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an important conservation tool, even in landscapes
with extant natural water bodies
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Abstract Ponds—small, isolated freshwater bod-

ies—have vanished in large numbers during the last

decades. Despite such great loss, the number of natural

small water bodies has still remained quite high in

Estonia. Nevertheless, many pond-related species,

including amphibians such as the northern crested

newt Triturus cristatus and the common spadefoot

toad Pelobates fuscus—are in decline in Estonia,

suggesting that the conditions of extant natural ponds

might not be optimal. However, these conditions have

never been examined. To halt the decline of these two

pond-breeding species, more than 400 ponds have

been constructed or restored from 2004 to 2014 in

Estonia. In this study we compared 85 natural and 85

constructed ponds (which were created or restored

especially for T. cristatus and/or P. fuscus) to find out:

(i) what the main differences are between natural

ponds and ponds specially created for threatened

species; (ii) whether natural ponds provide breeding

conditions for local amphibians; (iii) given the decline

of T. cristatus and P. fuscus, what are the character-

istics lacking in natural ponds, due to which they are

not providing quality breeding habitats for these

species. Whereas the constructed ponds were located

in open habitats with mineral soils, the natural ponds

were mainly in mires and forests, being thus more

shaded. Amphibian diversity was higher in the con-

structed ponds and was positively related to the depth

of the pond, the clarity of the water, the presence of

slanting slopes, the absence of fish and the presence of

nearby fields. T. cristatus preferred constructed ponds

for reproduction, while the breeding site selection of

P. fuscus was determined mainly by terrestrial habitat

characteristics. Importantly, when the threatened

species were removed from the sample, the diversity

of common amphibians did not differ between natural

and constructed ponds, suggesting that in our study

sites natural water bodies act still as breeding sites for

common species, but not for threatened ones. We

conclude that pond construction is an important tool to

halt the decline of threatened species, even in land-

scapes where natural ponds are still preserved.
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Introduction

Ponds, small, isolated freshwater bodies with ephem-

eral or permanent hydrology support a considerable

number of unique and scarce species, thus playing a

central role in maintaining high regional biodiversity

(Semlitsch and Bodie 1998; Williams et al. 2004;

Céréghino et al. 2008; Davies et al. 2008; Biggs et al.

2017). Ponds have been demonstrated to hold a higher

macrophyte and macroinvertebrate diversity than

ditches, lakes, rivers and/or streams (Davies et al.

2008; Martinez-Sanz et al. 2012; Bubı́ková and

Hrivnák 2018). Despite their significant ecological

values, pond ecosystems are threatened by a number of

human activities, typically related to the loss of ponds’

historical function and changed land use (Wood et al.

2003; Brönmark and Hansson 2005; Oertli et al. 2005;

Piha et al. 2007; Curado et al. 2011). Contamination,

invasion of exotic species, increased nutrient loads and

acid rain have been cited as the major threats to pond

biodiversity (Brönmark and Hansson 2002), while

reduced connectivity between individual ponds iso-

lates populations of organisms with short migration

distances (Sjögren-Gulve 1994; Rothermel 2004;

Cushman 2006). During the 20th century more than

50% of ponds have disappeared in the European states

(Hull 1997), while losses in agricultural landscapes

have often been the greatest (Heath and Whitehead

1992).

For pond-breeding amphibians, small freshwater

bodies are vital. Thus the destruction of these aquatic

habitats in conjunction with overall habitat deteriora-

tion is considered to be one of the major causes of the

worldwide decline in amphibians (Ficetola et al.

2015), which has escalated within the past 40 years

(Semlitsch 2000; Beebee and Griffiths 2005). The

fragmentation and isolation of the remaining ponds

causes problems for amphibian population connectiv-

ity (for a review see Cushman 2006), mainly affecting

the dispersal of juveniles (Rothermel 2004; Preisser

et al. 2000). Also in Estonia the conditions of

amphibian habitats, including small freshwater bodies,

have degraded during the 20th century due to not only

the changes in land use and the intensification of

agriculture and drainage, but also by the abandonment

of small-scale farming and the subsequent forestation

of landscapes (Rannap et al. 2007; Suislepp et al.

2011; Rannap et al. 2015; Remm et al. 2015). These

changes have caused a decrease in and range

constriction of several amphibian species, including

the common spadefoot toad (Pelobates fuscus) and the

northern crested newt (Triturus cristatus). Both of

these species currently have declining population

trends in Europe (Eggert et al. 2006; IUCN 2009;

Denoël 2012), including in Estonia (Red Data Book of

Estonia 2008), and they are strictly protected within

the European Union (EU Habitats Directive 92/43/

EEC).

In order to compensate for the current loss and

destruction of natural habitats, a large-scale restora-

tion of amphibian breeding sites has been conducted in

several countries (Denton et al. 1997; Petranka et al.

2007). Also in Estonia more than 400 ponds have been

constructed for P. fuscus and T. cristatus in order to

stop their further decline and strengthen their existing

populations (Rannap et al. 2009a). At the same time,

Estonian landscapes still hold a significant number of

small natural water bodies. As natural ponds have

largely been destroyed in several European countries

and the existing ponds are usually anthropogenic in

origin (Lemmens et al. 2013), the studies of amphibian

breeding sites have often focused on constructed

ponds (e.g., Beebee 1977; Ildos and Ancona 1994;

Morand and Joly 1995; Chester and Robson 2013) or

natural water bodies of particular type, such as beaver

ponds (e.g., Stevens et al. 2006; Dalbeck et al. 2014;

Zero and Murphy 2016), forest pools (e.g., Calhoun

et al. 2003; Vuorio et al. 2013; Van Dyke et al. 2017),

bog pools (Mazerolle et al. 2006), Alpine lakes

(Tiberti et al. 2018), karst ponds (Cirovic et al.

