
ORIGINAL PAPER

Effect of nutritional parameters on laccase production
by the culinary and medicinal mushroom, Grifola frondosa

Z. T. Xing Æ J. H. Cheng Æ Q. Tan Æ Y. J. Pan

Received: 27 June 2005/Accepted: 17 December 2005 / Published online: 20 April 2006

� Springer Science+Business Media, Inc. 2006

Abstract Extracellular laccase in cultures of Grifola

frondosa grown in liquid culture on a defined medium was

first detectable in the early/middle stages of primary

growth, and enzyme activity continued to increase even

after fungal biomass production had peaked. Laccase

production was significantly increased by supplementing

cultures with 100–500 lM Cu over the basal level (1.6 lM

Cu) and peak levels observed at 300 lM Cu were ~7-fold

higher than in unsupplemented controls. Decreased laccase

activity similar to levels detected in unsupplemented

controls, as well as an adverse effect on fungal growth,

occurred with further supplementation up to and including

0.9 mM Cu, but higher enzyme titres (2- to 16-fold com-

pared with controls) were induced in cultures supple-

mented with 1–2 mM Cu2+. SDS-PAGE combined with

activity staining revealed the presence of a single protein

band (Mr ~70 kDa) exhibiting laccase activity in control

culture fluids, whereas an additional distinct laccase protein

band (Mr ~45 kDa) was observed in cultures supplemented

with 1–2 mM Cu. Increased levels of extracellular laccase

activity, and both laccase isozymes, were also detected in

cultures of G. frondosa supplemented with ferulic, vanillic,

veratric and 4-hydroxybenzoic acids, and 4-hydroxybenz-

aldehyde. Using 2,2¢-azino-bis(ethylbenzothiazoline-6-sul-

fonate) (ABTS) as substrate, the optimal temperature and

pH values for laccase activity were 65�C and pH 2.2,

respectively, and the enzyme was relatively heat stable. In

solid-state cultures of G. frondosa grown under conditions

adopted for industrial-scale mushroom production, extra-

cellular laccase levels increased during the substrate col-

onization phase, peaked when the substrate was fully

colonized, and then decreased sharply during fruit body

development.
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Introduction

The edible and medicinal mushroom, Grifola frondosa,

(‘‘Hui Shu Hua’’ in Chinese, ‘maitake’ in Japanese) is a

highly nutritious food source that is also reported to contain

bioactive metabolites that exhibit various medicinal effects

including antitumour (Ohno et al. 1986; Kodama et al.

