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Abstract Saffron (Crocus sativus L), an autumn-flowering

perennial sterile plant, reproduces vegetatively by under-

ground corms. Saffron has biannual corm–root cycle that

makes it an interesting candidate to study microbial

dynamics in its rhizosphere and cormosphere (area under

influence of corm). Culture independent 16S rRNA gene

metagenomic study of rhizosphere and cormosphere of

Saffron during flowering stage revealed presence of 22

genera but none of the genus was common in all the three

samples. Bulk soil bacterial community was represented by

13 genera with Acidobacteria being dominant. In rhizo-

sphere, out of eight different genera identified, Pseudomonas

was the most dominant genus. Cormosphere bacteria com-

prised of six different genera, dominated by the genus Pan-

toea. This study revealed that the bacterial composition of all

the three samples is significantly different (P \ 0.05) from

each other. This is the first report on the identification of

bacteria associated with rhizosphere, cormosphere and bulk

soil of Saffron, using cultivation independent 16S rRNA

gene targeted metagenomic approach.
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Introduction

Crocus sativus, commonly known as Saffron, is the world’s

costliest spice with medicinal value and one kilogram costs

around 11,000 US $ (Melnyk et al. 2010 Wani et al. 2011).

It is a sterile triploid plant (3n = 24) and reproduces

vegetatively by underground bulb-like, starch-storing

organs known as, corms. The annual life cycle of Crocus

sativus comprises of three stages, flowering, vegetative and

dormant stage. The flowering stage, being investigated in

present study, is characterized by absence of leaves, well

bloomed flowers on short stalks arising from corm, and

fully developed roots.

There is body of literature on plant–microbe associa-

tions and interactions (Leveau 2007; Buée et al. 2009;

Kumar et al. 2010; Berendsen et al. 2012; Kim et al. 2012

and Ma et al. 2013). Rhizosphere is biologically active

zone of the soil, which is very close to the root and contains

soil-borne microbes including bacteria and fungi (Hiltner

1904). Rhizosphere bacteria have been reported to influ-

ence growth and yield of various plants e.g. rice, tea,

cucumber, apple, soyabean and saffron (Johansen and

Olsson 2005; Ashrafuzzaman et al. 2009; Joshi and Bhatt

2011; Mahaffee and Kloepper 1997; Mazumdar et al. 2007;

Mehta et al. 2010; Wahyudi et al. 2011; Ambardar and

Vakhlu 2013). Plants like Banana, Colchicum, Gladiolus

and Saffron reproduce asexually by underground corms

(Frankova 2006; Singh et al. 2011; Steinitz et al. 1991;

Nehvi and Yasmeen 2010). Corms are modified stem in

direct contact with soil similar to roots but are different

from roots in composition and structure (Esmaeili et al.

2013; Rahmani et al. 2012; Haining et al. 2012; Esmaeili

et al. 2011). Part of this study was aimed to elucidate corm

bacterial associations, if any, that may exist in the manner

of the much studied root-bacterial associations. There are
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no reports available on the native microbes/bacteria asso-

ciated with underground plants like bulb, corm, and rhi-

zome from any plant including Saffron. We have used a

term ‘‘Cormosphere’’ for the area under influence of corm

(bacteria adhering to the corm sheath) in analogy to rhi-

zosphere and phyllosphere.

Various plant growth promoting bacteria (PGPB) have

been isolated by cultivation dependent methods but due to

the refraction of most of the bacteria to cultivation under

laboratory conditions, complete bacterial diversity of the

rhizosphere and cormosphere of a plant cannot be studied

using cultivation based approach alone (Amman et al.

1995; Handelsman 2004; Riesenfeld et al. 2004). Cultiva-

tion based bacterial diversity studies need to be comple-

mented by cultivation independent technique i.e.,

metagenomics (Tyson et al. 2004; Venter et al. 2004; Te-

ixeira et al. 2010; Araujo et al. 2012; Thomas et al. 2012).

