
ORIGINAL PAPER

Decolorization of structurally different textile dyes by Aspergillus
niger SA1

Naeem Ali Æ Abdul Hameed Æ Safia Ahmed Æ
Abdul G. Khan

Received: 26 July 2007 / Accepted: 26 September 2007 / Published online: 18 October 2007

� Springer Science+Business Media B.V. 2007

Abstract The fungal strain, Aspergillus niger SA1, iso-

lated from textile wastewater sludge was screened for its

decolorization ability for four different textile dyes. It was

initially adapted to higher concentration of dyes (10–

1,000 mg l–1) on solid culture medium after repeated sub-

culturing. Maximum resistant level (mg l–1) sustained by

fungal strain against four dyes was in order of; Acid red

151 (850) [ Orange II (650) [ Drimarene blue K2RL

(550) [ Sulfur black (500). The apparent dye removal for

dyes was seen largely due to biosorption/bioadsorption

into/onto the fungal biomass. Decolorization of Acid red

151, Orange II, Sulfur black and Drimarine blue K2RL was

68.64 and 66.72, 43.23 and 44.52, 21.74 and 28.18, 39.45

and 9.33% in two different liquid media under static con-

dition, whereas, it was 67.26, 78.08, 45.83 and 13.74%

with 1.40, 1.73, 5.16 and 1.87 mg l–1 of biomass produc-

tion under shaking conditions respectively in 8 days. The

residual amount (mg l–1) of the three products (a-naphthol,

sulfanilic acid and aniline) kept quite low i.e., £2 in case

AR 151 and Or II under shaking conditions. Results clearly

elucidated the role of Aspergillus niger SA1 in decoloriz-

ing/degrading structurally different dyes into basic

constituents.
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Introduction

Colored wastewater from textile industry is rated as the

most polluted in all industrial sectors. It has been estimated

that over 10,000 different textile dyes and pigments are in

common use and the total world organic colorant produc-

tion is more than 100,000 tons/year (Pagga and Brown

1986; Easton 1995; McMullan et al. 1995, 2001). Huge

amount of dyes in textile sectors are continuously being

exhausted in wastewater streams due to their poor ad-

sorbability to the fiber (Wagner 1993; McMullan et al.

2001). Synthetic dyes specially, sulfonated and their rela-

ted biodegradation products contain structural elements,

which are unknown or rare in nature; they not only have a

negative aesthetic effect but also resist microbial attack and

contribute to aquatic and soil toxicity (Chung et al. 1981;

Reid et al. 1984; Rosenkranz and Klopman 1990; Grover

et al. 1996; Wang and Yu 1998).

The decolorization of textile waste water is still a major

environmental concern because of synthetic dyes which are

difficult to be removed by conventional treatment systems

(Robinson et al. 2001; Verma et al. 2003; Zhang et al.

2004). However, a perception is growing nowadays in

favor of using modern biological techniques in tackling

different environmental problems. Biological remediation

is considered more efficient in terms of its long lasting

benefits and for having almost no harmful effects on

environment. In addition, it would be cheaper as compared

to other different physicochemical techniques tested (Balan

and Monterio 2001; Wallace 2001). Various fungal strains

that have proved more efficient in decolorization of textile

dyes mostly belonged to the group of White-rot. Dyes are

removed by fungi by biosorption (Conatao and Corso 1996;

Paymann and Mehnaz 1998; Fu and Viraraghavan 2000)

and enzymatic mineralization (degradation) [Lignin
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peroxidase (LiP), manganese peroxidase (MnP), manga-

nese independent peroxidase (MIP), laccases (Laccs)]

(Young and Yu 1997; Ollikka et al. 1998; Podgornik et al.

1999; Wong and Yu 1999; Zheng et al. 1999; Ferreira et al.

2000; Pointing and Vrijmoed 2000; Minussi et al. 2001;

Wesenberg et al. 2003; Svobodova et al. 2006). However,

one or more of these mechanisms could be involved in

color removal, depending on the fungus used.

The four structurally different dyes (Acid red 151,

Orange II, Drimarene blue K2RL and Sulfur black) selected

in the present research work are known for their high use in

textile industry. These dyes, due to their poor adsorbability

in textile fiber in comparison with other classes of dyes

have a higher exhaustion rate in the wastewater. Due to

recalcitrant nature of such dyes in wastewater, the biode-

colorization/biodegradation ability of an indigenous fungal

isolate, Aspergillus niger SA1 (Ascomycetes) was trialed

under different operational conditions.

