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Abstract  Wetlands harbour a wide range of vital 
ecosystems. Hence, mapping wetlands is essential 
to conserving the ecosystems that depend on them. 
However, the physical nature of wetlands makes field-
work difficult and potentially erroneous. This study 
used multispectral UAV aerial photography to map 
ten wetland plant species in the Fynbos Biome in the 
Steenbras Nature Reserve. We developed a methodol-
ogy that used K-Nearest Neighbour (KNN), Support 
Vector Machine (SVM), and Random Forest (RF) 
machine learning algorithms to classify ten wetland 
plant species using the preselected bands and spectral 
indices. The study identified Normalized green red 
difference index (NGRDI), Red Green (RG) index, 
Green, Log Red Edge (LogRE), Normalized Differ-
ence Red-Edge (NDRE), Chlorophyll Index Red-
Edge (CIRE), Green Ratio Vegetation Index (GRVI), 
Normalized Difference Water Index (NDWI), Green 
Normalized Difference Vegetation Index (GNDVI) 

and Red as pertinent bands and indices for classify-
ing wetland plant species in the Proteaceae, Iridaceae, 
Restionaceae, Ericaceae, Asteraceae and Cyperaceae 
families. The classification had an overall accuracy of 
87.4% and kappa accuracy of 0.85. Thus, the findings 
are pertinent to understanding the spectral character-
istics of these endemic species. The study demon-
strates the potential for UAV-based remote sensing of 
these endemic species.

Keywords  Fynbos · Wetlands · Unmanned aerial 
vehicles · Pigments · Indices · Machine learning

Introduction

Wetlands harbour a wide range of biodiversity 
and play a crucial role in hydrological and bio-
geochemical cycles (Kingsford et  al. 2016). For 
instance, wetlands improve water quality, attenuate 
floods, regulate stream flow, trap sediment, seques-
ter carbon, control erosion, and serve as a marine 
and terrestrial species habitat. Thus, wetlands have 
the highest value per hectare among ecosystems 
(Xu et  al. 2019). In South Africa, 48% of wetland 
ecosystems are classified as critically endangered, 
12% as endangered and 5% as vulnerable (Job 
et  al. 2018). Over half of the South African wet-
lands have already been degraded (Dumakude and 
Graham 2017). Moreover, fine-scale data, such 
as species occurrence and distribution, has not 
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been captured for most inland South African wet-
lands (Van Deventer et  al. 2018). Yet, identifying 
wetlands and their functions is essential to under-
standing, rehabilitating, and conserving wetlands 
and protecting the ecosystems that depend on them 
(Rebelo et  al. 2009; Bonthuys 2020). The physical 
indicators for monitoring wetlands include extent 
and diversity, landscape pattern, hydroperiod and 
chemical contaminants. The biological indicators 
include vegetation species composition, greenness 
and percentage cover (Adamus 1992).

Traditional methods for mapping extent and diver-
sity, such as floristic mapping, require rigorous field-
work and manual estimation of proportional cover 
for each species of interest (Sharp and Keddy 1986; 
Wijana and Setiawan 2020). Additionally, the physi-
cal characteristics of wetlands make fieldwork very 
challenging, expensive and imprecise (Everitt et  al. 
2002; Hemati et al. 2023). Thus, only small areas can 
be mapped precisely, and extrapolation could be erro-
neous (Millar 1973; Harvey and Hill 2001; Morrison 
et  al. 2020; Morrison 2021). Remote sensing tech-
nology offers a less intrusive (Rundquist et al. 2001; 
Lane et  al. 2014, 2015) and more scalable approach 
(Rebelo et  al. 2009; Adam et  al. 2010; Yan et  al. 
2017; Moity et  al. 2019) for mapping wetland plant 
species. Also, repeated coverage can facilitate the 
thorough detection of temporal changes in wetlands 
(Ramsey Elijah et al. 2009; Sica et al. 2016; Jia et al. 
2020; Hasan et al. 2023), although the mapping capa-
bility of remote sensing technologies can be ham-
pered by coarse spatial resolution (De Roeck et  al. 
2007).

Conversely, several characteristics of wetlands 
make them inherently difficult to monitor remotely. 
For example, wetlands are generally highly dynamic, 
and their spectral responses frequently change 
(Karabulut 2018; Montgomery et  al. 2021). Studies 
have shown that the spectral responses of individual 
wetland species can vary significantly even within the 
same growing season (Gallant 2015). Moreover, steep 
environmental gradients within and around wetlands 
can result in narrow transition areas between ecologi-
cal systems that are sometimes smaller than the spa-
tial resolution of most sensors (Harvey and Hill 2001; 
Adam et al. 2010). Also, sensor resolution can limit 
understanding of the interactions between different 
ecological systems, making managing and protecting 
wetland ecosystems harder.

The advent of low-cost data collection platforms 
such as Unmanned Aerial Vehicles (UAVs) has made 
it affordable to gather high-resolution remote sens-
ing data over specific areas at specified times (Tu 
et al. 2019; Wijesingha 2020; van Blerk et al. 2022). 
Recent developments in technology and data process-
ing for UAVs have provided novel opportunities to 
resolve some of the impediments to wetland studies, 
such as the difficulty of field surveys, coarse satel-
lite resolutions and high costs of piloted aerial pho-
tography (Dronova et  al. 2021). In fact, UAVs have 
several advantages over satellites. For instance, UAVs 
are not affected by cloud cover. Also, UAV payloads 
are interchangeable, and end-users can control data 
acquisition parameters such as spatial resolution, fre-
quency of data collection and view angles (Alvarez-
Vanhard et  al. 2021). On the other hand, UAV data 
acquisition is affected by wind and precipitation, 
requires a trained operator, accurate ground control, 
and it is highly regulated by legislation (Jeanneret 
and Rambaldi 2016; Stöcker et  al. 2017; Assmann 
et al. 2019) Still, the use if UAVs in wetland studies 
is gaining traction. A review study found that sev-
eral UAV-based studies were conducted in the United 
States, China and Europe with emphasis on riverine 
and floodplain, mangrove and peatland (Dronova 
et al. 2021). Only one of the 122 papers reviewed was 
a South African case study focused on wetland delin-
eation (Boon et al. 2016).

