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Abstract Accurate assessment of forest structure

and biomass is hampered by extensive field measure-

ments that are time-consuming, costly, and inefficient.

This is especially true in mangrove forests that have

developed complex above-ground root structures for

stability and survival in the harsh, anaerobic, and

reducing conditions of water-logged sediments. These

diverse structures can differ even among similar

species, providing complex three dimensional struc-

tures and making them difficult to accurately assess

using traditional allometric methods. Terrestrial laser

scanners (TLS) have been used widely in collecting

forest inventory information in recent years, mainly

due to their fine-scale, detailed spatial measurements

and rapid sampling. In this work we detected stems

and roots in TLS data from three mangrove forests on

Pohnpei Island in Micronesia using 3D classification

techniques. After removing noise from the point

cloud, the training set was acquired by filtering the

facets of the point cloud based on angular orientation.

However, many mangrove trees contain above-ground

roots, which can incorrectly be classified as stems. We

consequently trained a supporting classifier on the

roots to detect omitted root returns (i.e., those

classified as stems). Consistency was assessed by

comparing TLS results to concurrent field measure-

ments made in the same plots. The accuracy and

precision for TLS stem classification was 82% and

77%, respectively. The same values for TLS root

detection were 76% and 68%. Finally, we simulated

the stems using alpha shapes for volume estimation.

The average consistency of the TLS volume assess-

ment was 85%. This was obtained by comparing the

plot-level mean stem volume (m3/ha) between field

and TLS data. Additionally, field-measured diameter-

at-breast-heights (DBH) were compared to the lidar-

derived DBH using the reconstructed stems, resulting

in 74% average accuracy and an RMSE of 7.52 cm.

This approach can be used for automatic structural

evaluation, and could contribute to more accurate

biomass assessment of complex mangrove forest

environments as part of forest inventories or carbon

stock assessments.
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Introduction

Evaluating and monitoring the trends and attributes of

biosphere ecology is of significant importance; these

trends and attributes in forest environments typically

are often assessed via changes in aboveground

biomass, annual litterfall, and canopy structure

(Saenger and Snedaker 1993). Quantifying above-

ground biomass typically involves using allometric

equations that are based off of relationships between

non-destructive diameter-at-breast-height (DBH)

measurements and the sum biomass of tree trunks,

branches, and sometimes leaves from a select few

trees that have been harvested (Clough and Scott 1989;

Fromard et al. 1998). The use of allometric equations

is especially challenging in structurally complex forest

environments, such as mangrove forests. Allometric

equations for mangrove trees often do not include the

biomass of complex aboveground root structures that

stabilize trees in soft, unconsolidated sediments and in

areas of high tidal energy (Duke 1992). Furthermore,

complexity and structure can significantly vary among

species and between individual trees of the same

species (Komiyama et al. 2008). For example, knee

roots (Fig. 1a) and pneumatophores (Fig. 1b) project

upwards from above sediments; complex networks of

prop roots (Fig. 1c), ribbon roots (Fig. 1d), and

buttresses (Fig. 1a, d) extend radially. The same

allometric equation can therefore introduce significant

errors to the assessment of biomass data (Cole et al.

1999). Additionally, the manual data collection for

performing such analysis is labor intensive, time

consuming, and prone to (subjective) measurement

errors. The latter of which can later deteriorate the

accuracy and precision of the results. An accurate,

efficient, and non-destructive approach is needed to

accurately assess and measure the structural charac-

teristics of complex mangrove forest environments.

Improvements in 3D data collection methods for

forests have led to more accurate detection and

assessment of tree attributes (e.g., location, height,

DBH (Bucksch et al. 2013)) and derivation of

geometric traits using methods such as cylinder fitting

to estimate tree volume (Hopkinson et al. 2004). Since

field measurements are time consuming and ineffi-

cient, especially in mangrove forests where complex

above-ground root structures make data collection

more challenging, an increasing number of studies

have focused on evaluation of forests using light

detection and ranging (lidar) scans (Yao et al. 2011).

As an example, Lefsky et al. (2002) used a single

regression model to assess the above-ground biomass

in a high biomass forest; such forests traditionally

have been regarded as challenging environments for

assessment of structural attributes and also carbon

storage. The single regression model could explain

84% of the variance in the above-ground biomass,

which is a promising result in context of the data and

methodology used. Lidar systems rapidly emit laser

pulses ([ 25 kHz pulse frequency for most terrestrial

systems), and measure the return trip elapsed time for

each laser pulse to reflect (backscatter) from a target in

its path. This elapsed time is converted into a range,

distance-from-sensor value, which eventually yields a

3D point cloud of the surrounding environment,

typically based on pseudo-hemispherical scan pattern,

for terrestrial lidar systems (Baltsavias 1999). Such

lidar-based approaches enable us to rapidly and

accurately assess plot-level characteristics, e.g., basal

area, stem volume, and stem density (Yao et al. 2011)

and while would be useful to measure the biomass of

complex mangrove forest environments, has rarely

used to do so.