Rhizobacteria possess diverse metabolic capabilities and

play a crucial role in plant health, therefore, knowledge of

their community structure is imperative for the proper

understanding of their individual roles (Buée et al. 2009

and Kumar et al. 2010). The role of metagenomics in the

study of bacterial diversity in rhizosphere extends from

identifying novel plant growth promoting genes and gene

products to characterizing yet-to-be -cultivable microor-

ganisms (Leveau 2007, Inceoglu et al. 2011, Arjun and

Kumarapillai 2011). 16S rRNA gene amplicon based me-

tagenomics has been used extensively to study microbial

diversity and for prediction of phylogenetic relationships

(Kirk et al. 2004, Inceoglu et al. 2011, Peiffer et al. 2013).

Present study is the first report on cataloguing of the

bacteria associated with rhizosphere, cormosphere and bulk

soil of Saffron by cultivation independent 16S rRNA me-

tagenomic approach.

Materials and methods

Sites description and sample collection

Samples from the Saffron bulk soil, rhizosphere and cor-

mosphere were collected during the flowering period (3rd

Nov 2010) from Wuyan village (74�580000E, 34�103000N,

5173ft) in Pulwama district of Kashmir, India. The soil

sampling was done as per the protocol standardized by

Luster et al. (2009). Composite rhizosphere and cormo-

sphere samples were analysed by collecting the samples

from the four corners of three different fields and mixed

together. The bulk soil was collected by vigorously shaking

the roots and the soil which remains adhere to the roots was

taken as rhizosphere soil, whereas the corms sheath was

taken to study corm associated bacteria. The samples were

collected in triplicate and pooled together. Samples were

transported to the laboratory at 4 �C (in ice) and stored at

-20 �C till processed further for physicochemical and

community DNA extraction.

16S rRNA gene metagenomic library construction

Metagenomic DNA from rhizosphere, cormosphere and

bulk soil was extracted following the protocols given by

Pang et al. (2008), Wechter et al. (2003), Brady (2007) and

Zhou et al. (1996). The isolated metagenomic DNA was

further purified by gel elution kit (Macherey–Nagel, Nu-

cleospin Extract II kit), analysed on 1 % agarose gel and

stored at -20 �C. Complete 16S rRNA gene corresponding

to nucleotide positions 8–1522 was amplified using uni-

versal eubacterial primers 8F (50-AGA GTT TGA TCC

TGG CTC AG-30) and 1522R (50-AAG GAG GTG ATC

CAN CCR CA-30) (Hong et al. 2009). The PCR mixture

contained 1–10 ng of DNA extracted from bulk soil, cor-

mosphere and rhizosphere of Saffron, 10 pM of universal

primers, 1X PCR buffer (Fermentas), 2.5 mM MgCl2, 2.5U

of Taq DNA polymerase (Fermentas), 0.2 mM each

deoxynucleoside triphosphate (Fermentas) and sterile fil-

tered MilliQ water was added to make final volume of

50 ll. Negative controls comprised of same assay without

the template. PCR amplification was performed in a DNA

thermocycler (Eppendorf, India) following the amplifica-

tion program of, initial denaturation at 94 �C for 5 min, 30

cycles of 94 �C for 30 s, annealing at 55 �C for 30 s, and

extension at 72 �C for 1 min 30 s, and a final extension of

10 min at 72 �C. The amplicons of approximately 1,500 bp

were analyzed by electrophoresis on 1 % agarose gel and a

1 kb DNA ladder (Fermentas) was taken as the molecular

size standard. The amplicon was gel purified using a gel

elution kit (Macherey–Nagel, Nucleospin Extract II kit).

