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Abstract  Vereda is a wetland ecosystem typical of 
the Cerrado biome characterized by diverse vegeta-
tion with dynamic and transitional areas of riparian 
forests, gallery forests, flooded forests, and humid 
grassland. In general, they are associated with con-
trolling the flow of the water table, carbon storage, 
and high biodiversity and are essential to the main-
tenance of most rivers in the Cerrado biome. Besides 
that, Vereda is poorly studied, especially zooplank-
tonic groups. To lessen this knowledge gap, we evalu-
ated the effects of seasonality and environmental pre-
dictors on the zooplanktonic community of Vereda. 
For that, we sampled zooplanktonic assemblages in 
the Veredas in the dry and wet seasons. We found 
environmental influence but not for the zooplank-
ton community. The characteristic low conductiv-
ity seems to be an important environmental filter for 

zooplankton species occurrence in these systems, 
since the Veredas that registered major levels of rich-
ness and density were those with high electrical con-
ductivity. Highlighting that some zooplankton spe-
cies with a more restricted distribution were detected 
in this study: Acroperus tupinamba, which occurs in 
Brazil and Ecuador; Monospilus sp., for which only 
two species of this genus were registered in Brazil, 
both with restricted distribution, found thus far in 
only two protected areas of the Cerrado biome.

Keywords  Wetland · Small floodplain · Lotic 
environment · Littoral zooplankton · Brazilian 
savannah

Introduction

Wetlands are aquatic ecosystems that are essen-
tial worldwide because they are very productive 
and harbor high biodiversity. In parallel, these 
aquatic ecosystems provide various ecosystem ser-
vices, such as water purification, nutrient cycling, 
and food resources (Mitsch et  al. 2015). Recog-
nizing their importance, the Ramsar Convention 
advocates for the protection and sustainable use of 
wetlands (https://​www.​ramsar.​org/). Nonetheless, 
human activities are a significant threat to wetlands; 
according to Davidson (2014), more than 50% of 
the total area of wetlands was lost, making them 
the most vulnerable natural ecosystem (Wantzen 
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and Junk 2000; Hu et al. 2017; Lynch et al. 2023). 
Despite their importance, wetlands are understudied 
(Junk 2013; Junk et al. 2014) worldwide. In Brazil, 
there has been emphasis on large wetlands, such as 
the Pantanal, Amazon, and Paraná, and little atten-
tion has been given to smaller wetlands, such as the 
Veredas of the Cerrado biome (Brazilian savannah) 
(Junk 2013; Junk et al. 2014).

Vereda is a typical ecosystem in the Cerrado, 
characterized by diverse vegetation, with transitional 
areas composed of riparian forests, gallery forests, 
flooded forests, and humid grassland (Da Cunha et al. 
2015). The Veredas are formed adjacent to small 
watercourses (Lima and Silveira 1991; Ab’Sáber 
2003), formed by hydromorphic soils and the pres-
ence of organic turfs associated with shallow water 
tables (Oliveira et  al. 2009; Bijos et  al. 2017). Wet-
lands of the Veredas type can be observed in flat ter-
rain (i.e., lowlands) or steep areas (i.e., hills or pla-
teau areas). In lowlands, the most common places to 
form, Veredas cover extensive areas and do not have 
well-defined watercourses. On the other hand, the 
Veredas found in valleys or steep areas are less exten-
sive and have better-defined watercourses, in general, 
small streams (Silveira et  al. 2022). In the Cerrado, 
Veredas play important roles in regulating the water 
table and maintaining rivers (Lima and Silveira 1991; 
Ab’Sáber 2003).