One approach for modeling stem structure is by

assessing the diameter value at various heights of the

tree, i.e., stem taper. While this is a traditional method

that uses a reloscope to assess wood volume for timber

extraction (Cole et al. 1999), it can also be done by

dividing the lidar point cloud into different segments,

and then fitting a circle to the area of the stem that is

projected onto the horizontal plane (Olofsson and

Holmgren 2014). Another method is via fitting a

cylinder to 3D segments of the point cloud in order to

simulate stems (Thies et al. 2004). In the case of non-

circularly shaped stems, free-form curves have been

used for modeling the stems (Thies et al. 2004) and

also by finding the plane orthogonal to the growth

direction of the tree and then projecting the points on

this plane, thereby modeling stems that are not

perfectly vertical (Forsman and Halme 2005). Another

approach relies on a 2D composite of the flattened

image of Terrestrial Laser Scanning (TLS) point

clouds (Olagoke et al. 2016). Stem modeling has also

been performed by using the images of projected point

clouds, and detecting the edges and linearity of the

stems (Hilker et al. 2013). Voxel-based approaches

also have been used for stem volume measurement.
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Stovall et al. (2017) used a voxelization approach

and estimated the trunk volume using the outer hull

model (OHM). The OHM uses convex hulls and

accurately fits the true shape of the trunk, rather than

forcing a cylindrical fit. However, in the case of

mangrove stems, which are more structurally complex

compared to the data used by the authors (i.e., from

pine trees), such an approach could be inaccurate.

These complex forest environments introduce chal-

lenges to structural assessment algorithms, thus

increasing the need for more advanced techniques.

One example of such a technique is RAndom

SAmple Consensus (RANSAC) (Olofsson and Holm-

gren 2014), which is used for stem detection based on

taper models (Page et al. 2009). Advanced algorithms

enable us to model the stems more accurately (Kelbe

Fig. 1 Structural complexity of mangrove trees that make the

development and accuracy of allometric equations challenging.

a Knee roots and buttress trunks of Bruguiera gymnorrhiza
(Rhizophoraceae), b pneumatophores of Sonneratia alba

(Lythraceae), c prop/stilt roots of Rhizophora apiculata
(Rhizophoraceae), and d ribbon roots and buttress trunks of

Xylocarpus granatum (Meliaceae)
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et al. 2015), while proving useful for associated stem

volume assessment (Liang et al. 2012). The lidar-

derived forest structural attributes can then be used as

inputs to forest biomass, growth, complexity, and

structure-composition modeling (Calders et al. 2018).

Prior studies have proven the ability of TLS for tree

properties and architecture evaluation. These studies

have focused on tree morphology (Janssen et al. 2004),

clustering (Delagrange and Rochon 2011), and graph

search (Wuttke et al. 2012). Others included voxel

analysis methods (Vonderach et al. 2012), which

include digitization of the voxel attributes. All these

approaches can contribute to our improved manage-

ment of forests as natural resources (Côté et al. 2011).

However, to the best of our knowledge, there is still a

lack of studies that have focused on plot-level TLS

stem and root assessment in mangrove forests. Most

studies on mangrove root and stem assessment are

performed on single tree models, acquired from high-

density TLS scans (Feliciano et al. 2014; Olagoke

et al. 2016), which reduce the confusion for stem and

root detection and modeling algorithms.

In this work, we use a low-cost, portable TLS

system, the Compact Biomass Lidar (CBL) (Kelbe

et al. 2015), which provides rapid 3D scans of its

environment. We evaluate this TLS system for

detecting stems and assessing their attributes in three

different mangrove forests on Pohnpei Island in the

Federated States of Micronesia, which we regard as a

complex forest environment given the non-circular

stem forms, above-ground root mass, and high degree

of structural variability in that root mass (Fig. 1). Data

collection furthermore is challenging in these man-

grove forests due to the locale (access), thus making

lightweight, portable scanners more ideal. Such scan-

ners do have a drawback in that they generally provide

lower density lidar point clouds than commercial

higher-cost scanners, which also introduces chal-

lenges to structural assessments based on 3D lidar

point clouds. We therefore present an application of

classification techniques for automatic detection of

tree stems and roots in mangrove forests, based on the

structural features of the points, and assess their

attributes using geometric reconstruction methods.

Data

Site

Forest plots were previously established in the

Enipein, Enipoas, and Sapwalap mangrove forests on

the western Pacific island of Pohnpei in the Federated

States of Micronesia (6� 500 59.9900 N, 158� 120 60.0000

E). Each plot contained either a surface elevation

table or rod surface elevation table (referred to as SET

from here on) (see Krauss et al. 2010 for additional

details on SETs) that had been installed in 1998 or

2017, respectively. Of the 27 plots, only 18 could be

scanned with the lidar. The downward orientation of

the scanner arguably could create challenges for forest

structural assessment (e.g., occlusion effects for

detecting stems) typical for TLS systems in forest

environments (Kelbe et al. 2016). However, these

drawbacks are mitigated by collecting eight scans per

plot, which allowed us to scan specific trees from

different locations, thereby enabling offset vantage

points and resulting in a dense point cloud.