Fifteen papers reviewed by Dronova et  al. (2021) 
focused on vegetation inventory, and most of them 
utilized Object-based Image Analysis (OBIA) using 
target characteristics such as canopy diameter, shape, 
height and distribution pattern. Unlike pixel-based 
classification methods, OBIA aggregates pixels into 
spectrally similar objects using segmentation algo-
rithms prior to classifying the objects (Tian et  al. 
2020). The spatial and textural characteristics of the 
objects can complement spectral data and improve 
classification accuracy (Whiteside and Ahmad 2005; 
Liu and Xia 2010; Giglio et al. 2019; Du et al. 2021). 
The key drawback with OBIA is the difficulty of 
choosing segmentation parameters. During segmen-
tation, individual pixels are grouped into segments 
(objects) based on specific criteria, including the 
uniformity within each segment, the capacity to dis-
tinguish them from neighboring elements (dissimilar-
ity), and the consistency of their shapes (Veljanovski 
et  al. 2011; Cheng and Han 2016). The accuracy of 
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the classification process hinges on the quality of the 
segmentation process (Veljanovski et al. 2011; Cheng 
and Han 2016; Gibril et  al. 2020). Determining the 
essential segmentation criteria often involves a pro-
cess of trial and error, and these criteria can multi-
ply and contradict one another, ultimately leading to 
either an excessive or insufficient level of segmen-
tation (Liu and Xia 2010; Veljanovski et  al. 2011). 
Moreover, feature selection can sometimes have 
an adverse effect on the classification process (Ma 
et  al. 2017). Also, the consistency and repeatability 
of the segmentation and classification processes is 
still contentious (Veljanovski et  al. 2011). In light 
of these challenges, pixel-based approaches are still 
more common (Nezami et al. 2020; Allen et al. 2021; 
Mirmazloumi et al. 2021; van Blerk et al. 2022; Zhu 
et  al. 2022; Windle et  al. 2023). Furthermore, some 
studies have explored both OBIA and pixel-based 
methods and recommended the latter (Giglio et  al. 
2019; Abeysinghe et al. 2019).

These include the emerging use of deep learning 
algorithms in wetland studies (Sun et al. 2021; Hig-
gisson et  al. 2021; Yang et  al. 2022). Deep learning 
enables the creation of trainable models that can learn 
data representations with multiple levels of abstrac-
tion (Janiesch et  al. 2021). Deep learning possesses 
a powerful capacity to comprehend intricate training 
samples and exhibit strong robustness when clas-
sifying complex features, like wetland landscapes in 
remote sensing (RS) images (Jafarzadeh et al. 2022). 
Some studies have found deep learning algorithms 
can outperform common shallow learning algorithms 
(Rezaee et al. 2018; DeLancey et al. 2019) and oth-
ers have found contradicting results (Islam et  al. 
2023). However, deep learning is most pertinent 
when dealing with large, high dimensional data. Shal-
low machine learning algorithms can produce better 
results than deep learning algorithms when utilizing 
low-dimensional and low training data (Janiesch et al. 
2021). The popular shallow learning non-parametric 
machine learning classifiers include Random For-
est (RF), Support Vector Machines (SVM), and K 
Nearest Neighbor (KNN) (Belgiu and Drăguţ 2016; 
Chirici et al. 2016; Sheykhmousa et al. 2020). KNN 
is a non-parametric machine learning algorithm that 
classifies individual data points based on proximity 
to data points with known classes (Mucherino et  al. 
2009a). The algorithm compares a number (k) of the 
closest training data points in feature space to a new 

data point and then classifies the individual data point 
based on the most common class among the k-near-
est neighbours. Support Vector Machines utilize an 
optimal line of separation, a hyperplane, to classify 
data points by maximizing the margin between the 
class boundaries (Mucherino et  al. 2009b). SVMs 
are popular because of their capacity to control the 
trade-off between maximizing the margin and classi-
fication errors. Random Forest is an ensemble learn-
ing algorithm aggregating multiple decision trees to 
predict the most likely class of an individual point. 
Each decision tree in the Random Forest is trained on 
a randomly selected subset of the training data and 
a random subset of the features. This process, called 
bagging, helps to reduce overfitting by increasing the 
diversity of the trees in the forest (Breiman 1996).

This pilot study aimed to develop a methodology 
to map the significant plant species in a seep wetland 
using UAV aerial photography and establish a base-
line to monitor changes. To our knowledge, this is the 
first study to map several seep wetland species in the 
Fynbos Biome simultaneously using UAV multispec-
tral data.

Materials and methods

Study area

The study site is south of the upper Steenbras dam 
in the Steenbras Nature Reserve in Cape Town. The 
Steenbras Nature Reserve is located between Gor-
don’s Bay and Rooi-Els, within the greater Kogel-
berg Biosphere Reserve. The Kogelberg area is called 
‘the heart of the fynbos’ because the reserve has sev-
eral plant families and more than 1650 plant species 
(Wittridge 2011). Two-thirds of these species are 
endemic to this region. The Steenbras Catchment area 
was also identified as a pilot site for water abstraction 
from the Table Mountain Group Aquifer (TMGA)
(Wiese et al. 2020). The yield from the first phase of 
the TMGA project is predicted to be 10 million liters 
per day, which will be channeled into the Steenbras 
Dam to complement the Cape’s bulk water supply and 
boost water resilience. However, boreholes should be 
drilled in ecologically acceptable areas and operated 
responsibly (Blake et al. 2021). This wetland site was 
chosen for monitoring because of its proximity to the 
City of Cape Town’s groundwater drilling sites in the 
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Steenbras reserve. It is an inland seep wetland located 
within the Southern Folded Mountains ecoregion 
(Ollis et al. 2013) and has a variety of plant species 
spread over an area of approximately 1300 square 
meters (See Fig. 1). It is located in close proximity to 
a valley-bottom stream.

As previously mentioned, this pilot phase aimed to 
develop a methodology to map the significant plant 
species in the wetland using UAV aerial photogra-
phy and establish a baseline to monitor any effects 
of water abstraction in the TMGA may have on the 
wetland plant species. The key plant families and 
species in the wetland are Proteaceae (Berzelia alo-
pecuroides, Berzelia lanuginose), Iridaceae (Borbatia 
gladiata), Restionaceae (Elegia mucronata, Platy-
caulos compressus, Restio dispar), Ericaceae (Erica 
campanularis, Erica intervallaris and Erica serrata), 
Asteraceae (Grubbia rosmarinifolia), and Cyperaceae 
(Tetraria Thermalis).