2003), hypocholesterolemic (Kubo and Nanba 1997; Fuku-

shima et al. 2001), antioxidant (Zhang et al. 2002) and an-

tidiabetic activity (Kubo et al. 1994; Horio and Ohtsuru

2001). In 2003 (the latest figures available), an estimated

24,900 tonnes were grown in China, the main producing

country, and the mushroom ranked 11th overall among all

cultivated species in terms of worldwide annual output

(Chang 2005). The fungus is cultivated in China using

sawdust/cotton seed hull-based ‘‘composts’’ and, in order to

obtain the nutrients required for growth and fruiting, is as-

sumed to secrete the hydrolytic/oxidative enzymes that cat-

alyse the degradation of the major macromolecular

components (cellulose, hemicellulose, lignin) of the growth

substrate (Buswell et al. 1996). However, compared with

Z. T. Xing (&) Æ J. H. Cheng Æ Q. Tan Æ Y. J. Pan

Edible Fungi Institute, Shanghai Academy of Agricultural

Sciences, 35 Nanhua Road, Shanghai 201106, P. R. China

e-mail: xingzengtao@yahoo.com.cn

Tel.: +86-21-52630137

Fax: +86-21-62207544

Y. J. Pan

Shanghai Fisheries University, Shanghai 200090, P. R. China

World J Microbiol Biotechnol (2006) 22:1215–1221

DOI 10.1007/s11274-006-9163-z

123



other major cultivated mushrooms, very little is known about

the nature of the lignocellulolytic enzymes produced by

G. frondosa, the parameters affecting their production, and

enzyme activity profiles during different stages of the

developmental cycle. Therefore, a major study has been

initiated in our laboratory in order to rectify these deficien-

cies, and to design strategies for increasing the relatively low

biological efficiency (conversion of growth substrate into

fruit bodies) of G. frondosa. Such strategies would be based

in part on improved substrate utilization achieved by

manipulating the expression of those genes controlling

lignocellulolytic enzyme production. One part of this

investigation has focused on laccase (benzenediol:oxygen

oxidoreductase, EC 1.10.3.2), an enzyme that has variously

been assigned several physiological functions of relevance to

mushroom cultivation (Thurston 1994). These include roles

in lignin degradation (Archibald and Roy 1992; Ardon et al.

1988; Eggert et al. 1997), detoxification of phenolic com-

pounds inhibitory to fungal growth and cellulolytic enzyme

activity (Bollag et al. 1988), and sporophore development

(De Vries et al. 1986; Wood 1980; Chen et al. 2004a).

In this paper, we report for the first time the effect of

various nutritional parameters on laccase production by

this commercially important mushroom both during growth

in submerged culture on a defined medium, and on a solid-

state substrate under controlled environmental conditions

representative of those adopted for large-scale cultivation.

Materials and methods

Organism and culture conditions

Grifola frondosa (accession no. FGF-1) was obtained from

the Edible Fungi Culture Collection Center, China Culture

Collection Center of Agricultural Microorganisms, and

maintained on potato dextrose agar (PDA) at 4�C with

periodic transfer.

For liquid culture, the fungus was grown at 28�C in

stationary 250-ml Erlenmeyer flasks containing 50 ml

basal medium (pH 6.0) consisting of (per litre): glucose,

10 g; Na2HPO4, 0.475 g; KH2PO4, 1.453 g; asparagine

monohydrate, 1 g; NH4NO3, 0.5 g; MgSO4Æ7H2O, 0.5 g;

yeast extract (Difco), 1.0 g; CaCl2Æ2H2O, 0.013 g; thia-

mine, 25 mg and trace elements solution (Cai et al. 1999),

1 ml. Flasks were inoculated with 1.0 ml of a mycelial

suspension prepared by homogenizing a 10-day PDA cul-

ture in 100 ml sterile distilled water using a Waring blen-

der operated at half power for two 15 s periods. The effect

of copper on laccase production was determined by sup-

plementing basal medium with copper (as CuSO4) to the

concentrations indicated prior to inoculation and measuring

enzyme activity after incubation for a further 35–48 days.

To determine the effect of aromatic compounds on laccase

production, each compound (2 mM final concentration)

was added to 10-day-old cultures and laccase activity

measured after a further 30 and 35 days incubation. Solid-

state cultures were grown under controlled environmental

conditions (vegetative growth: 25�C, 70% relative humid-

ity, CO2 concentration < 2,500 ppm, no light; fruiting:

20�C, 98% R.H., CO2 400–500 ppm, light 200–300 lux for

10 min every hour) in a modern mushroom factory. The

substrate (200 g, pH 6.0–6.5), consisting of 70% beech

sawdust, 25% wheat bran and 5% corn meal, was distrib-

uted into 850 ml plastic bottles, the moisture content ad-

justed to 62%, and the opening to the bottle covered with a

polystyrene foam cap. After sterilisation (121�C, 65 min),

each bottle was inoculated with 5–7.5% mushroom spawn

(grown for 30 days on sawdust), and incubated at 25�C for

45 days prior to removal of the cap to induce pinning and

fruit body development.

Sampling procedures

Liquid cultures (three replicates) were harvested over time-

courses and laccase activity in the culture supernatants was

assayed. Fungal biomass was determined by filtering

mycelia through nylon mesh, washing with distilled water

and drying to constant weight at 80�C.