Compact biomass lidar

The data used in this work were collected using a

modified SICK LMS-151 CBL system, a low-cost

portable TLS. Such low-cost sensors are designed to

address the limitations of TLS in structural evaluation

of forests, such as limited mobility, extensive power

requirements and prolonged scan times (Van der

Zande et al. 2006). The CBL provides us with efficient

and rapid sampling of its surroundings (Figs. 2, 3), but

with a lower angular resolution and associated point

density, compared to higher-cost commercial scan-

ners. As a result, algorithms developed for structural

assessment using data from this system need to be

robust to issues caused by low-resolution point cloud

data. The SICK LMS-151 scanner in the CBL uses a

905-nm laser, pulsing at 27 kHz. The scanning mirror

operates in a 270� plane, while the system is attached

to a rotation stage, which rotates though 180�, thereby

providing coverage for a 270� 9 360� ‘‘hemisphere’’;

as such, only the 90� cone underneath the scanner

remains unscanned (Fig. 2). A maximum of two

returns are digitized for each lidar pulse that result in

two point clouds. The specifications of CBL are

presented in Table 1 (SICK AG Waldkirch: Reute

2009). Finally, the CBL was mounted to an inverted
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extension arm, at a distance of 0.49 m from the plot

center, which resulted in each scan location being

viewed in a downward fashion; this configuration left

a 90� unscanned cone facing directly upward. The

scanner mount and configuration were used in this

fashion, since the main objective of the field deploy-

ment was to assess sediment elevation changes via

digital elevation models (DEMs) in the mangrove

forests. The focus of this paper, however, was to use

these data to address a secondary objective, namely

characterization of the mangrove forest structure.

Field measurement

The CBL system was mounted to each SET receiver in

a northward direction prior to scanning the plot

(Fig. 1). After each scan, the CBL system was pivoted

on the SET receiver 45o clockwise, for a total of eight

Fig. 2 The height map of a point cloud collected using a terrestrial lidar system. The structures are represented as 3D objects, which

can be processed using their coordinates as recorded by the scanner

Fig. 3 An intensity image recorded by CBL. The brighter areas represent higher intensity returns, i.e., higher response in 905 nm, and

vice versa
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scans per plot. The height of the CBL relative to the

ground elevation in each plot was dependent on the

height of the rSET/SET installation. However, to

remove the bias resulting from the measurement

height changes, the elevation of the point clouds were

normalized using the lidar ground returns for each of

the individual plots individually; this facilitated a

consistent and accurate approach, one that was

independent of the scanner heigh-above-ground. We

installed either 7 m or 10 m radius plots directly

adjacent to plots that were scanned with the CBL in

order to measure stem volumes in the field. All

trees[ 5 cm in DBH were identified to species, and

DBH was measured to the nearest 0.1 cm within the

entire 7 or 10-m radius circular plot. All trees\ 5 cm

DBH (e.g., saplings) were identified to species and

DBH measured to the nearest 0.1 cm within a 2-m

radius circular plot, nested within the larger 7 m or

10 m radius subplot. The number of trees measured in

each plot ranged between 15 and 21. For trees with

prop roots (Rhizophora spp.), the point of measure-

ment for determining DBH was 15 cm above the

highest prop root that could safely be measured.

Species-specific allometric equations developed for

Pohnpei (Cole et al. 1999) were then used to estimate

tree volume using DBH measurements, after which the

volume of each tree was summed for each plot, and the

total plot volume within each plot was divided by the

area of that plot (m3/ha) (Alexander et al. 2009; Cortes

and Vapnik 1995).

Methods

TLS point cloud registration

Scans were co-registered using a combination of

manual and automatic methods. First, at each plot, we

aligned each pair of consecutively scanned point

clouds of the eight total scans based on structural tie

points using a pairwise registration technique, which

provides us with a rigid transformation matrix as the

output (Zai et al. 2017). The Iterative Closest Point

(ICP) algorithm was then used as part of the registra-

tion process to improve the registration accuracy. For

each lidar return in the 3D point cloud, the ICP

algorithm matches the closest point in the reference

point cloud and evaluates a combination of rotation

and translation parameter values between the two,

using the root mean square distance minimization

technique (Besl and McKay 1992). All eight scans

were registered in each plot, forming one combined

3D point cloud (Fig. 2). Since the area right above the

scanner has an artificially high point density (i.e.,

where multiple scan lines intersect, thereby oversam-

pling this location), we downsampled the point cloud

to normalize the density distribution and remove any

CBL sampling bias from our results. The downsam-

pling technique in our work is based on the spherical

sampling of the data and considers lower weight for

points closer to the scanner and higher weights for

those further away, thereby ensuring that 3D sampling

remains unbiased (no scanner protocol impacts) and

that the structural variability of the point cloud is

maintained (van Aardt et al. 2017; Fafard et al. 2020).