The 16S rRNA metagenomic gene library was constructed

using TA cloning kit (Fermentas). The purified amplicon

was further ligated into pTZ57R/T vector with a molar

ratio of 2:5 (vector: insert), and Calcium chloride compe-

tent Escherichia coli Dh5a (prepared as per the protocol of

Cohen et al. 1972) were transformed with the ligation

mixture. The positive recombinants were screened on AXI

plates (Ampicillin-X-gal-IPTG) by blue white selection

(*10,000 clones from each library). Each library was

constructed in triplicate and random clones were selected

for screening. Positive clones were identified by colony

PCR using M13 Forward (5́ GTA AAA CGA CGG CCA

GT 3́) and reverse primers (5́ CAG GAA ACA GCT ATG

AC 3́) of T-vector (pTZ57R/T) using the same program as

16S rRNA gene amplification. ARDRA was performed to

remove the redundancy (repetition of same clone) in which

the PCR-amplified products of positive recombinants were

digested with the restriction enzymes Alu1 (Fermentas).
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The restricted fragments were analysed by MultiNA,

Microchip electrophoretic system (Schimadzu, Japan) and

a phylogenetic tree was constructed based on the different

banding pattern obtained by ARDRA using the viewer

softwares of MultiNA. One clone each was selected from

the different clads of phylogenetic tree so that one clone

represents about 40–50 clones. 50 clones (having repre-

sentation in triplicate libraries of each sample) were

selected from each metagenomic library and a total of 150

clones were selected from bulk soil, rhizosphere and cor-

mosphere metagenomic libraries. Plasmid isolation was

performed using QIAprep spin miniprep kit (QIAGEN) and

sent to SciGenom Labs Private Ltd., Cochin, Kerala,

INDIA for 16S rRNA gene sequencing.

Sequence analysis

16S rRNA gene sequences obtained from sequencing results

was analyzed using bioinformatic tools. The sequences

obtained were edited for various quality measures

(Q-value = 20, minimum length = 1,500 bp) using CLC

sequence viewer, sequence analyser, pairwise alignment and

bioedit software (Hall 1999). The resulting nucleotide

sequences were assigned bacterial taxonomic affiliations

based on the closest match to sequences available at the

NCBI database (http://www.ncbi.nlm.nih.gov) using the

BLASTn in nucleotide reference database (http://blast.ncbi.

nlm.nih.gov). A rarefaction analysis was done to assess the

coverage of the bacterial community by the datasets based on

the Operational Taxonomy Unit (OTU) clustering results.

The sequences from three metagenomic 16S rRNA gene

libraries were clustered into OTUs with a cut off value of

[97 % sequence similarity. Rarefaction curves were

obtained by plotting the sample sizes versus the estimated

number of OTUs using the rarefaction tool of Ribosomal

Database Project-II Release 9 (http://rdp.cme.msu.edu).

Construction of phylogenetic tree

Approximately 1,477 nucleotides of each ARDRA repre-

sentative library clones were sequenced using the forward

and reverse M13 primers (SciGenom Labs Private Ltd,

Cochin, Kerala). The sequences were examined for chimera

by the DECIPHER online chimera analysis program (http://

decipher.cee.wisc.edu/FindChimeras.html) and assembled

with CLC sequence viewer and bioedit software (Hall 1999).

The sequences were analysed using BLASTn search version

2.2.3 (Altschul et al. 1997) and classifier tools of Ribosomal

Database Project-II Release 9 (http://rdp.cme.msu.edu) to

search for the taxonomic hierarchy of the sequences. The 16S

rRNA gene sequences along with the reference sequence

having close sequence similarity ([97 %) obtained from the

National Center for Biotechnology Information (NCBI)

Taxonomy Homepage (http://www.ncbi.nlm.nih.gov/Tax

onomy/taxonomyhome.html/) were aligned using multiple

sequence alignment tool ClustalX 2.1 version (Thompson

et al. 1997). Phylogenetic and molecular evolutionary ana-

lysis was conducted by constructing neighbour-joining tree

using algorithm and software package of Phylip 3.69 (Tui-

mala 2004). The phylogenetic trees were constructed using

the neighbour-joining method and 1,000 bootstrap replica-

tions were assessed to support internal branches (Hillis and

Bull 1993). The phylogenetic trees were viewed using ITOL

(http://itol.embl.de/) and edited in MEGA 5.05 software

(Tamura et al. 2011).