2008) or coastal rock pools (Laurila 1998). However,

amphibian diversity and species composition may

differ in natural water bodies and man-made ponds

(Hazell et al. 2004; Brown et al. 2012; Remm et al.

2015). Therefore, Estonia provides a unique opportu-

nity to compare a variety of natural small water bodies

with ponds specially constructed for threatened

amphibians, in order to find out their potential

differences and importance as breeding sites for

amphibians, including threatened species. Although

our previous studies have demonstrated that the

aquatic habitat restoration and construction targeted

to P. fuscus and T. cristatus has been successful

(Rannap et al. 2009a; Soomets et al. 2016), the role of

natural small water bodies as breeding sites for these

species is still unknown. Therefore, in this study we

explored the following research questions: (i) which

characteristics distinguish natural and constructed
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ponds; (ii) whether the amphibian diversity differs in

natural and constructed ponds and if so, which pond

and landscape characteristics could explain it; (iii)

which habitat features influence the breeding site

selection of threatened species, P. fuscus and T.

cristatus, and is there any difference between natural

and constructed ponds as breeding sites for these

species.

Methods

Study area

Our study was conducted within the range of T.

cristatus and P. fuscus (Soomets et al. 2016; Estonian

Nature Information Database), in areas where large-

scale pond construction has been carried out specif-

ically for these species since 2004 (Fig. 1; for a picture

of a typical constructed pond see Online Resource 1).

In northern Estonia the studied water bodies are

located on the Pandivere Upland, which is the highest

bedrock upland in Estonia (Fig. 1 area 1). The terrain

is hilly moraine with clearly defined eskers that rise

over 160 m a.s.l. Agricultural landscapes dominate the

area; grasslands and conifer-dominated forests cover

ca. 30%. The raised limestone topography causes

intense filtration and karst processes, such that many

temporary lakes are formed during the snowmelt and

rainfall in the spring, but which typically dry out by

late summer or early autumn (for a photo of the typical

karst pond of the study area see Online Resource 2). In

southern Estonia the study area is comprised of hilly,

well-forested landscape with small scattered settle-

ments and agricultural lands (Fig. 1 areas 3–6).

Numerous lakes, beaver floods, swamps and depres-

sions are found in these areas (for a photo of the typical

beaver flooding of the study area see Online Resource

3). In eastern Estonia the study area covers the oldest

and largest Estonian delta swamp and an island in

Lake Peipsi (Fig. 1 area 2). The lentic water bodies

include flooded marshes and depressions which can be

found on sandy areas near human settlements or in the

swamp (for a photo of a typical lentic water body of

the study area see Online Resource 4).

As the pond construction was especially targeted to

T. cristatus and P. fuscus, their habitat demands were

taken into account (Rannap et al. 2009a). To increase

colonization probabilities and preserve the existing

populations of target species (Semlitsch 2000; Pet-

ranka and Holbrook 2006; Petranka et al. 2007), at

least one pond was constructed within 200 m of an

existing breeding pond of these species. The ponds

constructed or restored for T. cristatus were located in

landscapes with a mosaic of forests and semi-natural

grasslands (Rannap et al. 2012). For P. fuscus semi-

natural grasslands and small extensively used fields or

vegetable gardens in sandy soils were considered

(Rannap et al. 2013, 2015).

Sample selection

In order to compare constructed ponds (restored or

created especially for threatened amphibians—T.

cristatus and/or P. fuscus) with natural ones, we

selected 85 from both pond types in regions where

large-scale pond construction has been carried out

(Fig. 1). For selecting natural ponds we used

orthophotos of Estonian Land Board. We defined

natural ponds as water bodies which have formed as a

result of different natural processes, ranging from

geological events to the activity of Eurasian beavers

(Castor fiber). These water bodies were either tempo-

rary or permanent, with an area less than 1 ha and

encompassed natural depressions, small karst lakes

and beaver floods (see Online Resources 2, 3, 4). Each

natural pond was located within a 500 m radius from

the constructed ponds—a maximum dispersal rate of

P. fuscus adults (Nöllert 1990; Nielsen and Dige 1995;

Hels 2002) and a distance within which most move-

ments of T. cristatus are made (Joly et al. 2001; Denoël

et al. 2013). For the constructed ponds, we randomly

selected 10–12 water bodies for each year in which

ponds had been constructed, excluding the years 2004,

2008 and 2009, in which fewer than ten ponds had

been constructed. The distance between two study

ponds was C 100 m. Mapinfo Professional 12.0 was

used for the compilation of the sample. During the

fieldwork, the preselected sample of natural ponds was

corrected for as several ponds had dried out. We

replaced the dried ponds with other adjacent small

natural water bodies.

Fieldwork and data collection

The fieldwork was carried out in June 2015, during the

larval period of all local amphibians in Estonia. Each

water body was visited once and we dip-netted the
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ponds using a standard method (Skei et al. 2006). To

detect the presence of amphibian larvae, a trained

herpetologist dip-netted 15–30 min in each water

body (the dip-netting effort increased proportionally

with the area of the pond), covering all parts of the

pond (the shore area, the area covered with vegetation

and open water), also the bottom of the pond and the

upper part of the water column were covered. In

addition, the eggs of two newt species found in the

area (T. cristatus and the smooth newt Lissotriton

vulgaris) were searched for and the presence of adult

individuals confirmed via visual observation. Since we

only visited each water body once, it was possible that

we missed species with extremely low larval abun-

dances. However, if this was the case, the ponds were

probably marginal, and not optimal breeding sites,

Fig. 1 Location of the

study area in Europe (A) and

in Estonia (B). Distribution

of studied water bodies (C):

1.Lääne-Viru; 2.Peipsi;

3.Otepää; 4.Karula;

5.Haanja; 6.Seto (circles—

natural water bodies,

triangles—constructed

water bodies)
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which should not remarkably affect our results. The

presence of fish in the pond was established using the

combined data of visual observation and dip-netting.