Data collection

A Real-Time Kinematic (RTK) survey was under-
taken using Global navigation satellite systems 
(GNSS) to establish coordinates of ground con-
trol points (GCPs). The GCPs were surveyed on the 
periphery of the block (Fig.  2). Studies have shown 
that GCPs placed around the periphery of the site can 

minimize planimetric errors (Martínez-Carricondo 
et al. 2018; Ulvi 2021). It is recommended to have a 
minimum of 4 to 5 Ground Control Points (GCPs) for 
every square kilometer (Ferrer-González et al. 2020). 
In total, six GCPs were surveyed from base station 
STEENBSE and used in the study. Then, a DJI Phan-
tom 3 Professional (DJI-Innovations Inc., Shenzhen, 
China) was used with a Parrot Sequoia multispectral 
camera. The Phantom 3 had been modified such that 
the onboard camera had been removed and replaced 
with the Parrot Sequoia.

The Parrot Sequoia has four monochrome sen-
sors with a global shutter focal length of 3.98  mm. 
The sensors correspond to four bands, namely 
Green (530–570 nm), Red (640–680 nm), Red Edge 
(730–740 nm) and Near Infrared (770–810 nm). The 
camera also has an RGB sensor with a rolling shut-
ter and a focal length of 4.88 mm. The Sequoia has 
an irradiance (sunshine) sensor above the drone that 
is connected during data capture to facilitate the pro-
cessing of at-sensor reflectance (Padró et al. 2019). A 
Micasense calibration reflectance panel was also used 
to process radiometrically corrected reflectance maps 
(Fig. 3d).

The aerial photographs were captured on 4th 
October 2018. Plastic ground control targets were 
placed over the GCPs such that the center of each tar-
get coincided with the GCP. The targets were black 

Fig. 1   a Extent of study 
area. b Location of site in 
Western Cape Province. 
c Location of study area in 
Steenbras reserve. d Loca-
tion of wetland area relative 
to the valley-bottom stream
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and white mats measuring 1 m by 1 m in dimension 
(Fig. 3a and b). The flight plan was designed in the 
Atlas Flight application. The flight parameters were 
a height above ground of 25  m, an overlap of 80%, 
and a flight speed of 5 m/s. In addition, all the sen-
sors (RGB, Green, Red, Near Infrared and Red Edge) 
were activated, and the data collection started at mid-
day. The drone was held over a Micasense calibration 
reflectance panel at the start and the end of the flight 

in order to take calibration photos in each band (See 
Fig. 3d).

Data processing

Initial processing of UAV aerial photography

All the RGB aerial photography processing was done 
in Pix4Dmapper (Pix4D SA, Lausanne, Switzerland). 

Fig. 2   Spatial distribu-
tion of GCPs relative to 
the study area

Fig. 3   a Target placed over 
GCP; b View of target in a 
red edge photo; c DJI Phan-
tom 3 with Parrot Sequoia 
payload and irradiance 
sensor above UAV (Padró 
et al. 2019); d A pre-flight 
photo of the radiometric 
calibration panel used for 
radiometric processing
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The first step involved computing 10,000 key points 
on the images to create a sparse point cloud. The 
coordinates of the surveyed GCPs were then added to 
the project, and the next step involved creating a den-
sified point to create orthophotos and an orthomosaic 
with a resolution of 3 cm per pixel.

The Parrot Sequoia multispectral photos were 
processed similarly, except each band was radio-
metrically calibrated before the orthophotos were 
created. The calibration was done using the one-
point calibration plus sunshine sensor method (Pon-
cet et al. 2019). The calibration involved using aver-
age reflectance factor values provided by the camera 
manufacturers with the Micasense reflectance cali-
bration panels. The average reflectance factors were 
recorded in Pix4D Mapper for each calibration photo 
based on the factors recommended for each band. 
The Pix4D software then calibrated the images dur-
ing data processing based on the differences between 
the observed values and the actual reflectance values 

recorded at the reflectance target for each band in the 
camera. Several spectral indices were also calculated 
in the final step of the processing (See Table 1).

Feature selection

The processed orthomosaics were layer stacked along 
with the calculated vegetation indices described in the 
preceding section. Several studies reported improve-
ments in classifying plant species in layer-stacked 
images after including spectral indices (Abeysinghe 
et  al. 2019; Bhatnagar et  al. 2020; Jin et  al. 2016; 
Mudereri et al. 2020). During the survey of the GCPs, 
211 points were surveyed within the wetland, and the 
description of the plant species at those points was 
simultaneously recorded. An additional 257 polygons 
were digitized in Quantum GIS (QGIS) based on the 
locations of the GNSS surveyed points to ensure suf-
ficient samples for classification and accuracy assess-
ment. A point-in-polygon algorithm in QGIS was 

Table 1   Eighteen vegetation indices (VIs) were derived from multispectral images in this study

N Near Infrared, R Red, G Green and RE Red Edge

Vegetation indices Formula References

Enhanced Vegetation
Index 2 (EVI2)

2.5 x (N-R)/(1 + N+(2.4 x R) (Jiang et al. 2008)

Normalized Difference Vegetation Index (NDVI) (N-R)/(N + R) (Rouse et al. 1974)
Green Normalized Difference
Vegetation Index (GNDVI)

(N-G)/(N + G) (Louhaichi et al. 2001)

Green Ratio Vegetation Index (GRVI) N/G (Sripada et al. 2005)
Transformed DVI (TDVI) √[0.5+(N-R)/(N + R)] (Bannari et al. 2002)
Normalized Green–Red Difference Index (NGRDI) (G-R)/(G + R) (Tucker 1979)
Non-Linear Index (NLI) (N2-R)/(N2 + R) (Goel and Qin 1994)
Modified Soil Adjusted Vegetation Index 2 (MSAVI2) 0.5x[2xN + 1- √((2 x N + 1)2-8x(N-R)] (Richardson and Wiegand 1977)
Normalized Difference Water
Index (NDWI)