Bacterial diversity analyses

The bacterial composition was determined by taxonomic

assignment performed by RDP Classifier set at 97 % confi-

dence value. The sequences were classified up to genus level

using RDP classifier. Relative alpha diversity between bac-

terial communities was evaluated by calculating the Shan-

non (Shannon and Weaver 1949) and Simpson’s diversity

indices. Ribotype richness was calculated according to the

abundance based coverage estimate (ACE) and the bias

corrected Chao1 values (Chao and Bunge 2002), a non

parametric estimate of species richness using EstimatesS

software. Intra sample bacterial diversity was analysed using

Fast UniFrac program (Hamady et al. 2010) and samples

were categorized according to sample source (bulk, cormo-

sphere and rhizosphere). UniFrac tests were performed using

1,000 permutations and calculated with the Fast UniFrac web

application (http://bmf2.colorado.edu/fastunifrac/). P test

significances were used to test whether bacterial communi-

ties of each pair of samples were significantly different.

Principal coordinate analysis (PCoA) was further performed

using the Fast UniFrac metric.

Data availability

The sequences obtained in this study are available at the

GenBank under accessions numbers JX260425, JX279932–

JX279941, JX289937–JX289942, JX294738–JX294750,

JX852636–JX852677, JX945529–JX945568, JX962747–

JX962749, KC138682–KC138694, and KC283045–

KC283065.

Results

Bacterial diversity

Total metagenomic DNA from the bacterial community of

all the three composite samples was extracted using various

protocols (Zhou et al. 1996, Wechter et al. 2003, Brady
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2007 and Pang et al. 2008) but 16S rRNA gene was suc-

cessfully amplified from DNA isolated using the protocol

developed by Pang et al. (2008). 16S rRNA gene me-

tagenomic library of bulk soil, rhizosphere and cormo-

sphere was constructed by TA cloning kit and *10,000

clones were picked from, each of the three libraries. Clones

were selected randomly for insert confirmation by colony

PCR and screened for redundancy by ARDRA. On the

basis of ARDRA, a total of 150 clones were selected from

the three libraries, with one clone representing 40–50

clones as per phylogenetic tree constructed by viewer

software of MultiNA (Fig. 1). The inserts of the selected

clones were sequenced by Sanger’s method instead of next

generation sequencing to get read length up to 1.5 kb, as

this read length is long enough for characterization of

bacteria up to species level. Pyosequencing though is faster

and cheaper but generates 200–500 bp sequence that can

be analysed up to phyla level only and error rate is higher

than Sanger sequencing (Gottel et al. 2011; Araujo et al.

2012).

Rarefaction curves (97 % identity) in all the three

samples did not approach the plateau, indicating less rep-

resentation of bacterial diversity, which may increase on

repetitive sampling and/or use of different DNA isolation

protocols (Fig. 2). The bacterial diversity of rhizosphere

was represented by 13 OTUs and cormosphere by 8 OTUs,

whereas bulk soil was represented by 33 OUT’s indicating

high genetic (bacterial) divergence in bulk soil as com-

pared to rhizosphere and cormosphere (Fig. 2). Higher

bacterial diversity in bulk soil was further complemented

by the diversity indices like ACE Mean, ICE Mean, Chao 1

Mean, Chao 2 Mean, Shannon Mean and Simpson Mean

(Table 1). Principal coordinate analysis generated by Fast

UniFrac further validated the bacterial phylogenetic

divergence observed between different samples. UniFrac

significance and P test significance values for the bacterial

communities (P \ 0.05 for all pairwise comparisons) dif-

fered significantly between rhizosphere and cormosphere;