Experimental

Chemicals

The four textile dyes used in this study were including Acid

red (AR) 151 (Di-azo), Orange (Or) II (Mono-azo),

Drimarene blue (Db) K2RL (Anthraquinone based Reac-

tive) and Sulfur black (Sb) (Anthraquinone). AR 151 and

Or II were purchased from Sigma chemicals Co., while Sb

and Db K2RL were obtained from Kohinoor textile mill,

Rawalpindi, Pakistan. Chemical compounds and media

components used in the study were obtained from BDH

laboratory chemical division, Poole, Dorset, England,

Sigma chemicals Co., St, Louis and E. Merck, Darmstadt,

Germany (Fig. 1).

Culture media

Saboraud dextrose broth (SDB) (Merck) and mineral salt

media were used in the study. Mineral salt medium was

made by adding per liter of distilled water; Acetic Acid

(99.9%) 0.150 ml, (NH2)2CO 100.0 mg, KH2PO4 67.0 mg,

NaHCO3 840.0 mg, MgSO4.7H2O 38.0 mg, CaCl2
21.0 mg, FeCl3 6H2O 7.0 mg and glucose 6 g. pH of the

media was adjusted to 8 by using 0.1M HCl and NaOH.

Agar (15 g l–1) was used as solidifying agent in the media

when required in the experiments.

Isolation of fungal strain

The fungus was isolated from the diluted sludge sample

taken from textile wastewater pond on Saboraud dextrose

agar (SDB) plates at 28�C. The fungal isolate was identi-

fied as Aspergillus niger SA1 on the basis of its vegetative

and reproductive structure using dichotomous keys by the

expertise of Pakistan Museum of Natural History, Islama-

bad, Pakistan.

Preparation of fungal inoculum

Aspergillus niger SA1 was grown in SDB on a rotatory

shaking incubator (100 rpm, 28�C) for 8 days and its bio-

mass was then filtered and washed twice with distilled

water. Fungal bioimass (pellets), 5 g 100 ml–1 of distilled

water was homogenized in a blender for 5 min and later

used as inoculum in the experiments.

Adaptation of A. niger SA1 to higher concentration of

textile dyes

The fungal strain A. niger SA1 was sequentially adapted

to higher concentrations (10–1,000 mg l–1) of each dye by

being sub-culturing it multiple times on dye containing

mineral salt-agar plates at pH 7. Dyes containing plates

inoculated with fresh fungal inoculum (5 mm disc) were

incubated for 8 days at 28�C. The maximum resistant

levels (MRL) beyond which the fungal growth was

completely inhibited was marked. Besides rich growth

limits (RGL) of the fungal isolate on solid medium con-

taining dyes were also determined. RGL defined as the

growth appeared (in diameter) i.e., ‡half and £full on dye

containing medium compared to one obtained on medium

devoid of any dye. The apparent dye removal by the

fungal strain was critically examined into/onto the hyphae

by microscope and as decolorization zones in media

plates.Fig. 1 Structure of dyes
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Decolorization of different textile dyes by A. niger SA1

Decolorization assays of different textile dyes with A. niger

SA1 were carried out by taking 100 ml of saboraud dex-

trose broth or mineral salt media containing 20 mg l–1 of

dye in cotton plugged Erlenmeyer flasks. Each experi-

mental flask was inoculated with 0.001% (w/v) fresh

inoculum of homogenized fungal biomass. The experi-

ments were carried out in static and shaking (100 rpm)

conditions for 8 days at 30�C. A group of three flasks was

operated for each dye decolorization assay along with a set

of control flasks without fungal inoculum.

Analytical methods

Samples (2 ml each) were drawn from dye containing

medium during treatment after every 24 h in plastic cuv-

ettes. Initially, each sample was filtered and centrifuged at

10,000 rpm for the analysis of the supernatant. The resid-

ual amount of dyes in each sample was monitored through

Shimadzu UV-visible spectrophotometer at their respective

wavelengths (kmax) i.e., Db K2RL = 620 nm; Sb = 610

nm; AR 151 = 512 nm; Or II = 480 nm. The initial and

final samples in case of AR 151 and Or II were also ana-

lyzed by using Agilent 1100 HPLC with a C18 column at a

flow rate of 1.5 ml/min. The solvent system (mobile phase)

used during analysis of Or II (kmax = 231 nm) was aceto-

nitrile and 0.03 M ammonium carbonate buffer (30:70%)

and for AR 151 (kmax = 225 nm), it was acetonitrile and

H2O (30:70). Percentage (%) decolorization of dyes in

liquid media was determined by using the following

formula;

Fungal biomass produced during each experiment was

separated out on 8th day from culture filtrate by Whattman

filter paper No. 1. It was then dried overnight at 100�C in

an oven to calculate the dry weight.