(G-N)/(G + N) (McFeeters 1996)

Chlorophyll Index Red
Edge (CIRE)

(N/RE)-1 (Gitelson 2005)

Normalized Difference Red Edge (NDRE) (N-RE)/(N + RE) (Boiarskii and Hasegawa 2019)
Renormalized Difference
Vegetation Index (RDVI)

(N-R)/√(N + R) (Roujean and Breon 1995)

Modified Simple Ratio (MSR) (N/R-1)/√(N/R + 1) (Chen 1996)
Green Soil Adjusted Vegetation
Index (GSAVI)

1.5x(N-G)/(N + G + 0.5) (Sripada et al. 2005)

Enhanced NDVI index (ENDVI) ((N + G) -2xR)/ ((N + G) + 2xR) (Rasmussen et al. 2016)
Log Red (LogR) logR This study
Log Red Edge (LogRE) logRE This study
Red Green Vegetation
Index (RG)

2R-G This study



213Wetlands Ecol Manage (2024) 32:207–227	

1 3
Vol.: (0123456789)

used to randomly fit points in the polygons. The crite-
ria were that up to 20 points could be fitted in a poly-
gon depending on the polygon size but the point spac-
ing had to be at least 5 cm to avoid having two points 
overlaying the same pixel. In total, 8466 points were 
created. A shapefile of the points was overlaid on 
the layer stack consisting of the multispectral bands 
and the vegetation indices. A shapefile is a data for-
mat of Geographic information systems (GIS)(Elliott 
2014). Reflectance values were sampled where the 
GNSS surveyed positions intersected the layer stack, 
and those values were exported to a spreadsheet. The 
spreadsheet consisted of 8466 data rows, with one 
column containing the class (plant species) data and 
several columns corresponding to the sampled reflec-
tance values for that class in the spectral bands and 
vegetation indices. The feature selection was imple-
mented using Recursive Feature Elimination (RFE) 
in R based on the Caret and Random Forest libraries. 
RFE aims to identify the essential features in a data-
set by iteratively removing less critical features and 
refitting the model until a desired number of features 
is obtained (Demarchi et  al. 2020; Ramezan 2022). 
The importance of a variable can be determined by 
examining the rankings assigned to each variable dur-
ing the RFE process. Variables that are consistently 
ranked high throughout the iterations are considered 
to be more important, while those that are consist-
ently ranked low are considered to be less important 
(R.-C. Chen et  al. 2020). In order to assess the effi-
ciency of the feature selection, two image layer stacks 
were created prior to classification. One contained 
only the original bands and the other contained the 
key bands and indices selected by RFE.

Finetuning parameters

One of the crucial steps in classification with machine 
learning is tuning the optimum hyperparameters of 
the machine learning classifiers. These include, for 
instance, the best values for γ and C for the radial 
basis function kernel in Support Vector Machines, 
where γ denotes the free parameter of the radial basis 
function, and C is the parameter that allows a trade-
off between the training error and the complexity of 
the model. For random forest classifiers, one must 
optimize the number of trees in the forest (best n_esti-
mators) and the maximum number of features consid-
ered for splitting a node (best max_features). Tuning 

such hyperparameters involves testing different com-
binations of hyperparameter values and selecting the 
best performance (Kranjčić and Medak 2020; Thanh 
Noi and Kappas 2017).

The hyperparameters used in this study were deter-
mined statistically and used for classification. Fifteen-
centimeter buffers were created around the GNSS 
shapefile points in QGIS in order to create polygons. 
The new polygon shapefile was merged with the digi-
tized polygons to make a new shapefile containing the 
GNSS surveyed locations and the digitized polygons. 
Seventy per cent of the polygons in the new shape-
file were used as classification samples, and the other 
30% was retained for validation. The classification 
samples were used to determine the hyperparameters 
for Random Forest, Support Vector Machine and K 
Nearest Neighbour using stratified k-fold cross-vali-
dation. The Dzetsaka plugin (Karasiak 2016), a Quan-
tum GIS (QGIS) plugin that uses Python Scikit-learn 
(Pedregosa et al. 2011), was used for the cross-valida-
tion. This approach randomly splits the observations 
into k groups, also called folds, of approximately 
equal size. The first fold is then treated as a validation 
dataset, and the classifier is trained on the remaining 
k − 1 folds. The Mean Square Error (MSE) is calcu-
lated on the validation fold. This process is repeated 
k times, and the MSE is averaged to get the cross-
validation estimates. In the stratified cross-validation 
approach, the folds are made by preserving the same 
percentage of training samples for each information 
class.

In this study, the classification dataset was split 
into 5 groups (i.e., k = 5) and 80% of the samples 
from each class were used for training and the other 
20% for validation. The best hyperparameters were 
identified by scripting a grid search in the Dzetsaka 
plugin.

Classification

All three machine learning classifiers, namely, Ran-
dom Forest (RF), Support Vector Machines (SVM), 
and K Nearest Neighbour (KNN), were used in the 
classification. Two image layer stacks were classi-
fied: one with only the original bands and the other 
with the ten best bands and indices (See Fig.  4). 
In both instances, the classification was optimized 
with finetuned hyperparameters. The results are pre-
sented in the forthcoming section. The validation 
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dataset comprising 30% of the samples was used to 
calculate the Overall Accuracy (OA) and the Kappa 
hat coefficient (k). The equations for calculating 
overall accuracy and kappa are shown below.

where r = the number of rows and columns in the 
error matrix, xii = the number of observations in row 
i and column i, xi + = the marginal sum of row i, x+ i = 
the marginal sum of column i, and N = the total num-
ber of observations.

User and producer accuracies were also calcu-
lated. Producer accuracies are the probability that 
a land cover class is classified as such (Story and 
Congalton 1986). The user accuracy represents the 
probability that the predicted class on the map is 
present on the ground or to what extent the other 
classes may have been misclassified as the class in 
question (Congalton et al. 1983; Patel and Kaushal 
2010). Lastly, the degree of agreement or consen-
sus between the classifiers was determined by com-
paring the spatial overlap of the class distributions 
in the classification images (Mas et  al. 2022). The 
degree of agreement was calculated per classifier as 
well as per class.