Given the difficulties in distinguishing the tadpoles of

the pool frog Pelophylax lessonae and the edible frog

P. esculentus (Adrados et al. 2010), we refer to those

species collectively as Pelophylax sp.

We assessed altogether 25 aquatic and terrestrial

features for each pond and its surroundings (Table 1),

considering potentially important characteristics for

larvae and adult amphibians (Nyström et al. 2002;

Gustafson et al. 2011; Suislepp et al. 2011; Rannap

et al. 2012, 2013, 2015; Denoël et al. 2013). In order to

determine the distance to the closest pond with the

target species, we used previous survey data (Rannap

et al. 2015; Soomets et al. 2016) and the orthophotos of

The Estonian Land Board and Estonian base map. The

genera of dominant water plants were recorded. We

measured the land cover within a 100 m and a 500 m

radius of the pond—covering the average home-range

and maximum migration distances of P. fuscus and T.

cristatus (Nielsen and Dige 1995; Jehle and Arntzen

2000; Hels 2002; Denoël et al. 2013), using a spatial

data calculator from the digital archive of the Univer-

sity of Tartu. In addition, the presence of sandy soils

and vegetable gardens were recorded only in the field,

because these landscape characteristics were missing

in the spatial data calculator. To be able to identify

these features, we chose a distance of 50 m from the

pond.

Data analysis

In order to find out the differences between natural and

constructed ponds, the characteristics of those two

water body types were compared. The features with

the normal distribution or with transformed values of

normal distribution, were analysed using a t test.

Otherwise the Mann–Whitney U test was used.

Discrete parameters were analysed using the v2 test.

The p values were subjected to Bonferroni correction

as a multiple-comparison correction, and the level of

statistical significance was corrected accordingly. This

correction has been considered suitable for our order

of magnitude of variables (McDonald 2014), but the

use of the correction might bring along a threat of false

negatives.

As T. cristatus and P. fuscus were the target species

for pond construction, the two pond types were also

compared with regard to these species. We considered

the pond as a breeding site if larvae or eggs of these

species were found. Since we visited each pond just

once, only presence/absence data was used for anal-

ysis. Ponds which were located outside the range of

one of the target species (Soomets et al. 2016), were

omitted from the analysis of that particular species.

We did not find larvae of the target species in ponds

with fish, thus, we considered the presence of fish as a

limiting factor for breeding of T. cristatus (e.g., Skei

et al. 2006; Rannap et al. 2012) and P. fuscus (e.g.

Nyström et al. 2002; Rannap et al. 2013) and we

omitted ponds hosting fish (natural ponds N = 10,

created ponds N = 3) from the analyses of these

species. In order to unify the data, the substrate of the

pond ‘sand’ and ‘clay’ were grouped as ‘mineral’. In

addition, as brown water was always clear, we

reclassified the two water colour groups ‘brown’ and

‘clear’ into ‘clear’.

To find out which habitat characteristics determine

the breeding of T. cristatus and P. fuscus we combined

the multistep procedure of Hosmer and Lemeshow

(2000) and the information-theoretic model selection

approach (Burnham et al. 2011) to build multiple

logistic regression models. We used the following

steps of analysis: (1) performed univariate logistic

regression analyses to estimate and test the effect of 25

variables one by one, using STATISTICA 8 software;

(2) conducted a correlation analysis for the p B 0.15

variables; (3) built 20 preliminary GLZ models of non-

correlated variables with p B 0.15 in univariate anal-

yses using expert knowledge; (4) fitted selected

models and used AIC model selection for models’

comparison in the program R 3.5.1. The variables with

p B 0.15 in univariate analyses were used in step 2

and 3 to retain variables that could gain significance in

combination with other variables (Hosmer and

Lemeshow 2000). As the variable ‘pond type’ con-

tained multiple factors we did not include it into the

GLZ models in step 3. When compiling the models,

we followed the subsequent principles: (1) considering

the importance of each variable in univariate analyses;

(2) using expert knowledge to test for possible

interactions and combinations; (3) including all fac-

tors which gained p B 0.15 in univariate analysis into

the set of models, since the importance of the

correlating factors is revealed through the AIC value;

(4) including only non-correlated factors to each GLZ

model.
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Table 1 Comparison of the values of the variables measured in natural (N) and constructed ponds (C)

Variable Description of the variable Type of

water body

N Median Min–max Pa

Shade % of the water table under shadow N 85 5 0–100 < 0.001

C 84 0 0–50

Slope Mean slope (�) of the four cardinal banks

of the pond

N 84 5 5–90 < 0.001

C 85 25 5–51.25

Shallow Mean width of shallow (up to 30 cm)

water zone in the pond (m) measured

from four cardinal edges (m)

N 77 3.75 0–75 < 0.001

C 84 1 0.2–8.75

Depth Maximum depth of water (m) N 83 0.5 0.2–2 < 0.001

C 78 1 0.2–2

Area Total area of the pond (m2) N 81 600 5–8000 < 0.001

C 84 300 5–1500

Vegetation\ 1 m % of pond area covered by\ 1 m high

vegetation

N 85 50 0–100 < 0.001

C 85 1 0–75

Mire 100 m % of mires within 100 m around the pond N 85 20 0–100 < 0.001

C 85 0 0–50

Forest 100 m % of forest within 100 m around the pond N 85 30 0–100 < 0.001

C 85 10 0–90

Near. forest Distance from the pond to the nearest

forest edge (m)

N 85 20 0–187 < 0.001

C 85 40 0–184

Near. T.c. pond Distance to the nearest pond with T.