The results obtained during experimentation were

expressed in terms of Means and Standard error (SE). Data

was defined statistically by ANOVA (Single factor), T-test

and LSD test by using Microsoft excel and MSTAT soft-

wares. Correlation between different parameters was

calculated by SPSS software. Probability (p-value) less

than 0.05 and 0.01 was considered significant and highly

significant respectively.

Precaution

Experiments were performed under standard sterilized

conditions. Glassware and media used in experiments were

properly sterilized before use at 121�C and at 15 psi

pressure for 20 min.

Result and discussion

Adaptation of A. niger SA1 to higher concentrations of

textile dyes

The fungal strain initially adapted to higher concentrations

of four dyes on mineral salt–agar plates showed quite high

resistance level (MRL) (average = 637.50 ± 77.39 mg l–1)

ranging from 500–850 mg l–1. Maximum resistance level

(mg l–1) was observed against AR 151 i.e., 850, while 650,

500 and 550 against Or II, Sb and Db K2RL respectively

(Fig. 2). Increase in concentration of dyes from 10–

1,000 mg l–1 led to decrease in fungal growth (in diameter)

on media plates. Besides, the rich growth limits (RGL) of

A. niger SA1 was below MRL values against different

concentration of each tested dye. In addition, the growth of

A. niger SA1 seemed to be correlated with its apparent dye

removal efficiency. Similarly, dyes removals on solid

medium with related growth of different fungal strains

(basidiomycetes) have also been mentioned in different

reports (Shah and Nerud 2002; Wesenberg et al. 2003;

Machado et al. 2005). Dyes removal by A. niger SA1 was

microscopically found more due to biosorption/bioadsorp-

tion into/onto fungal hyphae as was reported by Fu and

Viraraghavan (2000). However, diffused decolorization

halos around fungal colonies specifically with AR 151 also

pointed towards extracellular degradation of dyes. Like-

wise, Balan and Monterio (2001) assigned reduction of a

dye (Indigo) intensity in the medium to adsorption as well

as extracellular fungal activity. Biosorption was considered

as the prime dye removal phenomenon in wood rotting

basidiomycetes (Knapp and Newby 1995). Adsorption has

been attributed to the electrostatic attraction between the

negatively charged dye with positively charged cell wall

constituents such as chitin, acidic polysaccharides, lipids,

or amino acids (Aksu et al. 1999; Aksu and Tezer 2000).

However, increase in concentration ([100 mg l–1) of dye

% Decolorization =
Initial concentration of dye� Final concentration of dye

Initial concentration of dye
� 100
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(Reactive blue) at times proved to be toxic, thereby limit-

ing the decolorization activity of Aspergillus spp. (Ramya

et al. 2007). Moreover, decolorization of different dyes on

solid culture media was noticed considerably slower than

radial fungal growth and it occurred between 5–30 days

(Pasti-Grigsby et al. 1996; Minussi et al. 2001; Machado

et al. 2006). However, fungal colonies previously adapted

to azo dyes, showing decolorizing abilities, gave consid-

erably higher results than those taken from the non-treated

culture medium (Wataru et al. 1999; Arora and Chander

2004).

Decolorization/degradation of dyes under static and

shaking conditions

Screening of A. niger SA1 pre-adapted to higher concen-

tration of dyes, was carried out for the decolorization/

degradation of four structurally different dyes in two dif-

ferent media SDB and mineral salt media under static

condition (8 days). Decolorization (%) insignificantly dif-

fered in two media in all the tested dyes with an exception

of Db K2RL [(T-test; 2 sample assuming equal variance)

(n = 3) (p \ 0.05)]. It was 68.64 and 66.72, 43.23 and

44.52, 21.74 and 28.18, 39.45 and 9.33 in AR 151, Or II,

Sb and Db K2RL in SDB and mineral salt media respec-

tively (Fig. 3). So, the use of different media did not bring

any major difference in decolorizing of AR 151 and Or II,

although, the composition of the two media quite differed.

Specifically, the amount of additional carbon source as

dextrose sugar in SDB (40 g l–1) was considerably higher

than glucose used in mineral salt medium (6 g l–1). This

indicated that dyes might have been used as primary

nutritional source (specifically carbon) in fungal metabo-

lism compared with other nutrients in culture media. From

relatively smaller to major structural differences including

class/type and side-groups in dyes can markedly affect

decolorization (Sani et al. 1998; Wallace 2001) and that

were also noted in the present study.