(1)OA =
number of correctly classified pixels

total number of pixels

(2)k =
N
∑r

i=1
xii −

∑r

i=1

�

xi+1 × x+i
�

N2 −
∑r

i=1
(xi+ × x+i)

Results

Feature selection

The RFE results showed that using fifteen features 
instead of twenty-two would produce the best accu-
racy results (Fig.  4). However, the cross-validation 
accuracy assessment of the models developed using 
RFE when using ten, fifteen and all variables were 
very similar. The kappa values were 0.960, 0.961 and 
0.959, respectively. Thus, only the top ten features, 
namely NGRDI, RG, Green, LogRE, NDRE, CIRE, 
GRVI, NDWI, GNDVI and Red were subsequently 
used to classify the plant species.

Figure  5 below shows the relative feature impor-
tance of the top fifteen features selected during the 
RFE feature selection.

Classification maps

Figure  6 shows the spatial distributions of the plant 
species in the wetland. The plant species thrive in 
different parts of the wetland based on the degree of 
soil wetness. The three classifiers generally showed a 
similar distribution of the species.

Classification statistics

Figure 7 shows the accuracy statistics for each clas-
sifier for both layer stacks (one with original bands 

Fig. 4   Graph showing clas-
sification model accuracy 
plotted against number of 
features
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and the other with RFE selected bands and indi-
ces). The columns with the suffix ‘WI’ indicate the 
datasets after feature selection. The table after that 
(Table 2) shows classification accuracies per class.

The best classifier was Random Forest, with an 
overall accuracy of 87% and kappa hat value of 0.85. 
The overall classification accuracy was 4% better than 
the results from Support Vector Machines and 2% 

Fig. 5   Showing the 
variable importance of the 
bands and indices

Fig. 6   Classified images 
a Random Forest, b SVM, 
c KNN for layer stack with 
indices
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better than K Nearest Number. The producer accu-
racies ranged between 84% and 96%. Figure  7 also 
shows that the overall training accuracies and kappa 
hat values were generally good for all the classifi-
ers. Figures 8 and 9 are graphical representations of 
Table 2.

Classification accuracy per class

Classification accuracies differed across the plant spe-
cies (Table  2). The descriptions of the acronyms in 
the table are as follows: B (Berzelia), BG (Borbotia 

Gladiata), DPC (Dry or Dead Platycaulos Compres-
sus), EM (Elegia Mucronata), EC (Erica Campanu-
laris), EI (Erica Intervallaris), ES (Erica Serrata), 
GS (Grey Soil), GR (Grubbia Rosmarinifolia), PC 
(Platycaulos Compressus), RD (Restio Dispar), S 
(Shadow), TT (Tetraria Thermalis) and WS repre-
sents White Soil. The accuracies vary with each class 
and classifier.

The Berzelias, Erica Serrata and Restio Dispar 
had the lowest classification accuracies with Kappa 
hat values of 0.63, 0.57 and 0.60, respectively. The 
Erica Serrata was classified better using the Support 

Fig. 7   Overall model 
training and classification 
accuracies for all classifiers

Table 2   Classification 
accuracies per class for each 
classifier

OA Overall accuracy, 
K Kappa. PA Producer 
accuracy and UA User 
Accuracy

Classifier Random Forest Support Vector Machines K Nearest Neighbour

Class PA [%] UA [%] K PA [%] UA
[%]

K PA
[%]

UA [%] K

B 85.05 66.73 0.63 89.65 66.37 0.62 85.82 72.22 0.69
BG 83.8 85.25 0.85 85.3 75.79 0.75 89.03 74.51 0.74
DPC 87.99 92.9 0.93 78.51 94.57 0.94 77.93 96.26 0.96
EM 94.74 92.83 0.92 96.02 90.52 0.89 93.58 92.27 0.91
EC 88.25 73.24 0.72 87.86 72.86 0.7 90.05 74.19 0.72
EI 89.71 83.51 0.82 84.47 76.38 0.74 88.91 76.49 0.74
ES 35.36 57.5 0.57 42.05 73.68 0.73 53.11 69.57 0.69
GS 91.75 95.23 0.95 88.94 94.29 0.94 88.81 91.48 0.91
GR 74.78 90.21 0.88 67.63 93.04 0.92 74.6 92.96 0.92
PC 93.04 96.93 0.96 85.82 96.64 0.96 86.36 96.28 0.95
RD 47.25 60.71 0.6 46.54 53.06 0.52 65.93 57.43 0.56
S 96.1 89.44 0.89 94.78 91.04 0.91 96.66 89.71 0.89
TT 87.18 82.67 0.83 96.33 80.85 0.81 76.18 74.5 0.74
WS 85.26 57.11 0.57 41.17 64.81 0.65 72.85 69.28 0.69
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Vector Machines classifier with a Kappa hat accuracy 
of 0.73. The Berzelias were classified best using the 
K Nearest Neighbour classifier. Conversely, the taller, 
more dominant species, Grubbia Rosmarinifolia, 
Platycaulos Compressus and Elegia Mucronata were 
classified well with kappa hat values of 0.88, 0.96 
and 0.92, respectively. The Borbotia Gladiata and 
Tetraria Thermalis clusters are less than half a meter 
in height but also had acceptable classification results 
with kappa hat values of 0.85 and 0.83, respectively. 
In contrast to the Erica Serrata, the Erica Campanu-
laris and Erica Intervallaris showed good accura-
cies of 0.72 and 0.82, respectively. K Nearest Neigh-
bor presented the best producer accuracies for Erica 

Serrata and Restio Dispar. K Nearest neighbour per-
formed well classifying the Erica family of flowering 
plants and the small clusters of Borbotia Gladiata, 
Dead Platycaulos Compressus and Restio Dispar.

However, Random Forest generally had compara-
tively good user accuracy statistics. The user accu-
racy is a measure of reliability of the classification to 
the user (Rwanga and Ndambuki 2017). It is the like-
lihood that the classification result actually represents 
that category on the ground (Story and Congalton 
1986). Though the Random Forest classifier wrongly 
classified some pixels as per the producer accuracy 
statistics (Fig.  8), it generally produced the most 
user-reliable classification of the individual classes. 