cristatus (m)

N 85 676 1–11,134 < 0.001

C 85 169 1–11,089

Sediment Type of pond bottom (3 types) N 84 < 0.001

C 85

Peat

Mud

Mineral

Cattle Grazing by the pond N 85 0.003

C 85

Yes

No

Near P. f. pond (m) Distance to the nearest pond with P.

fuscus

N 85 346 19–9972 0.005

C 85 214 0–9904

Vegetable 50 m Presence of vegetable garden within 50 m

around the pond

N 85 0.005

C 85

Yes

No

Field 100 m % of crop field within 100 m radius from

the pond

N 85 0 0–100 0.008

C 85 40 0–100
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We determined amphibian diversity in each pond

by the presence of their larvae, eggs or adults. For

analysis, only presence/absence data was used. We

built multiple logistic regression models using the

program R 3.5.1. and following the procedure

described above. For the ordering of the models we

used MuMin package of R. As the data in the

amphibian diversity analyses were underdispersed,

we used Conway–Maxwell–Poisson distribution and

Conway–Maxwell-distribution package of R in these

analyses. In addition, we compiled a univariate model

including all amphibian species without T. cristatus

and P. fuscus (the target species of pond construction)

and taking ‘pond type’ as an independent factor.

Table 1 continued

Variable Description of the variable Type of

water body

N Median Min–max Pa

Field 500 m % of crop field within 500 m radius from

the pond

N 85 20 0–70 0.025

C 85 30 0–80

Water Transparency of colour of water N 84 0.027

C 84

Clear

Muddy

Vegetation[ 1 m % of pond area covered by[ 1 m high

vegetation

N 85 5 0–75 0.068

C 85 1 0–75

Floating vegetation % of pond area covered by floating

vegetation

N 85 10 0–100 0.658

C 85 1 0–100

Submerged % of pond area covered by submerged

vegetation

N 85 25 0–100 0.781

C 85 25 0–100

Grassland 100 m % of grassland within 100 m around the

pond

N 85 0 0–100 0.350

C 85 10 0–90

Forest 500 m % of forest within 100 m around the pond N 85 50 10–80 0.200

C 85 40 10–80

Grassland 500 m % of grassland within 500 m around the

pond

N 85 10 0–40 0.730

C 85 10 0–50

Fish Presence of fish in the pond N 85 0.043

C 85

Yes

No

Sand 50 m Presence of sandy soil within 50 m

around the pond

N 85 0.730

C 85

Yes

No

aThe p values which maintained their significance after Bonferroni correction are marked in bold
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Results

The characteristics of natural versus constructed

ponds

Natural and constructed ponds differed by 11 variables

(Table 1). Natural ponds were larger and shallower

with more gradually shelving slopes and a larger cover

of macrophytes (\1 m high water vegetation) than the

constructed ponds. They also were more shaded and

contained muddier sediment compared to the con-

structed ponds which were mostly sun-exposed and

contained mineral sediment (clay or sand). Addition-

ally, the natural ponds were often situated in mire

landscapes and were surrounded mostly by forest.

Amphibian diversity

Seven species of amphibians were found in the studied

ponds: L. vulgaris, T. cristatus, P. fuscus, the common

toad (Bufo bufo), the common frog (Rana temporaria),

the moor frog (R. arvalis) and green frogs (Pelophylax

sp.) Among them,Pelophylax sp. were the most common,

found in 72.4% of the ponds. T. cristatus and L. vulgaris

were found considerably more often in constructed ponds

than in natural ponds (Chi square test respectively:

v2 = 38.45, p\0.001; v2 = 33.72, p\0.001), whileR.

temporaria and R. arvalis preferred to breed in natural

ones (respectively: v2 = 11.08, p\0.001; v2 = 4.61,

p\0.032; Fig. 2).

The amphibian diversity differed between natural

and constructed ponds (N = 170; t = - 3.6; p\0.001)

with natural ponds having on average 2.4 ± 1.22

species (± SD, range 0–5) and constructed ponds

3 ± 1.16 species (± SD, range 1–6). When T. cristatus

and P. fuscuswere omitted from the amphibian data set,

the factor ‘pond type’ lost its significance (N = 169;

coef. = 0.07; p = 0.35). According to the univariate

regression analysis, several pond and landscape char-

acteristics influenced the amphibian diversity (Table 2).

The best model for the prediction of amphibian diversity

contained the following factors: field within 100 m

radius from the pond (with a positive influence) and

colour/transparency of water (clear water preferred),

slope (slanting slopes preferred), and presence of fish

(negative) (AIC = 533.75; Table 3). The next best

model contained the same factors listed above plus the

depth of the pond (deeper ponds preferred; Table 3).

Pelobates fuscus and Triturus cristatus

The larvae ofP. fuscuswere found in 19 ponds, of which

six were natural and 13 constructed. However, there was

no significant difference between natural and con-

structed ponds (N = 152; v2 = 3.63; p = 0.057; Fig. 2).

Importantly, no tadpoles were found in ponds with fish.

In univariate regression analysis only a few factors

appeared to have significant influence on the breeding of

P. fuscus (Table 4). The top ranked multifactorial model

for the prediction of larval presence (AIC = 107.8;

Table 5) contained the following factors: sandy soil

within a 50 m radius of the pond (positive influence),

proximity to the nearest pond with the presence of P.

fuscus (longer distances having a negative influence),

grazing by the pond (having a positive influence), and

percentage of mires within a 100 m around the pond

(having a negative influence). However, five additional

models remained within\2 DAIC units from the top-

ranking model, containing largely the same factors.