Samples (20 g) (five replicates) from solid-state cultures

were taken at different stages of the 65-day developmental

cycle: half substrate colonization (day 20), full substrate

colonization (day 33), prior to removal of bottle cap (day

45), after removal of bottle cap (day 48), primordia for-

mation stage (day 53), small fruit bodies stage (day 59) and

mature fruit bodies stage (day 65). Laccase activity in

primordia, small fruit bodies and mature fruit bodies was

also determined. Substrate and fruit body samples were

suspended in 10 volumes (w/v) 50 mM sodium phosphate

buffer (pH 7.0) and homogenized in a Waring blender (half

power for two 30 s periods). Homogenates were transferred

to 250 ml flasks, shaken (100 rpm) for 2 h at 25�C, filtered

through nylon mesh and excess liquid collected by gentle

hand squeezing. Filtrates were further clarified by centri-

fugation (5,000g for 10 min at 4�C) and the supernatant

retained for enzyme assay.

Enzyme assay

Laccase activity was determined at 30�C using 2,2¢-azino-

bis(ethylbenzothiazoline-6-sulfonate) (ABTS) in reaction

mixtures (1 ml) containing citrate–phosphate buffer (pH

2.2), 0.03% (w/v) ABTS, and an appropriate amount of

culture supernatant. The reaction was initiated by addition

of ABTS, oxidation of which was measured for 2 min by

monitoring the linear increase in absorbance at 420 nm.
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One unit of laccase activity is defined as the amount of

enzyme required to oxidize 1 lM ABTS per min using an

�420 value for oxidized ABTS of 3.6 · 104 mol)1 cm)1

(Bourbonnais and Paice 1988). Since peroxidases in the

presence of H2O2 (both of which may have been present in

the culture fluids) also oxidize ABTS, assays were repeated

with catalase-treated extracellular fluid to confirm the

presence of laccase activity. In cases where differences

were observed, ABTS-oxidizing activity in treated samples

was >90% that of untreated samples.

The standard assay conducted over the range 20–80�C

was used to determine the optimal temperature for total

laccase activity, and the optimal pH was established using

0.1 M sodium chloride and hydrochloric acid (pH 1.0–2.2)

and citrate–phosphate (pH 2.2–8.0) buffer systems.

SDS-PAGE and activity staining of gels

SDS-PAGE was performed on aliquots of filtered (0.45 lm

Millipore filter) culture fluids using the Mini-Protean II

system (Bio-Rad) operated at 100 mV for 2 h. Samples

(15 ll) were first mixed with 15 ll SDS sample buffer

(1.0 ml glycerol, 2.0 ml 10%(w/v) SDS, 2.0 ml 0.01%

bromophenol blue 1.25 ml stacking buffer [see below] and

4 ml b-mercaptoethanol) and then 15 ll of the mixture

loaded into each well. The separating and stacking gels

contained 12% and 4% (w/v) acrylamide, respectively.

Buffer solutions consisted of 155 mM Tris (pH 8.8) and

0.4% (w/v) SDS for the separating gel, and 50 mM Tris

(pH 6.8) and 0.4% (w/v) SDS for the stacking gel. The

electrode reservoir solution (pH 8.3) consisted of Tris

buffer (25 mM) containing 190 mM glycine. Gels were

rinsed twice with 2.5% (w/v) Triton X-100 for 10 min to

restore laccase activity after electrophoresis, and then

rinsed twice with citrate-phosphate buffer (pH 2.2) prior to

staining with ABTS (0.03%) in the same buffer. Protein

bands exhibiting laccase activity stained green. Molecular

weight determinations were carried out on other sections of

the same gel which were stained instead with 0.1% (w/v)

Coumassie Brilliant Blue R-250 in distilled water:metha-

nol:acetic acid mixture (5:4:1) at room temperature for 20–

30 min and destained with the same mixture without

Coumassie Blue. Phosphorylase B (Mr 97,400), bovine

serum albumin (Mr 66,200), ovalbumin (Mr 45,000), car-

bonic anhydrase (Mr 31,000), trypsin inhibitor (Mr 21,500)

and lysozyme (Mr 14,400) were used as molecular markers.