Fig. 8   Graph showing pro-
ducer and user accuracies 
per class
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Fig. 9   Graph showing 
kappa hat values per class
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Nearest Neighbor presented the best producer accu-
racies for both the Erica Serrata and Restio Dispar. 
K Nearest neighbour performed well classifying the 
Erica family of flowering plants and the small clusters 
of Borbotia Gladiata, Dead Platycaulos Compressus 
and Restio Dispar. However, Random Forest gener-
ally had comparatively good user accuracy statistics. 
Thus, although the Random Forest classifier wrongly 
classified some pixels as per the producer accuracy 
statistics (Fig. 8), it generally produced the most user-
reliable classification of the individual classes.

Degree of agreement between classifications

Table  3 shows the degree of similarity between the 
different classification maps. The descriptions of the 
acronyms in the table are as follows: B (Berzelia), BG 
(Borbotia Gladiata), DPC (Dry or Dead Platycaulos 
Compressus), EM (Elegia Mucronata), EC (Erica 
Campanularis), EI (Erica Intervallaris), ES (Erica 
Serrata), GS (Grey Soil), GR (Grubbia Rosmarinifo-
lia), PC (Platycaulos Compressus), RD (Restio Dis-
par), S (Shadow), TT (Tetraria Thermalis) and WS 
represents White Soil.

The best agreement across all classifiers was for 
Borbotia Gladiata, Dead Platycaulos Compressus, 
Elegia Mucronata, Erica Campanularis and Tetraria 
Thermalis. There was 70.48% overall agreement (and 
kappa of 0.66) between the Random Forest and K 
nearest neighbor results. Among the plants, the high-
est agreement was achieved when mapping Tetraria 
Thermalis, Restio Dispar, Elegia Mucronata and 
Borbotia Gladiata respectively. Despite an overall 

agreement of almost 65.77% (and kappa of 0.60), 
there was poor agreement between the classifica-
tion outputs of Random Forest and Support Vector 
machines for Platycaulos Compressus, Erica Serrata 
and Restio Dispar.

Lastly, there was fairly good agreement between 
K Nearest neighbor and Support vector Machines 
(70.51% and kappa of 0.66). The highest consensus 
for the two classifiers was found for Elegia Mucro-
nata, Grubbia Rosmarinifolia and Berzelia and poor 
agreement was found for the classification of Erica 
Serrata and Restio Dispar.

Discussion

This study sought to ascertain the UAV multispec-
tral aerial photography capacity to remotely map 
several seep wetland plant species in the Fynbos 
Biome. The key plant families and species explored 
were Proteaceae (Berzelia alopecuroides, Berzelia 
lanuginose), Iridaceae (Borbatia gladiata), Restion-
aceae (Elegia mucronata, Platycaulos compressus, 
Restio dispar), Ericaceae (Erica campanularis, Erica 
intervallaris and Erica serrata), Asteraceae (Grub-
bia rosmarinifolia), and Cyperaceae (Tetraria Ther-
malis). The study used three machine learning algo-
rithms, namely, Random Forest (RF), Support Vector 
Machines (SVM), and K Nearest Neighbor (KNN). 
The hyperparameters for all three classifiers were 
finetuned to optimize the classification (Duncan et al. 
2023; Kuradusenge et  al. 2023). The classification 
was done on a dataset of critical spectral bands and 

Table 3   Agreement between the classification results of the different classifiers

RF and KNN - Overall Agreement [%] = 70.48 Kappa hat = 0.66

ClassID 201 202 203 204 205 206 207 208 209 210 211 212 213 214
Classes B BG DPC EM EC EI ES GS GR PC RD S TT WS
Kappa 0.61 0.73 0.65 0.74 0.7 0.59 0.59 0.74 0.63 0.6 0.81 0.79 0.83 0.76

RF and SVM - Overall Agreement [%] = 65.77 Kappa hat = 0.60

ClassID 201 202 203 204 205 206 207 208 209 210 211 212 213 214
Classes B BG DPC EM EC EI ES GS GR PC RD S TT WS
Kappa 0.61 0.74 0.59 0.73 0.69 0.64 0.51 0.67 0.62 0.48 0.49 0.61 0.74 0.65

KNN and SVM - Overall Agreement [%] = 70.51 Kappa hat = 0.66

ClassID 201 202 203 204 205 206 207 208 209 210 211 212 213 214
Classes B BG DPC EM EC EI ES GS GR PC RD S TT WS
Kappa 0.72 0.65 0.60 0.78 0.67 0.64 0.43 0.74 0.72 0.61 0.42 0.58 0.66 0.68
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indices selected based on their capacity to optimize 
the classification process. The findings indicated that 
by utilizing the RFE-chosen variables, accuracy of 
the classification training model increased by as much 
as 3.7%, while the overall accuracy of the classifica-
tion improved by up to 1.6%. The classification maps 
showed the spatial distribution of the wetland species 
in the study area.

Feature selection

Studies have shown that vegetation indices (VIs) can 
highlight phenological differences and improve the 
potential for classification (Doughty and Cavanaugh 
2019; Ma et al. 2019; Zhuo et al. 2022). Conversely, 
incorporating VIs before classification increases 
the dimensionality of multispectral data. Having 
many features can cause a learning model to overfit 
and increase the computational cost of data process-
ing. This problem can be mitigated by either feature 
extraction or feature selection (Jovic et al. 2015; Tang 
et al. 2014). In feature extraction, the original features 
are transformed into a new set that retains the more 
meaningful information from the original collection 
(Jovic et  al. 2015; Tang et  al. 2014). Remote Sens-
ing studies (Arun 2022; Avola et al. 2019; Nikolako-
poulos et al. 2004) have used feature extraction tech-
niques such as Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA) and Canonical 
Correlation Analysis (CCA) to reduce data dimen-
sionality. The alternative approach, feature selection, 
extracts a small subset of features from the original 
set of features without any transformation (Jovic et al. 
2015; Tang et  al. 2014). Features are ranked from 
strongly relevant to redundant, and feature selec-
tion aims to capitalize on relevance and diminish 
redundancy (Jovic et al. 2015). The feature selection 
methods are broadly categorized as filter, wrapper, 
embedded, and hybrid. Filter methods select features 
by assessing their performance independently of data 
modelling algorithms. Wrapper methods perform bet-
ter than filter methods because the feature subsets are 
evaluated by how well they improve the performance 
of a modelling algorithm (Jovic et al. 2015).