Table 1 Specifications of

compact biomass lidar

instrumentation

Range finder Time-of-flight and intensity

Wavelength (nm) 905

Maximum range (m) 40

Resolution (�) 0.25

Range accuracy (mm) 30

Scan duration (s) 33

Weight (kg) 3.9

Beam divergence (mrad) 15.0

Minimum angular step-width (mrad) 4.36

Coverage (�) 270*360

Maximum pulse frequency (kHz) 27
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Noise removal

After registering the scans, we needed to remove the

noise returns in the point cloud in order to improve the

performance of our classification. Typically, lidar data

contain sparse outliers, which can decrease the

structural evaluation accuracy, and can also compli-

cate estimation of local point characteristics, like

normal or curvature changes. For this step, we used the

Statistical Outlier Removal (SOR) algorithm (Rusu

et al. 2008). SOR is based on the distribution of

distances between a point and its neighbors. For each

point, the mean distance to all the neighboring points

is computed, and based on an assumption of a

Gaussian distribution, all of the points with a mean

distance outside a set threshold are considered outliers.

This threshold is defined by the mean and standard

deviation of the global distances between the points in

the data. The number of neighbors we used for SOR

assessment in this study was five, which was deter-

mined by the point density, ranging from 1700 to 3200

points/m3, in the structures of the point cloud we

needed to maintain. We evaluated the density in

manually detected stems that were further from the

scanner, but where we could still represent the

geometric structure of the stem accurately, and

identified the number of points that best preserved

these structures after application of the SOR noise

removal algorithm.

Higher canopy removal

The next step was to remove the higher canopy points,

since while most TLS systems provide detailed 3D

scans of the fine-scale, close-range below-canopy

environment, the laser signal attenuates (reflected,

absorbed, transmitted, and occluded) toward the

upper-canopy layers (Côté et al. 2009). The removal

of upper-canopy layers therefore was necessary since

the objective of this work focused on assessment of

below-canopy structures (i.e., stems), and the higher

canopy may contribute to confusion during structural

evaluation of the stem and root components. Removal

of upper canopy lidar returns was achieved via normal

change rate assessment. The normals of the point

cloud, which are unit vectors perpendicular to the

plane fitted to the points, differ in terms of angular

orientation and also change rates in stems and forest

canopies. The normal difference of the canopy point

cloud is generally smaller than non-canopy segments,

due to more structural irregularity in these areas

(Rouzbeh Kargar et al. 2019; Li et al. 2017). The

remaining segments contained the stems and roots,

following detection and removal of the canopy lidar

returns from the point cloud.

Stem and root classification

Stem and root detection in complex forest environ-

ments is challenging due to the high structural

complexity and variability of these structures. Another

challenge we face in this study is the low-density 3D

(point cloud) data. Such lower density data, relative to

longer-scanning, more expensive scanners, can nega-

tively affect both classification and reconstruction.

These impacts can be accentuated in root evaluation,

because of the higher variability in shape and struc-

tural complexity. Additionally, acquiring accurate

information about these structures using only allo-

metric equations is challenging, due to the above-

mentioned reasons. As a result, an automated

approach to detect, evaluate, and reconstruct stems

and roots in Mangrove forests is ideal for extending

the application and interpretation of allometric equa-

tions, or with further improvements, to be used as a

stand-alone method. Details on the detection methods

in this work and results are presented in the following

sections.

Building the training set

We used a 3D classifier (Shapovalov and Velizhev

2011), in order to detect the stems in the segmented

section of the point cloud. First, we needed to

construct the training set for this classifier. We

extracted the facets of the point cloud (i.e., the planar

surfaces between adjacent lidar returns) to find the

angular distribution of the points (Dewez et al. 2016)

using kd-Tree and Fast Marching in the FACETS

plugin in CloudCompare software (v 2.9.1; Bentley

1975; Sethian 1996; Dewez et al. 2016). Kd-Tree is a

method for partitioning the data in order to arrange

points in k-dimensional space, and Fast Marching is a

numerical approach for finding the boundary values.

Both of these algorithms subset the point cloud into

segments, find the planar surfaces, and then propagate

them into polygons (enclosed areas/units). A tension

parameter is used in order to modify the boundaries of
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these segmented planes; this parameter operates by

moving the vertices closer to, or away from, the

neighboring vertices, based on the distance between

the points and finding the average position of the

neighboring vertices. This is done to acquire smoother

boundaries and less artifacts in these regions. The

difference between the FACETS method and other

similar approaches (e.g., curvature filtering) is that the

segmentation part of this method using Kd-tree and

Fast Marching, helps to reduce the run time in ‘‘big

data’’, such as the 3D point clouds used in this study.

Additionally, due to the structural complexity of these

data (i.e., the above-ground roots, small gaps between

structures), the more advanced segmentation step used

in FACETS can improve the results compared to

similar methods.

We determined that the stem facets’ angular

distribution was between 77� and 112�, after analyzing

the facetized point cloud. This was obtained by

manually investigating the plots and extracting 20

facets for stems per plot, specifically the stems that

represented extreme angular orientations (Fig. 4).

The 3D classifier

We used a 3D lidar point cloud classification tech-

nique, introduced by Shapovalov and Velizhev (2011),

to classify roots and stems in the processed point

clouds. In this approach, a spatial index first is

assigned to each point in the training set; in our case,

the index was set for stem points that were detected by

filtering the facets of the point cloud using their

angular orientation. All other points were labeled as

‘‘non-stem’’. This stage introduces over-segmentation,

the segmented sections of the point cloud are them-

selves partitioned into subsets. The algorithm builds a

graph over the segments, after labeling the points, and

then the features are extracted. This classifier then

trains the Random Forest classifier (Ho 1995) on the

point features of specific classes (i.e., roots and stems).