Results and discussion

Laccase production in submerged culture

Figure 1 shows the time-courses of biomass and extracel-

lular laccase production by G. frondosa grown in

submerged culture. Fungal biomass increased steadily for

the first 27 days of the 52-day culture period to a maximum

of 3.2 mg/ml and then gradually declined. Laccase activity

was detectable after 12 days, reached an initial peak of

61 U/l after 42 days, declined by approximately 50% after

45 days before continuing to increase again to reach levels

of ~70 U/l when the experiment was terminated. SDS-

PAGE analysis of culture fluids and activity staining of the

gels revealed the presence of a single protein band exhib-

iting laccase activity throughout the incubation period.

The laccase production profile in liquid cultures of

G. frondosa is unusual since the enzyme was detectable in

culture fluids only after 12 days of primary growth during

which considerable fungal biomass had been generated. In

other basidiomycetes, enzyme synthesis is more closely

associated with trophophase, for example in Trametes

versicolor (Collins and Dobson 1997), Pleurotus sajor-caju

(Soden and Dobson 2001; Fu et al. 1997) and Pycnoporus

cinnabarinus (Eggert et al. 1997), or detectable only in the

later stages of primary growth when fungal biomass

production had reached a maximum as in the case of

Volvariella volvacea (Chen et al. 2003).

pH and temperature optima, and heat stability,

of laccase activity in culture fluids

Preliminary characterization revealed that laccase activity

in culture fluids was detectable only when the pH of

reaction mixtures was adjusted to 5.5 or below and, for

ABTS, an activity peak was observed at pH 2.2. Similar

low pH optima for ABTS oxidation have been reported for

laccases from the basidiomycetes Trametes villosa (Yaver

et al. 1996), Pleurotus sajor-caju (Lo et al. 2001) and

Volvariella volvacea (Chen et al. 2003). In standard assay

mixtures, the velocity of ABTS oxidation was maximal at

60–65�C. Furthermore, enzyme activity was relatively heat

stable with 90% and 60% remaining after 1 h exposure to
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production by G. frondosa grown in liquid cultures on a defined

medium. Values represent the mean – SD of triplicate samples
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60�C and 70�C, respectively (data not shown). However,

rapidly denaturation of the enzyme occurred above 70�C.

Effect of copper on laccase production by G. frondosa

Since laccase is a copper-containing protein (Messersch-

midt and Huber 1990), and copper supplementation of the

culture medium is reported to enhance enzyme production

in many basidiomycetes (Collins and Dobson 1997;

Palmieri et al. 2000; Soden and Dobson 2001; Chen et al.

2003), we examined the effect of added copper on laccase

synthesis by G. frondosa.

Figure 2 shows the effect on extracellular laccase

activity of adding 0.1–1.0 mM (as copper sulphate) to

basal medium containing 1.6 lM Cu2+. After 35 days

incubation, supplementation over the range 0.1–0.5 mM

Cu2+ resulted in approximately 3- to 6-fold increases in

laccase activity over the basal level of 34 U/l detected in

unsupplemented (1.6 lM Cu2+) culture fluids, with the

highest enzyme titre of 227 U/l recorded at concentrations

of 0.3 mM CuSO4. Supplemention over this range had no

significant effect on fungal biomass production. However,

additional supplementation up to and including 0.9 mM

CuSO4 resulted in decreased laccase activity to levels

similar to those detected in unsupplemented controls, as

well as an adverse effect on fungal growth (Fig. 2).