This study used Recursive Feature Elimination 
(RFE) for feature selection. RFE is a wrapper fea-
ture selection method frequently used with random 
forest and support vector machines (Demarchi et  al. 
2020; Poona et  al. 2016). RFE starts by testing the 

complete feature set and computing each component’s 
importance score. Then, the least important features 
are iteratively removed as the model is reassem-
bled, and an importance score is recalculated until 
the user-defined number of subsets is reached. This 
study used the RFE to create ten subsets to identify 
the best fifteen features for classification. The process 
was repeated five times. Eighteen vegetation indices 
were assessed along with the four multispectral bands 
(n = 22).

The results showed that the model’s accuracy 
peaked at 15 features out of 22. However, the accu-
racies when using ten, fifteen and all features were 
very similar, with kappa hat values of 0.960, 0.961 
and 0.959, respectively. The features added after the 
first ten did not significantly improve the accuracy 
of the classification model. Consequently, 60% of 
the features were discarded before classification at 
an insignificant cost to classification accuracy. The 
retained indices were NGRDI, RG, LogRE, NDRE, 
CIRE, GRVI, NDWI and GNDV. The NGRDI had a 
significantly higher importance score than the other 
features.

The wetland vegetation properties

This study found that NGRDI, RG, Green, LogRE, 
NDRE, CIRE, GRVI, NDWI, GNDVI and Red were 
essential for classifying wetland vegetation. Of these 
variables, the Normalized Green–Red Difference 
Index (NGRDI) was significantly more important 
than the rest. NGRDI leverages differences in the 
reflectance of the Green and Red bands (Gitelson 
et  al. 2002). Studies have also shown that leaf pig-
ments (chlorophyll, carotenoids and anthocyanins) 
influence the interaction of vegetation with the vis-
ible portion of electromagnetic radiation (Gausman 
1977; Govender et  al. 2009). The absorbance of the 
red band is based primarily on chlorophyll content, 
whilst the absorbance of the green band is based on 
both chlorophylls and anthocyanins (Gitelson 2011).

Consequently, NGRDI can leverage differences 
in reflectance of the red portion of the electromag-
netic spectrum and highlight vitality in vegetation 
(Song and Park 2020). Notably, the Red Green Veg-
etation Index (RG) tested in this study also exploited 
the reflectance in the Green and Red bands and was 
the second most crucial variable. Lastly, the Green-
Red Vegetation Index (GRVI) is highly sensitive to 
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chlorophyll (Duncan et  al. 2023; Yang et  al. 2017) 
and the Green Ratio Vegetation Index (GRVI), which 
is mathematically similar to the modified anthocyanin 
index (mACI) is sensitive to anthocyanins(Gitelson 
2011; Motohka et al. 2010).

NGRDI has also been correlated with biomass 
and nitrogen content (Choudhary et al. 2021; Elazab 
et  al. 2016; Hunt et  al. 2005; Jannoura et  al. 2015; 
Li et  al. 2016; Smigaj et  al. 2019) Biomass, chloro-
phyll concentration and leaf water content are the 
most significant biophysical and biochemical proper-
ties that characterize wetland vegetation (Adam et al. 
2010; Mishra 2020). Vegetation biomass is typically 
a proxy for local carbon storage, wetland health, and 
vulnerability to human activity and environmental or 
climate change (Doughty and Cavanaugh 2019; Han 
et al. 2019; Klemas 2013; Sun et al. 2021). Nitrogen 
is an essential component of chlorophyll (Bassi et al. 
2018; Wang et  al. 2014). Thus, the results suggest 
that there could be significant differences between the 
chlorophyll content and biomass in the study area to 
warrant a high performance of NGRDI.

Leaf water content is frequently estimated using 
the near-infrared to shortwave portions of the electro-
magnetic spectrum (Govender et al. 2009). However, 
there is a correlation between leaf water and chloro-
phyll activity and reflectance of the red-edge part of 
the spectrum (Ndlovu et  al. 2021) Thus, other than 
NDWI, red-edge indices such as NDRE, GNDVI and 
CIRE indices have been proposed as water-sensitive 
vegetation indices (Ndlovu et  al. 2021; Yang et  al. 
2017) Indices can help highlight different vegetation 
features across various plants, plant concentrations 
and stages of growth (Boiarskii and Hasegawa 2019).

Classification statistics

Three classifiers were used to classify two datasets. 
One dataset contained only the original spectral 
bands, and the other included the bands and spectral 
indices selected during the RFE process. The results 
showed that the use of the chosen variables improved 
the out-of-bag accuracy of the classification training 
model by up to 3.7% for Random Forest (RF), 1.8% 
for Support Vector Machines (SVM) and 3.5% for 
K nearest Neighbour (KNN). In addition, the over-
all accuracy of the classifications increased by 0.4% 
(RF), 1.6% (SVM) and 1.2% for K Nearest Neigh-
bour (KNN). Overall, RF had the best classification 

statistics with an overall accuracy of 87.4% and kappa 
accuracy of 0.85. KNN had an overall accuracy of 
85.3% and kappa accuracy of 0.83; SVM had an over-
all accuracy of 83.6%; and kappa accuracy of 0.81.

The RF classification determined that Platycau-
los Compressus was the best classified plant spe-
cies, followed by the Elegia Mucronata and the Dead 
Platycaulos Compressus. All three classes had kappa 
accuracies of more than 0.9 and less than 10% com-
mission error. The Grubbia Rosmarinifolia, Borbotia 
Gladiata, Erica Intervallaris and Tetraria Thermalis 
had kappa accuracies of 0.88, 0.85, 0.82 and 0.83. Of 
these four species, Grubbia Rosmarinifolia had the 
highest producer accuracy of 74.78%, indicating the 
omission of 25.22% of the species in the final map. 
In contrast, the user accuracy was 90.21%, suggesting 
that only 9.79% of the other species were misclassi-
fied as Grubbia Rosmarinifolia.