Subsequently, a kernelized structural support vector

machine (Bertelli et al. 2011) is used for estimating the

dependency of the points. As stated before, the

training set was obtained by filtering the facets of the

point cloud, based on the estimated angular

Fig. 4 The height map of the facetized point cloud of the stems and roots. It can be seen that the stems are more vertically oriented,

while the roots, shown in the lower portion of the point cloud in blue (colder) colors, are more horizontally oriented
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distribution of the stem facets. The stems detected

using this approach in 15 plots were used as the

training set. It is important to mention that not all the

stems in the plot were detected using the filtering of

the facets, and as a result, the training set did not

include all the stems in these plots. This is due to the

fact that in the areas where the stem points were very

close to other structures, the facet extracted from the

stem was unified with other structures, resulted in a

different angular orientation and direction. Conse-

quently, after filtering out the facets, some of these

stem points were removed.

The initial result of the classification included some

incorrectly labeled points as stems. These points

mostly belonged to the typical above-ground roots

found in mangrove forest ecosystems. We therefore

trained a supporting classifier on the root points. The

same approach was followed for training the root point

classifier; however, in order to remove any bias in our

method, we gathered our training set for the root points

from the same plots that we used for the stem

classification.

Stem reconstruction and volume measurement

The next step, after detecting stems and roots, was to

measure the volume of the stems. We simulated the

detected stems using alpha shapes (Akkiraju et al.

1995). Alpha shapes are linear simple curves in the

Euclidean plane, related to the shape of a set of points

(Edelsbrunner et al. 1983). The difference between an

alpha shape and a convex hull is that one can

incorporate a shrinkage factor in the alpha shape

approach, thus implying that a convex hull is an alpha

shape with zero shrinkage (Fig. 5). In other words,

three dimensional convex hull polygons are known to

overestimate the object volume, so introducing sup-

plementary geometric metrics, or a shrinkage factor in

this case, can improve the results (Paynter et al. 2018).

We found that shrinkage factor of 0.3 yielded the most

accurate result. This was determined based on com-

paring the polylines, resulting from the projection of

the points of the stems and those obtained from

projecting the reconstructed stems using alpha shapes,

with different shrinkage factors. The points closer to

the scanner were used for this component of our

approach, since the higher point density in these

regions resulted in a more detailed 3D sampling of the

environment. This finding also was validated by

comparing the area of the projected stems.

CBL data validation

Tree volume consistency assessment

The stem volume data obtained from lidar were then

compared to the field-measured volume data. The

reported volume (m3/ha) for lidar data in each plot was

found by summing the volumes of all the detected

stems, and then dividing by the area in which the stems

were detected, for a circular area with radius of 7 m or

10 m, based on the radius used for field measurement:

Volume ¼
Xn

i¼1

vi
area

where n is the number of detected stems in the plot, v is

the volume of each stem (m3), and area is the area of

the plot (ha).

DBH assessment

In our final step, we evaluated the DBH using the lidar

point clouds to have a more reliable metric to compare

our field measurements with and validate our method-

ology. DBH was measured 15 cm above the highest

prop root for each tree stem in the field. We followed

the same approach using the reconstructed stems from

lidar point clouds. After detecting the stems and roots,

and simulating the stems, we segmented the points

from 14 cm to 16 cm height range from the base of the

stem model. This range was introduced to address the

bias and error in field measurement of DBH and the

sparsity of the lidar data. Afterwards, these points

were projected on the X Y plane and a circle was fit to

them, for which the diameter represents the DBH

(Fig. 6).

Results and discussion

Results

Stem and root classification accuracy assessment

We trained a classifier on the stems and a supporting

one on the roots (Fig. 7) as discussed above.
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The classification results contained some noise

points, such as sparse points which did not belong to

the structures in the lidar point cloud, and some errors

such as roots were labeled as stems, that were

attributed to the complex structure of the mangrove

forest. The accuracy of this classification therefore

was assessed using the true and false positive and

negative values (Li and Guo 2013) in each plot. These

were found via manual investigation, where the results

of classification were manually validated by inspect-

ing the point clouds, and the following formula was

used for calculating the accuracy:

Accuracy ¼ tpþ tn

tpþ tnþ fpþ fn

where tp denotes true positive, tn is true negative, fp is

false positive, and fn shows false negative values.

Classification precision was also calculated using the

following equation:

Precision ¼ tp

tpþ fp

Table 2 shows the result of the accuracy assessment

of this classification.

The accuracy of the root classification is lower than

for the stem classification, which was attributed to the

more complex structure of the roots and more

structural diversity in their shapes and orientations.

When the structural complexity increases (e.g., due to

Fig. 5 The image on the left shows a stem reconstruction using

an alpha shape with a shrinkage factor of 0.3, while the image on

the right shows the same stem, simulated using a convex hull.