There have been few studies dedicated to charac-
terizing the biodiversity in the Veredas (Gomes et al. 
2020; Faquim et  al. 2021), and even fewer focus on 
the zooplanktonic groups, resulting in knowledge 
gaps about local biodiversity. For example, among 
zooplanktonic groups, it is estimated that for rotifers, 
at least 30% of the species recorded in Brazil come 
from aquatic environments in the Cerrado, and 
approximately 4% are possibly endemic (Padovesi-
Fonseca et  al. 2015). Similar knowledge gaps are 
expected for other zooplanktonic groups, given their 
high endemism levels (Padovesi-Fonseca et al. 2015, 
2021). Furthermore, only a small proportion of stud-
ies about zooplankton in the Cerrado addressed the 
different zooplankton groups together (Alarcão et al. 
2014; Pinese et al. 2015; Gomes et al. 2020; Picape-
dra et  al. 2022). Most studies have been limited to 
a single group of these organisms, as is the case for 
microcrustaceans (Sousa and Elmoor-Loureiro 2008, 
2013; Sousa et al. 2013; Elmoor-Loureiro 2014; Fon-
seca et al. 2018).

For zooplankton communities, it is well established 
that different habitats and local environmental condi-
tions play a crucial role in the survival and reproduc-
tion of different species in ecosystems (i.e., ecological 
niche theory—Hutchinson 1957). Studies on zooplank-
ton community ecology have emphasized the influence 
of local factors such as morphometric characteristics 
(Paquette et  al. 2022), seasonal and climate (Stephan 
et al. 2017), and water quality on the spatial distribution 
of these organisms in ecosystems (Padovesi-Fonseca 
and Rezende 2017; Wan Maznah et al. 2018). On the 
other hand, other studies have highlighted the influ-
ence of spatial factors and dispersal ability as important 
contributors to establishing and structuring the commu-
nity (i.e., Unified Neutral Theory of Biodiversity and 
Biogeography—Hubbell 2001). Previous studies have 
shown that seasonal, environmental, and spatial factors 
contribute to clarify the structuring of zooplanktonic 
communities in Cerrado streams (Gomes et  al. 2020; 
Padovesi-Fonseca et al. 2021; Pedroso et al. 2021).

Here, it is evident that there is a need to lessen 
gaps in biodiversity knowledge of the mechanisms 
that determine the distribution and structure of zoo-
planktonic communities in the Veredas. For this to 
happen, we want to contribute to current knowledge 
by evaluating the influence of seasonal, environ-
mental, and spatial factors on the structuring of zoo-
planktonic communities in the Veredas. For that, we 
outline the following specific hypotheses and prem-
ises: (i) Due to the little knowledge available about 
Veredas, it is expected to register new occurrences or 
new records of zooplanktonic species. (ii) As a com-
plex and dynamic environment (Da Cunha 2015), we 
expect the environmental variables to reveal dissimi-
larities between the sampling seasons. (iii) Knowing 
that the zooplankton community responds quickly 
to environmental changes (Fernández-Aláez et  al. 
2018), we expect that the zooplankton community 
will respond seasonally, and (iv) we expect that envi-
ronmental factors will influence the composition of 
zooplankton more than spatial factors.

Methods

Study area

Veredas are localized between the cities of Barra do 
Garças and Nova Xavantina, state of Mato Grosso 
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(Cerrado Biome), and distributed in headwaters of 
the microbasins of the Araguaia and Rio das Mortes 
(Fig.  1). The climate is classified as Aw according 
to the Köppen classification and has two defined 
seasons: dry winter and rainy summer (Kottek et  al. 
2006; Alvares et al. 2013). The annual mean tempera-
ture ranges from 22 to 25  °C, and the annual mean 

precipitation ranges from 1200 to 1800  mm (Alva-
res et  al. 2013). The altitude above sea level ranges 
from 734 to 300  m. The Veredas streams sampled 
are waterways from first to third order according to 
the classification of Sthaller (Horton 1945; Strahler 
1957). The streams associated with the Veredas are 
characterized by vegetation surrounded by grasses 

Fig. 1   Veredas sampled in the Upper Araguaia River Basin, Cerrado biome, Brazil
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and herbs and in general with the presence of Mauri-
tia flexuosa (Buriti) palms (Ribeiro and Walter 2008). 
The palms do not form a canopy, leaving vegetation 
coverage ranging from 5 to 10%.