However, enzyme titres in cultures supplemented with

1 mM Cu2+ were approximately 2-fold higher than control

values (Fig. 2)). Interestingly, although only one laccase

protein with an apparent Mr of ~70 kDa was detected in

cultures with added Cu2+ concentrations up to 0.9 M, an

additional distinct second band with an apparent Mr of

~45 kDa was observed at 1.0 M Cu2+. Both these molec-

ular masses are within the range of those reported for

laccases from other basidiomycetes including Coriolus

versicolor (64.5 kDa) (Fåhraeus and Reinhammar 1967),

Dichomitus squalens (66 kDa) (Périé et al. 1998), Lentinus

edodes (66 kDa) (Kofujita et al. 1991), Phanerochaete

chrysosporium (46.5 kDa) (Srinivasan et al. 1995), Pleu-

rotus ostreatus (59 kDa) (Sannia et al. 1986), Pyconoporus

cinnabarinus (76–81 kDa) (Eggert et al. 1996), Rigido-

porous lignosus (52–55 kDa) (Galliano et al. 1991), Tra-

metes pubescens (65 kDa) (Galhaup et al. 2002) and

Volvariella volvacea (58 kDa) (Chen et al. 2004a).

In a separate experiment in which cultures containing

the basal level of 1.6 lM Cu2+ were supplemented with

0.6–2.0 mM copper, the low molecular weight band was

detected in culture supernatants containing Cu2+ concen-

trations of 1.0 mM and higher (Fig. 3a). However, both

band and enzyme activity patterns also varied with sam-

pling time (see also next section) and although both bands

were detectable in 42-day-old cultures supplemented with

1.0–2.0 mM Cu2+ (Fig. 3a), the 45 kDa band was clearly

evident only in cultures with 2.0 mM Cu2+ after 48 days

(Fig. 3b). Laccase activity in cultures supplemented with

1.0, 1.25, 1.5 and 2.0 mM Cu were approximately 7-, 16-,

13- and 9-fold higher than unsupplemented controls,

respectively, after 48 days incubation. Higher Cu2+ con-

centrations (1.5 and 2.0 mM) resulted in significant fungal

growth inhibition (43% and 57%, respectively) compared

with unsupplemented controls (3.6–3.8 g/l). Furthermore,

fungal growth in cultures with 2.0 mM added Cu was in the

form of discrete surface pellets of variable size instead of

the continuous fungal mat produced at all lower Cu2+

concentrations.

Our data suggest that low and high Cu may control the

expression of separate laccase genes in G. frondosa.

Positive regulation of laccase protein synthesis and laccase

gene transcription has previously been reported in numer-

ous basidiomycetes including Pleurotus spp (Collins and

Dobson 1997; Palmieri et al. 2000; Baldrian and Gabriel

2002), Trametes spp. (Yaver et al. 1996; Soden and
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Dobson 2001) and Volvariella volvacea (Chen et al. 2003).

The observed changes in band and enzyme activity patterns

over time may also result from different copper concen-

trations affecting isozyme stability to varying degrees. A

positive affect on the stability of laccase by Cu has been

previously reported (Baldrian and Gabriel 2002), which

may be due in one case at least to Cu-mediated inhibition

of an extracellular protease that degrades the laccase pro-

tein (Palmieri et al. 2001).

Effect of aromatic compounds on laccase activity

in submerged culture

The effect of different aromatic compounds (2 mM) on

laccase activity and fungal biomass production in cultures

of G. frondosa containing the basal level of Cu2+

(1.6 lM) is shown in Fig. 4. Incubation for 30 days in

the presence of four of the five aromatic compounds

tested resulted in higher extracellular laccase levels

compared with controls: vanillic acid (258 U/l), 4-hy-

droxybenzaldehyde (193 U/l), 4-hydroxybenzoic acid

(133 U/l) and veratric acid (122 U/l). Under these con-

ditions, laccase levels in ferulic acid-supplemented cul-

tures (70 U/l) were only slightly higher than the basal

levels recorded in unsupplemented controls (58 U/l). As

in the case of copper supplementation experiments (see

above), relative laccase activities varied with sampling

time (data not shown) although enzyme titres in supple-

mented cultures were consistently higher than in unsup-

plemented controls.