We found that the shrinkage factor of 0.3 models the stems more

accurately for our study environment
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more complex root shapes) reduced distances between

different segments of the roots, and more rapid angular

orientation changes of these segments, the extraction

of distinct features becomes more challenging for the

classifier, thereby resulting in a lower classification

accuracy.

Stem volume measurement consistency assessment

In our next step, we used alpha shapes to reconstruct

the tree stems. We observed that the selected

Fig. 6 The measurement of DBH using reconstructed stems from lidar point clouds. The root points (shown in the point cloud on the

left) are segmented out after classification, after which the DBH measurement is performed on the stems

Fig. 7 Result of root and stem classification in one of the plots, a a top-down view of the detected roots, and b the height map of the

detected stems. The maximum height of the stems in this plot was found to be 14 m

Table 2 Accuracy assessment results for stem and root

classification

Task Accuracy (%) Precision (%)

Stem classification 82 77

Root detection 76 68
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shrinkage factor of 0.3 avoided overestimation of stem

volumes (Fig. 8).

As mentioned before, we calculated stem volumes

for each plot for all the trees within a 7 m or 10 m

radius from the center scanner location, based on the

radius used in the field-measured data. This was done

to avoid the lower point densities beyond this radius,

and to compare volume/ha to the field measurements

that were also made. The lower far-range point

densities of TLS are due to angular divergence of

scan lines, attenuation of laser energy, both as a

function of range-from-scanner, and occlusion effects

(Dix et al. 2011). We constructed stem volumes up to a

maximum height of 12 m, since the average point

density for the stems was significantly lower after this

height, less than 15% of the total stem density. The

plot-level field-measured stem volume ranged

between 91.71 and 1105.5 m3/ha, while the lidar-

derived plot-level stem volume ranged from 105.36 to

1014.4 m3/ha. The average consistency of stem vol-

ume measured using the CBL was within 85% of the

volumes estimated from DBH measurements made in

the field, ranging from 66 to 98% across plots. The

RMSE value was 63.65 m3/ha, with a MAE value of

49.89 m3/ha. The consistency in this case was found

using the following equation:

Consistency¼ Field value� Field value� lidar valuej j
Field value

where Field Value denotes the field measured stem

volume, and Lidar Value is the volume data acquired

from lidar point clouds. It is important to note that

although more effective, it was not possible to

compare volume measurement between the manual

Fig. 8 The result of reconstructing tree stems using alpha shapes in one plot. The stems that were within a radius of 7 m or 10 m from

the scanner, based on the radius of the field measurement, were included in the analysis for volume measurement
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and lidar approach at the tree level, since the stem map

information was not available. As a result, the plot-

level volume measurement comparison was applied.

DBH and basal area evaluation accuracy assessment

The DBH accuracy was assessed using the same

formula used in ‘‘Stem volume measurement consis-

tency assessment’’ section. Table 3 represents the

DBH evaluation results.

The accuracy was assessed in each plot and the

average accuracy is the result of averaging all the

acquired per plot accuracy values. It is important to

note that since the stem map was not available for this

data, the DBH values were compared on a plot level.

We applied Kolmogorov–Smirnov (KS) test (Ste-

phens 1974) to test whether the difference between the

field-measured DBH and lidar-derived DBH is statis-

tically significant. The KS test is a nonparametric

approach for comparing the similarity of two proba-

bility distributions. We chose this approach because

we did not have any underlying assumptions regarding

the probability distribution of the data. The result

showed a p value of 0.131 at the critical value of 0.05.

We therefore concluded that the difference between

the two sets of data is not statistically significant.

We also generated a basal area estimate, using DBH

extracted from lidar-derived DBH values. We found

an average consistency of 88% and RMSE of 6.06 m2/

ha, when comparing the field-measured basal area and

the lidar-derived result. Table 4 shows both the plot-

level and species-level field-measured stem density,

basal area, and tree volume and the plot-level lidar-

derived basal area and tree volume. The species are

listed as: (i) RHSP, which represents Rhizophora

apiculate, Rhizophora mucronate, and Rhizophora

stylosa, (ii) SOAL (Sonneratia alba), (iii) XYGR

(Xylocarpus granatum), and (iv) BRGY (Bruguiera

gymnorrhiza).

Discussion

One challenge in this work is the relatively low-

density data, which require algorithms to be robust to

this aspect, both for pre-processing and classification.

The low-density data decrease the classification, and

subsequent volume estimation and DBH evaluation

accuracies. We should place this in context though—

the data used here are not sub-standard, but rather the

result of a portable, low power requirement (e.g.,

industry-standard power tool batter pack), lower-cost,

and rapid-scan system, which makes it significantly

more practical for further utilization in complex forest

environments. The variation in DBH assessment

accuracy and tree volume consistency between plots

was attributed to the spatial complexity across site

locations, i.e. the diversity in root shapes, stems’

angular orientation, and vegetation density. Accuracy

was lower in the plots where the vegetation density

was higher, and the structure of the above-ground

roots were more complex in terms of angular, shape,

and size diversity, thus making the feature extraction

of stems more challenging. For example, two plots are

shown in Fig. 9 from the same site, one with less

structural complexity in above-ground root shapes

(Fig. 9a) and the other with higher structural com-

plexity in above-ground roots and dense vegetation

(Fig. 9b). The consistency of stem detection was lower

in the specific plot with higher complexity, by 12%.