The poorly classified species included Berzelia 
(kappa of 0.63), Restio Dispar (kappa of 0.56) and 
Erica Serrata (kappa of 0.57). They were generally 
classified well, with a producer accuracy of 85.05% 
and low omission error (14.95%). However, the user 
accuracy of 66.73% suggests the species was over-
estimated by 33.27%. The KNN classification of 
the same species only overestimated the species by 
27.78%. The Erica Serrata, and Restio Dispar had 
the poorest classification statistics. The classifica-
tion results of Restio Dispar indicate that more than 
50% of the species were omitted and 39.29% of the 
classified pixels belonged to other classes. However, 
it must be noted that Restio Dispar, which grew in 
individual tufts, was also one of the least represented 
species in the wetland. The Erica Serrata was classi-
fied with a producer accuracy of 35.36% and a user 
accuracy of 57.50%. This result means that more 
than half of the class was omitted, and 42.5% of the 
class is erroneous. Like Restio Dispar, the Erica Ser-
rata also occurred in patches and small clusters west 
of the wetland. The SVM and KNN classifiers per-
formed better than RF in classifying Erica Serrata, 
with 27% and 31% commission errors, respectively. 
Studies suggest small patch size and plant density can 
significantly impact classification accuracy (Adam 
et al. 2010; Duncan et al. 2023). In addition, machine 
learning classifiers generally require many samples 
for a good classification (Duncan et  al. 2023). The 
classification accuracies of Berzelia, Restio Dispar 
and Erica Serrata could be improved by collecting 
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the data in a different season since the spectral sig-
nature of wetland species can be affected by different 
seasons and illumination (Adam et al. 2010; Gallant 
2015).

Table  3 shows the degree of agreement between 
the classifiers. The assessment of classifier agree-
ment revealed strong consensus among classifiers 
when it came to classifying Borbotia Gladiata, Dead 
Platycaulos Compressus, Elegia Mucronata, Erica 
Campanularis, Tetraria Thermalis, and bareground. 
However, there was notably less agreement when 
classifying Restio Dispar and Erica Serrata, particu-
larly because these species exhibited patchy distri-
bution within the wetland. Remarkably, the Random 
Forest classifier and K Nearest Neighbour exhibited 
the highest similarity in classifying these two chal-
lenging classes. This observation suggests that these 
classifiers may demonstrate greater robustness in 
classifying vegetation types when confronted with 
limited sample data.

The spatial distribution of the plant species

This paper aimed to map several seep wetland plant 
species remotely. The study findings showed that 
the distributions of the dominant plant species in the 
wetland can be depicted. The plants were found to be 
clustered in different areas of the wetland. Grubbia 
Rosmarinifolia and Platycaulos Compressus were the 
most prevalent species in the northern portion of the 
wetland. That area is also the wettest portion of the 
wetland.

Erica Campanularis and Erica Intervallaris 
thrived in both the wettest portions of the wetland 
to the North and the drier parts of the wetland to the 
West and South. Erica Serrata was spread around the 
drier portions of the wetland in small clusters. Elegia 
Mucronata was found to coexist with Berzelia Lanug-
inosa and Berzelia Alopecuroides, particularly in 
less water-logged soils around the transect line at the 
centre of the wetland. That portion of the wetland is 
seasonally wet. Borbotia Gladiata, Restio Dispar and 
Tetraria Thermalis were tiny clusters in the dry parts 
of the wetland adjacent to the Southernmost transect 
line. Tetraria Thermalis clusters were all located west 
of the wetland. Of all the species, the Platycaulos 
Compressus was the most dominant in the wetland 
and surrounding portions of the Steenbras reserve.

Conclusions

This study presented a methodology for using mul-
tispectral aerial photography to discriminate several 
wetland plant families and species. The study found 
that the Normalized Green–Red Difference Index 
(NGRDI) and Red Green Vegetation Index (RG) were 
the most critical indices for the discrimination of the 
different wetland plant species at the start of summer. 
The other chlorophyll and water-sensitive indices 
were also essential for classifying the plant species. It 
was also found that classifying a subset of indices and 
bands produced overall accuracies of between 87.4% 
and 83.6% and kappa hat accuracies of 0.85 and 0.81. 
The accuracy of the classification models improved 
by up to 3.7% after combining selected vegetation 
indices and band data, and the overall classification 
accuracy of all three classifications by between 0.4% 
and 1.6%.

Of the three classifiers, Random Forest performed 
best, with an overall accuracy of 87% and kappa hat 
of 0.85. It was followed by Support Vector Machines 
and then K Nearest Number. However, K Nearest 
Neighbour performed well when classifying the Erica 
family of flowering plants and the small plant clusters 
of Borbotia Gladiata, Dead Platycaulos Compressus 
and Restio Dispar.Grubbia Rosmarinifolia and Platy-
caulos Compressus were the most notable species in 
the northern and wettest portion of the wetland. The 
Ericaceae species were spread around the drier parts 
of the wetland. Elegia Mucronata, Berzelia Lanugi-
nosa, Berzelia Alopecuroides and Tetraria Thermalis 
thrived in the wetland’s moist soils at the centre and 
western regions. Borbotia Gladiata and Restio Dis-
par occurred in tiny clusters in the wetland on dry 
patches.

This study used UAV multispectral aerial photog-
raphy to classify plant species in a wetland in the Fyn-
bos Biome. To our knowledge, no study has tested the 
viability of using remote sensing data to map wetland 
species in the Proteaceae, Iridaceae, Restionaceae, 
Ericaceae, Asteraceae and Cyperaceae families. The 
results show that the methodology used in this study 
could be replicated in other Fynbos wetlands. Future 
studies should explore classifications of the same spe-
cies in different seasons to assess the best time of year 
to classify them. In addition, future studies should 
explore the use of Geographic Object-Based Image 
Analysis and deep learning classifiers.
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There are significant benefits and implications of 
this pioneering study. Firstly, the study contributes to 
the spectral characterisation of wetland plant species 
in the Fynbos Biome. It provides the foundation for 
future Fynbos remote sensing research and practical 
implications for conservation and land management. 
Moreover, understanding the distribution and spatial 
preferences of key wetland species can assist conser-
vation managers in making more informed decisions 
about land use and protection strategies in the Cape 
Floristic Region. Thus, this knowledge will contrib-
ute to preserving these vital wetland ecosystems and 
their ecological functions.
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