copy numbers in the adult group (p\ 0.05).

Nevertheless, the beneficial role of Lactobacillus in the

intestine of the giant panda remains to be determined.

In conclusion, this is the first cross-sectional study

quantitatively monitoring the intestinal bacterial commu-

nity of captive giant pandas from three different age groups

(subadults, adults, and geriatrics) and we found that ani-

mals with different ages showed different intestinal bac-

teria composition. Geriatric giant pandas harbored lower

microbial diversity and Lactobacillus group than adults.

Further studies combining metagenomics must be con-

ducted to explore these declines at the functional level.

Moreover, considering that antibiotic use may lead to

gastrointestinal dysbiosis, isolation of beneficial Lacto-

bacillus may provide an optimal platform for the devel-

opment of probiotics specific to the giant panda.
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