There was observed a significant (p \ 0.01) increase in

the decolorization of Or II, Sb and Db K2RL in mineral salt

medium when experiments were shifted from static to

shaking condition, though the results were almost similar in

case of AR 151 [(T-test; 2 sample assuming equal vari-

ance) (n = 3)]. Decolorization was maximum in Or II, i.e.,

78.08% with 1.73 mg l–1 of biomass production. Whereas,

it was 67.26, 45.83 and 13.74% with 1.40, 5.16 and

1.87 mg l–1 of biomass in case of AR 151, Sb and Db

K2RL respectively in 8 days (Fig. 4). Generally, increase
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in decolorization efficiency has been linked with shaking

due to an increase in mass and oxygen transfer between

cells and the medium, factors that optimize the action of

oxidative enzymes. Shaking (200 rpm) resulted in an

increase in dye decolorization by P. chrysosporium, Tra-

metes versicolor, Bjerkandera spp. BOS55, Bjerkandera

fumosa, Kuehneromyces mutabilis, Strofaria rugoso-an-

nulata and T. villosa (Swamy and Ramsay 1999; Jarosz-

Wilkolazka et al. 2002; Wesenberg et al. 2003; Machado

et al. 2006). However, better dyes’ decolorization abilities

were reported in Phlebia tremellosa under static conditions

(Kirby et al. 2000). In this context, different reports sug-

gested that the enzymes involved in the decolorization

might have been suppressed or altered under agitation

(Glenn and Gold 1983; Kuwahara et al. 1984), despite,

dyes removal through biosorption proved to be slower

under static culture conditions.

Apparently, the phenomenon of biosorption was seen in

the removal of dyes from liquid culture medium. Further,

reduction of dyes after biosorption onto the biomass indi-

cated biodegradation. HPLC analysis showing declining

concentrations of AR 151 and Or II with formation of

considerably low residual amount (£2 mg l–1) of three

products (1-naphthol, 4-aminobenzenesulfonic acid

(4ABS) and aniline) have favorably supported the idea that

mineralization of dyes has occurred (Fig. 4). A general

decrease in dyes (like Indigo and Reactive blue) concen-

tration of this kind was more attributed to degradation than

adsorption by fungi (Balan and Monterio 2001; Wesenberg

et al. 2002; Ramya et al. 2007). The most decolorized dyes,

AR 151 and Or II were both azo (Sulfonated) compared to

Sb and Db K2RL (Anthraquinone base) in the present

study. Similar results (8.7%) as mentioned in case of Sb

and Db K2RL were reported in Coloron Black due to its

complex chemical structure, higher molecular weight and

the presence of inhibitory groups like –NO2 and –SO3Na

(Hu and Wu 2001). Contrarily, it was reported in a study

that Reactive blue 19 and Reactive blue 49, which are

anthraquinone-based structures, were decolorized easily in

short period (99% in 8 h) as compared to azo dye Reactive

black 5 by Trametes versicolor KCTC 16781 (Kim et al.

2004). This comparative opposite situations clearly

reflected different metabolizing properties of the different

fungi.

The improvement in decolorization of dyes was appar-

ently associated with increasing amount of fungal biomass

under shaking condition. But, insignificant correlation

between decolorization (%) of different dyes and biomass

production by A. niger SA1 (r = –0.19) (Fig. 4) suggested

varying substrate (dyes) specificity of fungus (Wallace

2001). Nonetheless, a substantial varying decrease in bio-

mass with different dyes (at 20 mg l–1) in liquid medium

(Fig. 4) indicated that different substituents patterns in

dyes and related products (Fig. 1) were causing inhibitory

effect on fungal growth. In addition, dyes at specific con-

centrations were found to create a long lag phase, limiting

growth and metabolizing properties of different fungal

strains under different culture conditions (Sollai et al. 1996;

Albanis et al. 2000; Aksu 2003; Kasinath et al. 2003).

Conclusion

Decolorization/degradation of dyes has been mostly linked

with White-rot fungi, however, newly isolated fungal

strain, A. niger SA1 belonging to a different group of fungi

showed great ability to grow and to decolorize 4 different

dyes. Moreover, results proved that decolorization of dyes

were more efficient in shaking condition as compared to

static one. The production of less amount of degradation

products of AR 151 and Or II further validate the role of

fungal isolate to be used in bioremediation of dye con-

taining textile effluent.
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