rhizosphere and bulk soil; and bulk soil and cormosphere

(P \ 0.05) (Fig. 3). This results were further

Fig. 1 Amplified ribosomal

DNA restriction pattern

(ARDRA) of different clones

libraries (a) and phylogenetic

tree (b) constructed based on

different pattern using MultiNA,

Microchip electrophoretic

system. Single clone selected

from each clad represents 40–50

clones

Fig. 2 Rarefaction curves for bacterial OTUs clustering at 97 %

rRNA gene sequence similarity. High slope of rarefaction curve

indicates more diversity (higher number of OTUs) as compared to

low slope curves (Lesser number of OTUs) thereby indicating more

bacterial diversity in bulk soil as compared to rhizosphere and

cormosphere
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complemented by phylogenetic tree constructed using total

insert sequences, which cluster the cormosphere, rhizo-

sphere and bulk soil bacterial sequences into separate clads

(Fig. 4).

Phylogenetic composition of all the three samples was

significantly (P \ 0.05) different, 13 genera were cata-

logued from the bulk soil, 6 from the cormosphere and 8

from the rhizosphere (Fig. 5). Cormosphere was dominated

by Pantoea whereas rhizosphere by Pseudomonas and bulk

soil by representatives of uncultivable Acidobacteria, GP4

(Fig. 5). Despite the small distance between the bulk soil,

rhizosphere and cormosphere, none of the genus was

common in all the three soil types.However, there were

some genera which were common in two soil types at a

time, like Pseudomonas (P. frederiksbergensis) and Aci-

dobacteria GP6 common in bulk soil and rhizosphere;

Staphylococcus (S.epidermidis) in bulk soil and cormo-

sphere and Pantoea (Pa. vagans, Pa. agglomerans and Pa.

eucrina) and Enterobacter in cormosphere and rhizosphere

(Fig. 5). The relative abundance of Pseudomonas was

significantly higher in the rhizosphere (34 %) than in the

corresponding bulk soil (10 %) but were absent in cor-

mosphere (Fig. 5). Acidobacteria GP6 was more abundant

in bulk soil (12 %) whereas in rhizosphere their number is

comparatively less (2 %) and were totally absent from

cormosphere (Fig. 5). Pantoea showed an increase in

comparative abundance in cormosphere (52 %) than rhi-

zosphere (18 %) whereas Enterobacter was more in rhi-

zosphere (10 %) than cormosphere (2 %) (Fig. 5).

Staphylococcus was equally represented in bulk soil and

cormosphere (2 %).

Discussion

Saffron rhizosphere and cormosphere is a naı̈ve niche

which has not been explored, despite Saffron’s prized

economic and medicinal value (Sharaf-Eldin et al. 2008;

Melnyk et al. 2010; Kamalipour and Akhondzadeh 2011;

Chryssanthi et al. 2011). Bacterial diversity of rhizosphere

of various plants like rice, tea, cucumber, apple, potato,

soya bean and recently Saffron has been studied exten-

sively (Mahaffee and Kloepper 1997; Johansen and Olsson

2005; Ashrafuzzaman et al. 2009; Joshi and Bhatt 2011;

Mazumdar et al. 2007; Mehta et al. 2010; Wahyudi et al.

2011; Inceoglu et al. 2011, Ambardar and Vakhlu 2013)

using cultivation dependent and independent techniques

but cormosphere microbiota has not been studied in any

corm bearing plant. The biochemical composition and

physiology of root and corm are different as they are two

different plant organs (Esmaeili et al. 2013; Rahmani et al.

2012; Haining et al. 2012; Berendsen et al. 2012; Esmaeili

et al. 2011; Buée et al. 2009). In the present study, rare-

faction analysis (Fig. 2), principle coordinate analysis

(Fig. 3), and phylogenetic analysis (Fig. 4) suggests that

bacteria inhabiting cormosphere, rhizosphere and bulk soil

of Saffron are significantly different, similar to the results

of comparative study of bacterial diversity in potato rhi-

zosphere and bulk soil (Inceoglu et al. 2011).