The eggs and larvae of T. cristatus were found in 55

ponds: 46 of these were constructed ponds and nine

natural ponds (Fig. 2). No T. cristatus larvae nor eggs

were found in ponds which contained fish. In contrast with

P. fuscus, several landscape and pond characteristics

appeared to have a significant influence on the presence of

the species in a univariate regression analysis (Table 6). It

revealed that T. cristatus prefers to breed in constructed

ponds with clear water and mineral sediment, close to

landscapes with mosaics of forest and open areas, and that
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Fig. 2 The occurrence of amphibian species in natural ponds

(N = 85) and in constructed ponds (N = 85)
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Table 2 The relation of

pond and landscape

characteristics to amphibian

diversity (variables

p B 0.15 presented; ;
negative influence; :
positive influence)

See Table 1 for acronyms

Variable T P Direction of effect

Pond type

Natural - 3.6 \ 0.01 ;

(constructed)

Region

Haanja

Lääne-Viru, Peipsi - 1.8 0.07 :

Otepää - 1.3 0.20 ;

Karula - 2 0.05 :

Depth (m) 1.9 0.06 :

Slope (�) - 1.9 0.06 ;

Sediment

Peat 1.0 0.34 :

Clay or sand 3.3 \ 0.01 :

(mud)

Colour

Clear or brown 2.4 0.01 :

(muddy)

Shade (%) - 2.4 0.02 ;

Field 100 m (%) 2.2 0.03 :

Mire 100 m (%) - 2.2 0.03 ;

Fish

1 - 2.0 0.05 ;

Table 3 Model selection

results for fitting amphibian

diversity

LogLikelihood (LogLik),

Akaike’s information

criterion (AIC), best models

marked in bold

See Table 1 for acronyms

Model AIC LogLik

1 Field 100 ? colour ? slope ? fish 533.75 2 260.87

2 Depth ? field100 ? slope ? fish ? colour 534.58 2 260.29

3 Shade ? fish ? colour 541.02 - 265.51

4 Sediment ? colour ? shade 541.45 - 264.73

5 Region ? fish ? shade 542.21 - 264.1

6 Color ? fish ? shade ? depth 542.85 - 265.42

7 Field100 ? fish ? colour 543.04 - 266.52

8 Depth ? color ? field ? fish 543.86 - 265.93

9 Fish*region 544.57 - 263.28

10 Field100 ? fish ? slope 544.86 - 267.43

11 Fish ? shade 546.16 - 269.08

12 Region ? shade 547.47 - 267.73

13 Depth ? mire100 ? fish ? slope 547.56 - 267.78

14 Depth ? slope 548.65 - 270.33

15 Field100 ? fish 549.31 - 270.65

16 Field100 ? fish ? depth 550.06 - 270.03

17 Fish 551.39 - 272.70

18 Fish ? region 551.49 - 269.75

19 Depth ? mire100 ? fish 551.74 - 270.87

20 Fish ? depth 552.26 - 272.43
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Table 4 The relation of

pond and landscape

characteristics to the

presence of P. fuscus larvae

(only variables (p B 0.15)

presented

; Negative influence; :
positive influence. See

Table 1 for acronyms

Variable N v2 P Effect direction

Pond type 152 2.6 0.11

Natural 74 ;

Constructed 78

Region 152 11.59 0.01

Haanja 51 ;

Lääne-Viru, Peipsi 17 :

Otepää 35 ;

Karula 49

Cattle 0/1 152 3.10 0.08

0 127 ;

1 25

Sand 50 m 1/0 152 6.16 0.01

0 143 ;

1 9

Forest 500 m (%) 152 5.45 0.02 ;

Field 100 m (%) 152 2.73 0.10 :

Forest 100 m (%) 152 3.15 0.08 ;

Mire 100 m (%) 152 3.16 0.08 ;

Distance to the closes P.f. pond (m) 152 5.39 0.02 ;

Table 5 Model selection

results for fitting P. fuscus

presence/absence

Degrees of freedom (Df),

LogLikelihood (LogLik),

Akaike’s information

criterion (AIC), relative

difference in AIC (DAIC),

model weights (weight)

Best models marked in bold

Model Df LogLik AIC DAIC Weight

1 Cattle ? closest P.f. pond ? mire100 ? sand50 5 2 48.89 108.2 0 0.18

2 Sand50 ? forest500 3 2 51.11 108.4 0.19 0.16

3 Forest100 ? mire100 ? sand50 4 2 50.3 108.9 0.68 0.12

4 Sand50 ? mire100 3 2 51.43 109 0.83 0.11

5 Cattle ? sand50 ? mire100 4 2 50.67 109.6 1.43 0.09

6 Sand50 ? closest P.f. pond 3 2 52.07 110.2 1.99 0.07

7 Cattle ? sand50 ? closest P.f. pond 4 - 51.09 110.4 2.26 0.06

8 Region 4 - 51.47 111.2 3.03 0.04

9 Cattle ? closest P.f. pond ? mire100 4 - 51.92 112.1 3.92 0.03

10 Sand50 ? field100 3 - 53.04 112.2 4.06 0.02

11 Sand50 ? forest100 3 - 53.08 112.3 4.14 0.02

12 Sand ? cattle 3 - 53.09 112.3 4.15 0.02

13 Sand50 2 - 54.19 112.5 4.27 0.02

14 Closest P.f. pond ? mire100 3 - 53.24 112.7 4.46 0.02

15 Cattle ? closest P.f. pond 3 - 53.30 112.8 4.58 0.02

16 Closest P.f. pond 2 - 54.60 113.3 5.08 0.01

17 Cattle ? mire100 3 - 54.29 114.7 6.54 0.01

18 Field100 ? cattle 3 - 54.53 115.2 7.04 0.01

19 Cattle 2 - 55.72 115.5 7.33 0.00

20 Field100 2 - 55.91 115.9 7.7 0.00
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it tends to avoid mires. The top ranked multifactorial

model for the prediction of the presence of T. cristatus

larvae and eggs contained the following factors: ‘region’

(the most suitable being Haanja and Seto regions) and

‘sediment’ (clay or sand preferred) (AIC = 132.9;

Table 7). The next best model with an AIC value of

133.8 was a subset of the best model with the additional

factor of ‘grassland within a 500 m radius of the pond’

(higher proportion with positive influence).