This was attributed to an increased occlusion effect,

and a reduced distance between the stems and higher-

elevated root structures. In the latter case, when

extracting the facets of the point cloud for gathering

training set, the stem segments and those of roots are

associated with one single plane, which can introduce

errors to the classification, leading to less accurate

detection and volume estimation per plot. The angular

orientation of the stems was another issue that caused a

decrease in classification and stem volume accuracies.

After further assessment we found that most of the

stems that were incorrectly classified had an angular

Table 3 Accuracy assessment results for DBH evaluation

Field-measured DBH range (cm) Lidar-derived DBH range (cm) Average accuracy RMSE (cm)

16.8–41.8 19.2–52.6 74% 7.52
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Table 4 Sum of stem densities, tree basal area, and tree vol-

ume for each species and plot, sampled using standard US

Forest Service methods and the terrestrial lidar

Site Stem

density

Tree basal area

(m2/ha)

Tree volume

(m3/ha)

Enipein

Fringe A 0.8 11.53 75.4

RHSP 0.3 5.90 49.2

BRGY 0.5 5.63 26.1

Lidar 10.60 98.93

Fringe B 1.5 16.59 82.7

RHSP 0.5 5.64 30.4

BRGY 1 10.95 52.3

Lidar 14.86 101.74

Fringe C 1.9 16.46 83.1

RHSP 0.9 7.329 34.8

SOAL 0.1 1.98 13.6

BRGY 0.9 7.15 34.7

Lidar 14.79 91.22

Riverine A 2.2 79.06 571.3

RHSP 0.8 12.07 93.5

SOAL 0.1 45.56 365.0

BRGY 1.3 21.42 112.8

Lidar 80.42 579.72

Riverine B 0.6 7.68 44.7

RHSP 0.1 1.36 10.1

XYGR 0.3 1.00 4.5

BRGY 0.2 5.30 30.1

Lidar 6.24 50.36

Riverine C 1.4 47.77 323.9

BRGY 0.5 11.36 62.8

RHSP 0.5 5.30 38.4

XYGR 0.4 31.11 222.8

Lidar 33.01 358.81

Enipoas

Fringe A 1.8 25.62 139.3

RHSP 0.3 1.070 5.4

SOAL 0.1 3.90 27.6

BRGY 1.4 20.65 106.3

Lidar 27.49 164.91

Fringe B 2.2 74.87 522.0

RHSP 0.3 2.40 15.8

SOAL 0.8 53.98 408.6

BRGY 1.1 18.48 97.6

Lidar 79.13 577.82

Fringe C 3 67.93 482.9

RHSP 2.1 21.33 148.8

SOAL 0.4 38.48 290.9

BRGY 0.5 8.1 43.1

Lidar 66.51 541.72

Interior A 2.7 49.80 308.5

Table 4 continued

Site Stem

density

Tree basal area

(m2/ha)

Tree volume

(m3/ha)

RHSP 0.7 7.09 48.5

SOAL 0.2 19.89 151.2

BRGY 1.8 22.82 108.7

Lidar 46.8 381.31

Interior B 2.6 59.56 392.5

RHSP 0.9 6.66 41.6

SOAL 0.4 35.51 264.7

BRGY 1.3 17.38 86.2

Lidar 68.4 421.69

Interior C 2.1 48.53 328.2

RHST 0.3 6.78 66.2

SOAL 0.3 16.34 117.8

BRGY 1.5 25.40 144.1

Lidar 46.97 372.37

Riverine B 1.8 45.73 323.7

RHSP 1.1 16.42 127.9

SOAL 0.1 17.01 129.7

BRGY 0.6 12.29 66.1

Lidar 50.81 362.91

Riverine C 1.3 44.55 278.4

BRGY 1.3 44.55 278.4

Lidar 41.46 304.31

Sapwalap

Fringe B 2.8 25.68 156.7

RHSP 2 14.80 98.4

XYGR 0.7 9.75 53.2

BRGY 0.1 1.13 5.1

Lidar 38.91 188.12

Fringe C 1 51.98 387.6

RHSP 0.1 3.80 38.7

SOAL 0.2 37.21 285.3

XYGR 0.7 10.96 63.6

Lidar 55.83 311.48

Interior A 0.7 25.29 216.1

RHSP 0.4 13.34 139.7

BRGY 0.3 11.95 76.4

Lidar 22.01 226.53

Interior B 1.6 63.54 493.3

RHSP 1.2 18.99 159.2

SOAL 0.2 39.12 300.7

XYGR 0.1 0.96 4.8

BRGY 0.1 4.47 28.5

Lidar 54.18 386.6
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orientation near the extreme limits, i.e. 77� and 112�—
in these cases some of the stems were incorrectly

classified as roots. To address this issue, additional

scans can be collected in the areas where the stems are

occluded (‘‘shadowed’’) by above-ground roots and

more dense vegetation. These scans can be collected in

different angular directions, or even different spatial

positions. We studied the relationship between the

ratio contribution of the most complex species, i.e.