Zooplanktonic community sampling

The zooplanktonic communities were sampled in the 
dry season (2016–2017) and rainy season (2020). 
We sampled 14 streams during the dry season, and 
out of those, 11 streams were resampled during the 
rainy season. To perform sampling, we chose a lentic 
stretch of stream and filtered 600 L of water through 
a mesh plankton net (68  μm) using a motor pump 
(Honda WX10T model). Then, we fixed the collected 
material in 4% formaldehyde buffered with sodium 
tetraborate (borax). The zooplankton was identified, 
and the density of each taxon was counted using a 
binocular optical microscope (Olympus CX23) and 1 
mL Sedgewick-Rafter counting chambers. Then, the 
entire sample was analysed. The identification of the 
collected material was carried out using specialized 
bibliographic material (e.g., Koste 1978; Dussart and 
Defaye 1995; Segers 1995; Elmoor-Loureiro 1997; 
Suárez-Morales et al. 2020).

Environmental data

To measure environmental variables such as pH, tur-
bidity, water conductivity, water temperature, dis-
solved oxygen, and total dissolved solids, we used a 
multiparameter limnological probe (Horiba, model 
U-50) at a single point of the stream. We measured 
depth and width at five points in the sample section. 
The surface water flow was measured by the time it 
takes a floating object (a rubber ball) to travel for one 
meter in the center of the stream channel.

Data analysis

To assess the environmental dissimilarity between the 
sampling seasons (hypothesis ii), we first performed a 
Principal Component Analysis (PCA) with the envi-
ronmental variables. The aim PCA is to demonstrate 
the relationship of environmental variables with the 
sampled sites between seasons (Legendre and Leg-
endre 1998). Additionally, we performed nonmetric 
multidimensional scaling (NMDS) using a Euclidean 
distance matrix to detect the environmental gradient 

in each sampling season. The environmental varia-
bles were standardized (scale x to zero mean and unit 
variance) and checked for high correlations between 
them, but no high correlation (r > 6.0) was found. 
Then, we performed an ANOSIM to test the envi-
ronmental dissimilarity between the dry and rainy 
seasons.

To characterize the zooplankton community 
(hypothesis iii), we first performed a T test using 
log-transformed total density data and total richness 
data (response variables) and dry and rainy seasons 
(independent variables). Both data sets were previ-
ously tested for normality (Shapiro‒Wilk test). The 
zooplankton composition data were obtained by the 
Hellinger transformation of zooplankton density data. 
Later, we performed an ANOSIM accompanied by 
NMDS to compare the zooplankton composition in 
the dry and rainy seasons. For these analyses, we used 
the functions “anosim” and “metaMDS” in the vegan 
package (Oksanen et al. 2022).

To investigate the primary predictor for the zoo-
plankton community (hypothesis iv), we performed a 
multiple regression on distance matrices (Zapala and 
Schork 2006; Lichstein 2007; Haynes et  al. 2013). 
The response variable was a zooplanktonic commu-
nity matrix (represented by the Bray‒Curtis distance 
of Hellinger transformed density data) in the dry and 
rainy seasons separately. The independent variables 
were the spatial predictor (an Euclidean distance 
matrix of geographical coordinates) and the environ-
mental predictor (the Euclidean distance of all stand-
ardized environmental variables). The Veredas that 
could not be sampled in the rainy season (V05, V06, 
V10) were also removed from the matrices of the 
dry season. Multiple regression on distance matrices 
(MRM) was carried out using the “MRM” function 
available on the ecodist package (Goslee and Urban 
2007).