Under these conditions, SDS-PAGE and activity stain-

ing revealed only the 75 kDa laccase band in control cul-

tures. However, in supplemented cultures, this band was

much stronger and the 45 kDa band was also detectable at

varying intensities (Fig. 4). None of the aromatic com-

pounds tested had any significant effect on fungal biomass

production.

There are numerous reports describing the different

effects of aromatic compounds on laccase activity in

basidiomycetous fungi. These vary widely and include the

induction of new laccase isozymes (Bollag and Leonowicz

1984; Lo et al. 2001) as well as increased enzyme titres but

without any accompanying changes in the isozyme pattern

(Eggert et al. 1996). The various responses are thought to

constitute a protective mechanism against toxic residues

either indigenous to (Cherney et al. 1989) or generated

during fungal degradation of the lignin component of the

lignocellulosic growth substrate (Thurston 1994), or

secreted as antimicrobial agents by microbial competitors

(Eggert et al. 1996).
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Laccase activity in solid-state cultures

and in mushroom fruit bodies

A time-course for laccase production in extracts of the

solid ‘‘compost’’ used to cultivate G. frondosa under

conditions adopted for industrial-scale mushroom produc-

tion is shown in Fig. 5. The normal cultivation period lasts

for approximately 65 days and can be divided into seven

discrete stages: half colonization of the growth substrate,

full colonization, before cap removal, after cap removal,

appearance of primordia, small fruit bodies and mature

fruit bodies. As seen from Fig. 5, enzyme activity increases

during the colonization phase and reached a peak (~6 U/ml

of extract) when the substrate was fully colonized. Enzyme

levels decreased sharply throughout the fruit body devel-

opmental stages, reaching the lowest levels recorded

(0.3 U/ml extract) during the later stages of fruit body

formation and maturation. Laccase activity was also read-

ily detectable in extracts of primordia, and of small and

mature fruit bodies (Fig. 5), with increasing enzyme levels

observed as the primordia developed.

Laccase production, and the transcriptional regulation of

laccase genes, has been examined during the developmental

cycles of other mushroom fungi including Agaricus bispo-

rus (Wood and Goodenough 1977; Ohga et al. 1999),

Lentinula edodes (Ohga 1992; Ohga and Royse 2001),

Pleurotus abalonus (Takayama et al. 1993) and V. volvacea

(Chen et al. 2003, 2004b). In compost cultures of A. bispo-

rus (Wood and Goodenough 1977), L. edodes (Ohga 1992)

and P. abalonus (Takayama et al. 1993), laccase concen-

trations increased during mycelial growth and then declined

rapidly at the onset of fruiting. Laccase transcription in

compost-grown mycelia of A. bisporus attained maximum

levels during the mycelial growth phase prior to the onset of

fruiting, declined during the fruit body enlargement phase

and increased again after harvesting and during the second

flush of fruit body production (Ohga et al. 1999). Similarly,

laccase transcription in L. edodes peaked during the vege-

tative growth phase and declined at the fruiting stage (Ohga

and Royse 2001). Such profiles, and that observed for G.

frondosa in this study, are compatible with the oft-assigned

role of laccase in lignin degradation which is essential if the

fungus is to gain access to the cellulose and hemicellulose

components of the growth substrate. Hydrolysis of these

polysaccharide materials provides the nutrients required for

vegetative growth as a prelude to fruiting (Das et al. 1997).

Laccase may also play a more direct role in the fruiting

process (Chen et al. 2003, 2004a), possibly by polymeriz-

ing cell wall components to cross-link hyphal walls during

primordium formation and further strengthening of cell-to-

cell adhesion throughout fruit body development (Leatham

and Stahmann 1981; Thurston 1994).

Further work is currently underway to purify and char-

acterize the different laccase isozymes produced by

G. frondosa, to isolate the encoding genes and to investi-

gate parameters controlling gene expression.
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