We found a positive correlation between the breeding

of T. cristatus and the presence of certain macrophytes,

such as Potamogeton (v2 = 4.8; df = 1; p = 0.03) and

Glyceria (v2 = 4.6; df = 1; p = 0.03). The breeding was

negatively correlated with the presence of Carex

(v2 = 5.0; df = 1; p = 0.03) (Fig. 3). Natural and

constructed ponds differed in terms of the presence of

those plant genera: there was more Potamogeton and

Glyceria found in the constructed ponds (respectively:

v2 = 11.2, df = 1, p\0.001; v2 = 21.7, df = 1,

p\ 0.01) and more Carex in the natural ponds

(v2 = 13.2, df = 1, p\ 0.01; Fig. 3).

Discussion

Natural and constructed ponds as breeding sites

for amphibians

Our study demonstrated that amphibian diversity was

higher in constructed or restored ponds than in small

Table 6 The relation of

pond and landscape

characteristics to the

presence of T. cristatus

larvae (only variables

(p B 0.15) presented

; Negative influence; :
positive influence

See Table 1 for acronyms

Variable N v2 P Direction of effect

Pond type 155 36.05 \ 0.01

Natural 74 ;

Constructed 81

Region 155 49.11 \ 0.01

Haanja 56 :

Lääne-Viru, Peipsi 15 :

Otepää 35 :

Karula 49

Area (m2) 151 12.01 \ 0.01 ;

Shallow zone (m) 147 9.07 \ 0.01 ;

Sediment 154 31.50 \ 0.01

Peat 19 ;

Mud 66 ;

Sand or clay 69

Colour of water 153 3.86 0.05

Clear or brown 131 :

Muddy 22

Cattle 0/1 155 3.37 0.07

0 130 :

1 25

Shade (%) 154 2.22 0.14 ;

[ 1 m vegetation (%) 155 4.40 0.04 ;

\ 1 m vegetation (%) 155 6.89 \ 0.01 ;

Submerged vegetation(%) 155 2.80 0.09 :

Grassland 500 m (%) 155 2.82 0.09 ;

Forest 500 m (%) 155 6.17 0.01 :

Field 500 m (%) 155 2.82 0.09 ;

Field 100 m (%) 155 9.52 \ 0.01 :

Mire 100 m (%) 155 16.25 \ 0.01 ;

Distance to the closest T.c. pond (m) 155 44.92 \ 0.01 ;
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natural water bodies. However, previous studies

comparing the amphibian diversity and population

structure of natural and man-made ponds have yielded

variable results depending on the concrete type of

water body and the species studied (for a review see

Brown et al. 2012). In our study, species richness was

associated with deeper ponds with gradually shelving

slopes and transparent water, absence of fish and

presence of fields nearby. All aquatic habitat charac-

teristics listed above have proven to be important for

amphibians (e.g., Semlitsch 2002; Porej and Hether-

ington 2005; Rannap et al. 2012; Vojar et al. 2016;

Miró et al. 2017; Remm et al. 2018). Constructed

ponds were deeper having mainly transparent water

and no fish, while natural ponds held more frequently

fish, but also had more gradually shelving slopes.

Whereas constructed ponds were created mainly on

mineral soils, having clayish or sandy sediment that

assures clear transparent water, natural water bodies

were often located close to the mires, having peaty or

muddy sediment. Transparent water indicates high

oxygen and low nutrient levels of water bodies

(Brönmark and Hansson 2005). Our study was also

Table 7 Model selection results for fitting T. cristatus presence/absence

Model Df LogLik AIC DAIC Weight

1 Region ? sediment 6 2 60.45 133.5 0.00 0.60

2 Grass500 ? region ? sediment 7 2 59.90 134.6 1.1 0.35

3 Region*sediment 11 - 57.29 138.4 4.97 0.05

4 Shade ? closest T.c. pond ? area 4 - 68.02 144.3 10.85 0.00

5 Cattle ? shade ? closest T.c. pond ? area 5 - 66.99 144.4 10.92 0.00

6 Field100 ? closest T.c. pond ? area 4 - 70.65 149.6 16.09 0.00

7 Field100 ? closest T.c. pond 4 - 71.30 150.9 17.38 0.00

8 Closest T.c. pond ? area 3 - 72.97 152.1 18.62 0.00

9 Cattle ? closest T.c. pond ? area 4 - 72.47 153.2 19.73 0.00

10 Shade ? closest T.c. pond 3 - 74.22 154.6 21.13 0.00

11 Region ? area 5 - 72.49 155.4 21.93 0.00

12 Vegetation [ 1 m ? closest T.c. pond 3 - 76.01 158.2 24.71 0.00

13 Closest T.c. pond 2 - 78.25 160.6 27.10 0.00

14 Region 4 - 76.23 160.7 27.26 0.00

15 Submerged ? sediment 4 - 82.92 174.1 40.63 0.00

16 Sediment 3 - 84.62 175.4 41.92 0.00

17 Colour ? forest500 ? cattle 5 - 85.99 182.4 48.91 0.00

18 Area 2 - 92.37 188.8 55.34 0.00

19 Shadow ? mire100 ? submerged ? vegetation\ 1 5 - 89.27 189.0 55.48 0.00

20 Submerged ? shade ? cattle 4 - 95.66 199.6 66.11 0.00

Degrees of freedom (Df), LogLikelihood (LogLik), Akaike’s information criterion (AIC), relative difference in AIC (DAIC), model

weights (Weight)

Best models marked in bold
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consistent with previous surveys, demonstrating that

the presence of fish is a major limiting factor for pond-

breeding amphibians (e.g. Joly et al. 2001; Hartel et al.