To achieve a multivariate response between envi-
ronmental predictors and biological data, we per-
formed a redundancy analysis (RDA). We then used 
forward variable selection to obtain an ordination 
constrained to the explanatory variable of interest 
(P < 0.05). For that, we used the “ordistep” function 
available on the vegan package (Oksanen et al. 2022). 
We checked the collinearity with the variance infla-
tion factor (VIF) using the “vif” function available in 
the car package (Fox and Weisberg 2019). VIF val-
ues < 10 indicate variables that are independent of 
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each other (Graham 2003; Borcard et  al. 2018). For 
the RDA in the rainy season, the variables conductiv-
ity and dissolved oxygen were removed to control for 
multicollinearity. Prior to analysis, the environmental 
data matrix was standardized, and the zooplankton 
density matrix was transformed using log(x + 1). All 
analyses were performed in the R programming envi-
ronment (R Core Team 2022).

Results

Environmental characterization

In both seasons, the Veredas streams sampled had 
very low electrical conductivity and total dissolved 
solids. The availability of dissolved oxygen varied 
widely in the dry season, while the mean value of 
dissolved oxygen was lower during the rainy season. 
The pH was always below seven, with the mean value 
being lower during the rainy season. On average, the 
depth of the Veredas streams increased considerably 
during the rainy season, along with the water tem-
perature, while the water flow decreased slightly. The 
average stream width increased little during the rainy 
season, and the standard deviation of these values 
was lower at this time of the year, indicating that the 
Veredas had more similar widths in the rainy season 
(Table 1).

The PCA explained 60% of the environmental 
variability in both seasons in the first two axes (Axis 
1 and 2, explained 36 and 24% of the variability, 
respectively). Furthermore, the ANOSIM (R = 0.32; 
P = 0.001) and the NMDS analysis (stress = 0.105) 
showed differences between seasons. These results 
showed that the environmental characteristics of the 
streams were different between the dry and rainy sea-
sons (Fig. 2a, b).

Zooplankton characterization

We recorded a total of 69 zooplankton taxa, includ-
ing 41 rotifers, 16 cladocerans, and 12 copepods (9 
adult copepods). Of these, 48 taxa were found in the 
dry season samples, and 43 were found in the rainy 
season (21 of which were not found in the dry sea-
son). The rotifers and cladocerans were mostly iden-
tified down to the species level. Whereas copepods, 
the adult forms were distributed into the family (for 

Harpacticoida) and genus (for Cyclopoida), and the 
other stages of development were counted as dis-
tinct taxa, due to their different ecological roles: nau-
plii (larval stage), Harpacticoida copepodites, and 
Cyclopoida copepodites (stage juvenile). We high-
light the record of the genus Monospilus sp. (Clad-
ocera) in Vereda V10 in the dry season as a new 
occurrence for this region (Table S1), and some zoo-
plankton species with a more restricted distribution 
were detected in this study: Acroperus cf. tupinamba.

Veredas with higher richness also presented a 
higher density of organisms during both dry and rainy 
seasons. The zooplanktonic community was similar 
across all Veredas, with a greater proportion of roti-
fer group compared to other zooplanktonic groups 
as well as for the density of organisms. There were 
no significant differences in zooplankton richness 
(t = −  0.8, df = 10, P = 0.442), density (t = −  0.54, 
df = 10, P = 0.604) and composition (ANOSIM 
R = 0.06; P = 0.121) between seasons. The similar-
ity in the zooplanktonic community between the two 
seasons was evident in the NMDS ordering analysis 
(stress = 0.195, Fig. 3).