The dominance of Pseudomonads in rhizosphere of

Saffron is in accordance with reports in literature, as they

are chemically attracted to the root exudates and are

selected over other microbes due to their PGP properties

(Saharan and Nehra 2011). We have reported similar find-

ings earlier, using cultivation dependent approach (Am-

bardar and Vakhlu 2013) but the number of Pseudomonads

characterized in present study was more. Seven different

species of Pseudomonads were found in rhizosphere

whereas only three species were identified from bulk soil

Table 1 Diversity indices indicating bacterial diversity and richness

in three samples

Diversity indices Bulk Cormosphere Rhizosphere

ACE mean 20.5 12 11

ICE mean 13 6 8

Chao 1 mean 20.5 12 11

Chao 2 mean 13 6 8

Shannon mean 2.21 1.02 1.72

Simpson mean 8.14 2.34 5.05

The bacterial diversity is maximum in bulk soil as compared to rhi-

zosphere and cormosphere indicated by the maximum diversity indice

values in bulk soil

Fig. 3 Principal coordinates (Unifrac) analysis of bacterial commu-

nity of three samples reflecting significant difference in bacterial

diversity as the plots (indicated as red for cormosphere, green for

rhizosphere and blue for bulk soil are in different quadrants. COR,

RHI, BUL and OUT in figure represents cormosphere, rhizosphere,

bulk soil and outgroup respectively. (Color figure online)
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with Pseudomonas frederiksbergensis common to both bulk

soil and rhizosphere. Pseudomonas frederiksbergensis has

not been reported from any other plant rhizosphere but from

the soil at coal gasification site in Frederiksberg, Denmark

(Andersen et al. 2000). Acidobacteria GP6 was the other

common bacterial group between bulk soil and rhizosphere,

with more abundance in bulk soil. The C (Carbon) value of

bulk soil was 1.36 % thus allowing the growth of Acido-

bacteria as they are known to be more abundant in envi-

ronments with low carbon availability and seem to prefer

bulk soil to nutrient-rich rhizosphere (George et al. 2011).

Though borne by many plants as a organ for storage and

vegetative reproduction, there are no prior studies

investigating the microbes/bacteria associated with and

underground modified stem like corm, tuber, bulb etc. that

could be used as a basis of comparison of the present study.

However corm is reported to be rich in monosaccharide

like lyxose, xylose, ribose, glucose, mannose, galactose,

rhamnose, cellobiose, maltose, lactose, fructose (Haining

et al. 2012) which can serve as a source of food for the

microbial community and provide incentives to the

microbial community for colonizing corms vicinity. In

addition, phenolic compounds (Esmaeili et al. 2011), per-

oxidases (Rahmani et al. 2012) and some metals (Esmaeili

et al. 2013) are also reported from the corm. Saffron cor-

mosphere was dominated by genus Pantoea, in contrast to

Fig. 4 Phylogenetic tree

representing all the sequences of

bulk soil (red), cormosphere

(green) and rhizosphere (blue)

which are clustered in separate

clads represented by different

colours. Star in the clad depicts

the common bacteria between

the two samples i.e. blue stars in

green clad depicts the bacteria

common in rhizosphere and

cormosphere whereas red and

green stars in blue clad

represent the cormosphere and

rhizosphere bacteria common to

bulk soil. (Color figure online)

Fig. 5 Relative abundance of

bacterial genera in rhizosphere,

cormosphere and bulk soil of

saffron indicating dominance of

Pseudomonas in rhizosphere,

Pantoea in cormosphere and

Acidobacteria GP4 in reference

bulk soil
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Pseudomonas that was dominant in Saffron rhizosphere.