Rhizophora, with the plot-level basal area and tree

volume accuracy. Although we could not find a

significant relationship, we argue that if a stem map

were available and the data could be compared at the

tree-level, we likely would observe the largest dispar-

ity between the measured volume and basal area in the

plots with the highest Rhizophora ratio contribution,

due to the higher structural complexity of this species.

This is another question that can be assessed in future

work.

Additionally, in the case of DBH evaluation, an

average overestimation of 25% was observed in the

lidar DBH values. This was due to the errors in

reconstructed stems, caused by our relatively low-

density 3D data. Additionally, this was attributed to

the errors caused by simulating the segments of the

stems that were occluded from the scanner’s view.

Although the use of eight 45� displaced scans per plot,

all with different viewsheds, arguably minimizes lidar

shadowing and occlusion effects, these are still present

and can introduce errors in reconstructing stems for

volume and DBH measurement. However, this occlu-

sion is a typical drawback of all terrestrial laser

scanners, and can only be circumvented by displacing

the scanner significantly between adjacent scans. We

were constrained by the fixed plot location in this

study, where the CBL was physically attached to an

SET receiver. We were able to offset the scanner

0.49 m from the plot center via an extension arm, and

then rotate the instrument through a full 360� at 45�
increments. This set-up arguably negates some detri-

mental occlusion effects, but given the non-cylindrical

nature of mangrove stems, the complex above-ground

root mass, and the non-vertical nature of much of the

forest structure, we recommend that future studies also

investigate an approach where the scanner is displaced

by[ 5 m between adjacent scans.

Conclusions

We presented an approach for stem detection and

volume measurement in complex mangrove forest

Fig. 9 Images of two of the plots where the data were collected,

a contains less structural complexity, resulting in a higher

accuracy for stem detection and volume estimation, and b the

high-elevated complex structure of above-ground roots reduced

the accuracy of stem classification and volume estimation in this

plot
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environments, by applying machine learning and

geometric reconstruction techniques to terrestrial lidar

system data (light detection and ranging; 3D point

clouds). Such complex forest environments introduce

challenges to automatic structural evaluation algo-

rithms, mainly due to large variance in angular, size

class, and shape distributions of both stems and roots,

with the latter often presenting above ground, further

creating class confusion. We presented methods for

overcoming these challenges, by (i) reducing the

confusion for the algorithm via removal of upper-

canopy lidar returns and facet-based distribution

analysis and (ii) automating the assessment of the

structural attributes, via angular assessment of point

cloud facets and the use of alpha shapes to model

stems. We obtained accuracies of 76% and 82% for

root and stem classification, respectively, while our

stem volume assessment matched allometric-based

measurements at an 85% level, on average.

Mangrove forests contain distinct structural fea-

tures, such as complex above-ground roots and non-

circular stems forms, making their evaluation different

than other types of forest environments. The results

show that this methodology is effective at providing a

relatively accurate estimation of the volume data

(* 85% consistency), which can then be used as an

input for biomass modeling, detailed structural assess-

ment of the forest, and even for change detection. We

could also argue that the TLS-based method in fact

provides a more accurate volume estimation, when

compared to manual approaches. This is due to the fact

that using TLS, we can provide an accurate 3D model

of the stems and measure their volume that incorporate

irregularities in the stem not captured using traditional

allometric equations that assume stems are essentially

perfect cylinders or tapers and that typically only use a

single diameter as a parameter for volume estimation.

However, the result is affected by the structural

complexity, which includes the diversity in above-

ground roots structural attributes, non-vertical stem

forms, and vegetation density of the plot, where a

decrease in accuracy was observed in plots that

exhibited more complexity in terms of lidar point

density. We contend that this challenge can be

overcome by collecting higher number of scans in

areas where the stems are shadowed by above-ground

roots, or including a pre-processing step in which the

vegetation is segmented from the woody materials in

the scene. The latter can be done in a more accurate

way using a dual wavelength scanner, to be able to

differentiate between the foliar and non-foliar returns

more effectively. Even though future work could focus

on refinement of this approach to address these

shortcomings, the results still bode well for rapid,

accurate, and precise characterization of these valu-

able and rapidly changing ecosystems. Such a TLS

scanning approach effectively can be used to rapidly

characterize remote locations, thereby reducing field

sampling time and impacts, while serving as calibra-

tion data for more synoptic air- and spaceborne

structural sensing of mangrove forests.
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Côté JF, Widlowski JL, Fournier RA, Verstraete MM (2009)

The structural and radiative consistency of three-dimen-

sional tree reconstructions from terrestrial lidar. Remote

Sens Environ 113(5):1067–1081
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Liang X, Hyyppä J, Kaartinen H, Holopainen M, Melkas T

(2012) Detecting changes in forest structure over time with

bi-temporal terrestrial laser scanning data. ISPRS Int J

Geo-Inf 1(3):242–255

SICK, LMS100/111/120/151 Laser Measurement Systems

Operating. Instructions (2009) SICK AG Waldkirch:

Reute, Germany
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