By analysing the data for each climate season, 
we found that environmental conditions among 
Veredas were an important predictor for zooplank-
tonic community variability during the rainy sea-
son but not in the dry season (Table  2). The for-
ward selection in RDA revealed two significant 
environmental variables (water temperature and 
total dissolved solids) as the most important pre-
dictors for rainy season data (R²adj = 0.44, F = 4.94, 
P = 0.001). For dry season data, dissolved oxygen 

Table 1   Mean values (mean) and standard deviation (STD) of 
environmental variables in Veredas streams (n = 14), compar-
ing dry and rainy seasons, in the Araguaia River basin

Environmental variables Dry Rainy

Mean STD Mean STD

Conductivity (µS cm−1) 0.01 0.01 0.01 0.02
Dissolved oxygen (mg L−1) 11.70 6.00 4.51 1.67
pH 4.94 0.84 3.93 0.87
Water temperature (°C) 25.18 1.86 28.03 2.76
Total dissolved solids (mg L−1) 0.02 0.06 0.01 0.01
Depth (cm) 28.84 15.87 46.84 13.76
Water flow (m s−1) 0.17 0.12 0.22 0.26
Stream width (m) 3.00 3.57 3.68 1.48
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was identified as the most important predictor of 
zooplankton density data (R²adj = 0.10, F = 2.46, 
P = 0.037). For the entire data set, we identified 
conductivity as the most important environmental 
variable for explaining zooplankton density data 
(R²adj = 0.12, F = 3.92, P = 0.008).

R²adj adjusted regression coefficient, P p value

Fig. 2   a Principal compo-
nent analysis (PCA) with all 
environmental variables of 
Veredas streams in the Ara-
guaia River basin in the dry 
(D) and rainy (R) seasons; 
b nonmetric multidimen-
sional scaling (NMDS) 
of Veredas streams in the 
Araguaia River basin in the 
dry and rainy seasons using 
the environmental variables

Fig. 3   Nonmetric multidi-
mensional scaling (NMDS) 
based on zooplankton com-
munity density in Veredas 
streams in the Araguaia 
River basin in the dry and 
rainy seasons

Table 2   Results of multiple regression of distance matrices 
(MRM) between matrices of biological distance (density of 
zooplankton) and environmental (Env) and spatial (Spa) dis-
tances. (Standardized coefficients)

significant relationships are indicated in bold
R²adj  adjusted regression coefficient, P p value

Predictors Coef. P R²adj P

Dry Env. 0.17 0.419 0.05 0.402
Spa. 0.07 0.675

Rainy Env. 0.49 0.015 0.37 0.004
Spa. 0.18 0.276



739Wetlands Ecol Manage (2023) 31:733–743	

1 3
Vol.: (0123456789)

Discussion

There is still limited knowledge about the biodiver-
sity of the Veredas ecosystems, especially regarding 
microscopic groups such as zooplankton (Junk et al. 
2006; Fonseca et al. 2018; Pedroso et al. 2021). The 
zooplankton taxa listed in this study (Table  S1) are 
primarily cosmopolitan and neotropical (Smirnov 
1996; Segers 2007). Among those, Acroperus cf. 
tupinamba has a more restricted distribution, with 
records in the Neotropical region registered thus far 
in Brazil and Ecuador (Sinev and Elmoor-Loureiro 
2010). Notably, the genus Monospilus sp. was reg-
istered only in the dry season of the Veredas stream 
V10. In Brazil, only two protected areas of the Cer-
rado biome reported the occurrence of two species of 
this genus, Monospilus brachyspinus and Monospilus 
macroerosus (Sousa et al. 2017, 2018). As predicted 
in our hypothesis (i), our study could increase knowl-
edge about the species that can be found in Veredas 
streams. Therefore, encouraging studies about bio-
diversity in understudied regions such as Veredas is 
necessary to lessen these knowledge gaps.