2007; Brown et al. 2012). The positive impact of the

pond depth on amphibian species richness was prob-

ably through the length of the hydroperiod—deeper

ponds retain water for longer (Beja and Alcazar 2003)

and thus, favour usually more species (Oertli et al.

2002; Péntek et al. 2017). The positive effect of the

fields (open habitat) in the vicinity of the breeding sites

on amphibian diversity could derive from a general

lack of such sun-exposed habitats caused by large-

scale overgrowing/afforestation in Estonia, as demon-

strated previously by Rannap et al. 2015. Importantly,

the natural water bodies were mainly found in forested

areas, while constructed ponds were located in open

areas, often near extensively used fields.

Although the constructed ponds appeared to

provide optimal breeding conditions for various

amphibian species, the factor ‘pond type’ lost its

significance when species of conservation concern—

T. cristatus and P. fuscus—were removed from the

analysis. Thus, the higher amphibian diversity in the

constructed ponds is largely related to the habitat

demands of these threatened species. Moreover, our

results testified to the importance of natural ponds for

common species. Rana temporaria and R. arvalis, the

two Boreal Palearctic anurans occurring often in mire

and forest habitats (Elmberg 1993; Suislepp et al.

2011; Remm et al. 2015, 2018), were found more often

in natural water bodies than in constructed ponds.

Thus, our study supports previous amphibian surveys,

showing that a niche position is of decisive importance

for rare species (Rannap et al. 2009b). The presence of

resources which have become locally scarce, but

which were considered when digging the ponds (e.g.,

pond’s exposure to the sun, presence of mineral soil

and high quality terrestrial habitats) is vital for the

survival of rare amphibians, whereas more common

species can live and survive on the more widespread

and accessible resources. In addition to providing

breeding sites for amphibians, different kinds of small

natural water bodies also provide essential habitat for

invertebrates (Harthun 1999; Mazerolle et al. 2006;

Colburn et al. 2007; Vaikre et al. 2018), zooplankton

communities (Caramujo and Boavida 2010), wetland

plants (Rhazi et al. 2012) and multiple other taxo-

nomic groups.

Breeding site selection by Triturus cristatus

and Pelobates fuscus

Our study confirmed that the pond construction has

had a significant impact on the increase of the

population of T. cristatus in Estonia (Rannap et al.

2009a; Soomets et al. 2016). The species bred mainly

in the constructed ponds in the Haanja and Seto

regions and was less commonly found in Karula

(Fig. 1). The reason that the regions differ so much in

their suitability as breeding habitat may be related to

the soil types found in those regions. It has been

previously known that T. cristatus occurs mainly on

clay or loam soils and more rarely on sandy soils

(Edgar and Bird 2006). In the Haanja and Seto areas

the main soil types are clay or loam, while in Karula

sandy soils are prevalent (Rooma and Voiman 2002).

In addition to the region, the mineral sediment in the

pond itself was important for T. cristatus. This

amphibian’s preference for breeding in constructed

ponds could therefore be related to the location of

these ponds in mineral soils; the natural ponds were

often situated in mires. Also the presence of grasslands

in the average migration range of T. cristatus was

essential for the species. Previous studies have indi-

cated that T. cristatus prefers a mosaic of (deciduous)

forests and grasslands as terrestrial habitat (Rannap

et al. 2009b, 2012; Gustafson et al. 2011; Miró et al.

2017) or open landscapes (Denoël et al. 2013) and

avoids mires (Gustafson et al. 2011). However,

demands for specific types of terrestrial habitat vary

across the species’ range (Miró et al. 2017; Skei et al.

2006; Vuorio et al. 2013), hence the need to take into

account the specific preferences of local populations in

habitat management (Miró et al. 2017).

In addition, our study confirmed that the breeding

of T. cristatus can be predicted by presence of two

macrophyte genera—Potamogeton and Glyceria,

which occurred more frequently in constructed than

in natural ponds. Also previous studies have demon-

strated that these plant genera have a positive influence

on the breeding site selection of T. cristatus (Gus-

tafson et al. 2006; Miaud 1995; Sztatecsny et al. 2004),

as this species prefers leaves of plants that can be

easily folded (Miaud 1994). Both plant species have

underwater leaves which T. cristatus uses for egg-

laying (R. Magnus personal observations). As the

predator pressure on the eggs of T. cristatus is

relatively high and egg survival varies between 3
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and 16%, folding their eggs within the leaves of these

macrophytes provides protection from the predation of

water invertebrates and other newts (Miaud

1994, 1995).

The presence of P. fuscus tadpoles in the pond was

mainly related to the soil and landscape characteristics

in the surroundings of the breeding site. Considering

the results of previous studies, the landscape features

and soil type in the vicinity of the breeding site are

important for P. fuscus (Eggert 2002; Nyström et al.

2007; Rannap et al. 2013; Carisio et al. 2014). The

species bred considerably more often in ponds which

were located in sandy soils. It is known that the adult

individuals stay close to their breeding sites (Hels

2002) and (due to their nocturnal lifestyle) spend most

of their time dug into the soil (Székely et al. 2017).

Thus the availability of sandy soils which can easily be

dug by the toad is essential for the species (Eggert and

Guyétant 1999; Eggert 2002). In addition, the exis-

tence of P. fuscus tadpoles in the pond could also be

predicted by land cover types in the vicinity of the

breeding site—open areas with grazing were pre-

ferred, whereas forested and mire areas avoided,

which is corroborated by previous studies (Kauri

1947; Eggert 2002; Eggert et al. 2006; Rannap et al.