Pantoea (Pantoea vagans, Pantoea agglomerans and

Pantoea eucrina) and Enterobacter (E.ludwigi) were the

bacterial genera common to saffron rhizosphere and cor-

mosphere with Pantoea more abundant in cormosphere and

Enterobacter in rhizosphere (Fig. 4). Both Pantoea and

Enterobacter, members of Enterobacteriaceae are reported

to be PGPR and Pantoea agglomerans, Pantoea vagans

and E.ludwigii, catalogued in the present study have also

been reported from the rhizosphere of maize, chickpea,

phyllosphere of eucalyptus leaves and Lolium perenne

rhizosphere respectively (Mishra et al. 2011; Brady et al.

2009; Shoebitz et al. 2009). Pantoea agglomerans is

reported to produce IAA and solubilise tri-calcium phos-

phate; Pantoea vagans and E.ludwigii acts as biocontrol

agent in potato and Lolium perenne respectively (Mishra

et al. 2011; Brady et al. 2009; Shoebitz et al. 2009; Sturz

and Nowak 2000), suggesting thereby that these bacteria

may be performing similar functions in the cormosphere of

Saffron. However, to our knowledge, Pantoea eucrina has

not been reported from any plant.

The bacteria present in cormosphere were different from

the bulk soil, Staphylococcus being an only exception.

Staphylococcus epidermidis was found to be a common

bacterial species in cormosphere and bulk soil and to our

knowledge has not been reported from any root, corm or

underground tuber. The difference in the bacteria isolated

from cormosphere and bulk soil suggests that bulk soil is

not the reservoir for the cormosphere bacteria. It can be

hypothesized that in Saffron cormosphere, bacteria are

transferred from mother corm to daughter corm during

vegetative propagation during nursing of the daughter

corms by mother corms and not from the bulk soil.

The bacterial diversity of Saffron rhizosphere was dif-

ferent from bulk soil and cormosphere; but the pattern of

bacterial diversity of rhizosphere was similar to other

known plant rhizospheres. Some of the Saffron rhizobac-

teria catalogued in present study have been reported from

other plants by cultivation dependent method e.g. P. thi-

vervalensis from wheat (Sachdeva et al. 2010), P. brass-

icacearum subsp., Neoaurantiaca from Brassica napus

(Elena et al. 2009), Pantoea agglomerans from Maize and

chickpea (Mishra et al. 2011), Pa. vagans from Eucalyptus

leaves (Brady et al. 2009), S.ficaria from the Angelica trees

(Okamoto et al. 2000), S.plymuthica from Grass roots

(Alstrom and Gerhardson 1987) and B.drentensis from

Cactus (Garrido et al. 2012). Eleven Saffron rhizobacterial

species being reported for the first time from any plant

rhizosphere are P. koreensis, P. frederiksbergensis, P.

baetica, P. mohnii and P. reinekei, Pa. eucrina, Pa. con-

spicua, E. asburiae, E. kobei, B. niacin and B. soli. Out of

the various species of Pseudomonas catalogued from Saf-

fron rhizosphere by metagenomic analysis, only P.

koreensis has been isolated using cultivation dependent

approach in our previous study (Ambardar and Vakhlu

2013). P. koreensis has not been reported from any plant

rhizosphere but is reported to produce bio surfactant

effective against Pythium ultimum and Phytophthora infe-

stans (Hultberg et al. 2010).

Conclusion

Corm, the underground organ for storage and vegetative

propagation, is as important as root, if not more. Microbial

associations with roots are well studied but corm-associ-

ated microbes are unexplored and need to be explored and

analysed. In Saffron, cormosphere was found to harbour

specific bacteria that are different from rhizosphere and the

bulk soil. As expected Saffron rhizosphere is rich in

Pseudomonads but surprisingly no Bacillus was identified.

Cormosphere on the other hand harbours Pantoea but how

they interact with corm needs further investigation. What

effect these bacterial interactions have on plant growth and

development is matter of further investigation.
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