Veredas streams are mainly lotic water. In general, 
lotic ecosystems are unfavourable for the development 
of zooplanktonic organisms, due to rapid tempera-
ture fluctuations, water fast flows, and other factors 
(see more at Aggio et  al. 2022). Zooplankton prefer 
backwater areas (Padovesi-Fonseca et  al. 2021), but 
some taxa tolerate these conditions well (Matsumura-
Tundisi et al. 2015), such as those adapted to living in 
the littoral zone of aquatic ecosystems. For example, 
Rotifera was the most abundant group in the sampled 
locations. This dominance pattern can be explained 
by the morphological and adaptive characteristics of 
this group, such as relatively small bodies, short life 
cycles, high reproductive rates, and predominantly 
parthenogenetic reproduction and resistance eggs 
(Allan 1976; Wallace et al. 2006). Among the organ-
isms identified in the samples, the majority were rep-
resentatives of littoral habit zooplankton, including 
rotifers of the genus Lecane (Segers 1996) and cla-
docerans of the family Chydoridae (Elmoor-Loureiro 
1997). Copepods of the Cyclopoida and Harpacti-
coida orders also represent organisms with littoral 
and benthic habits (Esteves 1998).

The hydrological dynamics of drought and rain 
influenced the environmental conditions of the Vere-
das streams. Our study showed significant differences 

between the climatic seasons regarding the environ-
mental gradient, in line with what was predicted by 
hypothesis (ii). Veredas are complex and heterogene-
ous systems with environmental characteristics that 
vary depending on location. The environmental struc-
tures of these locations can be determined by geologi-
cal characteristics and historical factors associated 
with changes in relief (Gordon et al. 1997). For exam-
ple, the type of bedrock in which the stream is located 
can influence the amount of solids dispersed in the 
water, while soil conditions can influence vegetation 
composition on the streambanks (Lewis 2008). The 
shape of the relief and its slope can also determine 
the flow of water, with steeper environments tend-
ing to have greater water velocity and narrower and 
deeper streams compared to less steep environments 
(Gordon et al. 1997; Lewis 2008).

Although it was not possible to find statistical dif-
ferences in the zooplankton community in relation to 
seasonality, which refutes our hypothesis (iii), envi-
ronmental variables are often important predictors of 
biological communities (e.g., Pinel-Alloul 1995; Bini 
et  al. 2008; Declerck et  al. 2011; Lopes et  al. 2018; 
Pedroso et al. 2021). To Veredas streams was to rec-
ognize that conductivity, dissolved oxygen, water 
temperature, and total dissolved solids were the most 
important variable to organize the zooplanktonic 
community. These variables may act as an environ-
mental filter for the development of the zooplanktonic 
community in the Veredas, as predicted by hypoth-
esis (iv). Previous studies have already reported the 
importance of water temperature on zooplanktonic 
communities. In turn, the high temperature of water 
reduces the dissolved oxygen (Pinese et  al. 2015), 
especially in shallow environments such as Vere-
das streams. Furthermore, Cerrado aquatic ecosys-
tems are characterized by low electrical conductiv-
ity (Wantzen 2003, 2006; Gonçalves et  al. Jr 2006), 
which may restrict the occurrence and/or estab-
lishment of certain species. Therefore, the Veredas 
streams with slightly higher conductivity values than 
expected may provide suitable conditions for more 
taxa to coexist, increasing local richness and abun-
dance (Tundisi and Matsumura-Tundisi 2011).

Wetlands play an important role in water purifi-
cation, nutrient cycling, and other ecosystem ser-
vices (Convention on Wetlands 2021; Lynch et  al. 
2023). In particular, the Veredas are important for the 
maintenance of water resources once they are in the 
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headwaters of the drainage basins. However, habitat 
fragmentation, land use conversion to agriculture, and 
siltation pose significant threats to the conservation of 
these Cerrado environments (Carvalho et al. 2009; De 
Marco et al. 2014), including the Veredas (Gonçalves 
et al. 2022). In recent decades, the rapid loss of wet-
land integrity has been reported worldwide (Hu et al. 
2017). As underscored by a recent overview, “Bio-
diversity conservation is especially critical for fresh-
water biodiversity” (Lynch et al. 2023). Thus, the in-
depth understanding gained from our study regarding 
the Veredas can lead to better conservation efforts for 
these small wetlands. Specifically, to maintain the 
water depth required for local zooplanktonic commu-
nities, it is crucial to prevent the loss of zooplankton 
communities and a whole resulting food web.
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