2015). Similarly to T. cristatus, the terrestrial habitat

preferences of P. fuscus also vary across its range—the

species inhabits mostly open agricultural areas in

Western-Europe, although at the edges of its range it

also occurs in forested areas (Nyström et al. 2002;

Rannap et al. 2013). Additionally, the presence of

water bodies with conspecifics near the breeding sites

of P. fuscus was positively correlated with the

occurrence of its tadpoles. A clustered configuration

of water bodies increases the probability of successful

breeding and secures ecological connectedness and

long-term survival of meta-populations (Semlitsch

2000; Petranka et al. 2007). As discussed earlier in this

paper, a number of natural ponds have been destroyed

due to drainage; others do not possess qualities

essential for amphibians to breed in (Suislepp et al.

2011), thus natural water bodies which provide high-

quality breeding sites for amphibians are scarce in

modern Estonian landscapes (Rannap et al. 2009a;

Remm et al. 2015).

Both, T. cristatus and P. fuscus avoided ponds with

fish. The negative impact of fish on T. cristatus

breeding has been demonstrated in earlier studies

(Morand and Joly 1995; Reshetnikov 2003; Rannap

et al. 2012; Miró et al. 2017). Fish influence the

abundance of the species during different phases of the

newt’s development. While larger fish eat the adults

and larvae of the newt, smaller fish feed on its eggs and

larvae (Denoël and Ficetola 2008). In contrast with

other newt species, T. cristatus does not have a

morphological or life-history plasticity which would

be related to the presence of predators (Schmidt and

Van Buskirk 2001). In case of P. fuscus, its larvae also

constitute easy prey for fish due to their lengthy

developmental time and nektonic behaviour.

Implications for management

The results of our study demonstrated that within the

Estonian range of P. fuscus and T. cristatus natural

ponds have been preserved mainly in forested and

mire areas and rarely occur in open areas with mineral

soils. Therefore, the construction of ponds in such

landscapes has proven to be effective for restoring

habitats, especially when threatened species were

considered. The construction of special ponds for

amphibians helps to provide specific conditions for

threatened species with particular habitat demands

(see also Rannap et al. 2009a). Additionally, these

ponds contribute to maintaining overall amphibian

diversity and providing quality habitat for aquatic

invertebrates (Soomets et al. 2017).

In the management of constructed ponds, the

introduction of fish should be avoided and some of

the tall and dense vegetation and bushes (bulrush,

willows) removed in order to avoid the pond becoming

overgrown and shaded. If the ponds are constructed for

specific target species, the location of these ponds is

crucial, considering the current distribution range of the

species as well as its habitat requirements. For P.

fuscus, the presence of sandy soils and the avoidance of

forests and mires in the vicinity of breeding sites is vital,

whereas for T. cristatus, the availability of mineral soil

and grasslands near the breeding pond is important.

Although natural ponds did not provide optimal

breeding conditions for the threatened amphibians,

they were still used by common species inhabiting

forest landscapes, such as Rana arvalis and R.

temporaria. It is therefore of high importance to

protect natural ponds that still have an intact hydrol-

ogy, are open to the sun and do not contain fish.

Moreover, there are some minor factors, which can be

easily changed with management practices (e.g.,
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removal of bushes, ditch blocking), that could guar-

antee suitable breeding conditions for amphibians in

natural ponds. In some cases the restoration of small

water bodies which have been altered by ditching

could also be considered (Suislepp et al. 2011; Remm

et al. 2018).

Given the substantial differences between the

characteristics of constructed and natural small water

bodies, a variety of ponds might function as a cluster in

the landscape, preserving amphibian meta-popula-

tions and supplementing one another in case of

changing environmental conditions (e.g., climate,

predation). Thus, the construction of ponds is impor-

tant even in landscapes where natural small water

bodies have still been preserved. To specify how these

water bodies of different types supplement each other

in the maintenance of amphibian populations, addi-

tional studies covering multiple years would be

needed.
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Appendix

See Tables 8, 9, 10.

Table 8 Redundancy of the ecological variables, which attained p B 0.15 for amphibian diversity in univariate analyses (see

Table 1 for acronyms)

Variable Related variable

Region Depth, field 100 m, colour, slope

Depth Region

Sediment Shade, Field 100 m, mire 100 m, slope, fish

Shade Sediment, field 100 (rS = - 0.22), mire 100 m (rs = 0.16), slope (rs = - 0.17)

Field 100 m Region, sediment, shade, mire 100 m (rs = - 0.31)

Mire 100 m Shade, field 100 m, sediment

Colour Region

Slope Region, shade

Fish Sediment

Significance (p\ 0.05) according to Spearman correlation (continuous variables), Chi square test (categorical variables) or Kruskal–

Wallis ANOVA (combination of the two)

Table 9 Redundancy of the ecological variables, which attained p B 0.15 for P. fuscus in univariate analyses (see Table 1 for

acronyms)

Variable Related variable

Region Cattle, forest500, field100, forest100, mire100, closest P.f. pond, sand50

Cattle Region, forest500, forest100

Forest 500 m Region,cattle, forest100 (rs = 0.45), mire100 (rs = 0.13), field100 (rs = - 0.33), closest P.f. pond (rs = 0.11)

Field 100 m Region, forest500, forest100 (rs = - 0.47), mire100 (rs = - 0.33), closest P.f. pond (rs = - 0.19)

Forest 100 m Region, cattle, forest500, closest P.f. pond (rs = 0.26)

Mire 100 m Region, forest500, field100

Closest P.f. pond Region, forest500, field100, forest100

Sand 50 m Region

Significance (p\ 0.05) according to Spearman correlation (continuous variables), Chi square test (categorical variables) or Kruskal–

Wallis ANOVA (combination of the two)
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