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Abstract Estimation of carbon pools and fluxes

were conducted in Bruguiera parviflora dominated

naturally growing protected mangrove forest in Kuala

Selangor Nature Park of Peninsular Malaysia. Above

and below-ground carbon pools in seedlings were

estimated from destructive methods. While, carbon

pools and fluxes in saplings and trees were estimated

from the derived allometric biomass equations. Car-

bon concentrations in different parts of seedlings,

saplings and trees; and litter were measured during the

dry, wet and intermediate seasons. Soil cores up to 1 m

were analyzed to measure carbon concentrations and

bulk densities at different depths. Litter standing crop

of the study area was measured at the dry, wet and

intermediate seasons and the range of total amount of

litter standing crop was from 0.66 to 0.88 Mg/ha.

Carbon concentration found to vary with the plant and

litter parts; and also with the seasons and the range of

mean weighted carbon concentration was 40.19 ±

0.87–56.52 ± 1.01 %. The carbon pools in seedling,

sapling, tree and litter were 0.69, 0.51, 82.62 and 0.41

Mg C/ha respectively. However, 13.95 Mg C/ha/year

of carbon flux was associated with saplings, trees and

litter. The estimated carbon pool in the soil (up to 1 m)

of the study area was 488.04 Mg C/ha. The findings of

this study are the first estimation of carbon pools and

fluxes in B. parviflora dominated sites and suggests the

potential of this site as a carbon pool.

Keywords Carbon flux � Carbon pool �
Biomass � Bruguiera parviflora � Litter �
Mangroves

Introduction

At the beginning of industrial revolution, atmospheric

CO2 concentration increased from 290 to 370 ppm by

the year of 2002 (Keeling et al. 1989; Kimmins 2004).

The future prediction of CO2 concentration in the

atmosphere is highly variable and depends on the

trends of population increase, per capita use of fossil

fuels, land use changes and rate of deforestation

(Kimmins 2004). Elevated concentration of CO2 in the

atmosphere leads to global warming and results in

climate change. Climate change and its consequences

are the major threats towards sustainable develop-

ment. Scientific communities are concerning about the

climate change problems and looking for different

mitigation technologies and measures. The most

promising measures are to reduce the emission of

CO2 and conservation of forest. Forestry can make

significant contributions to mitigate this global risk

with adaptation and sustainable development (IPCC

2007). Most of the carbon studies were focused on the

terrestrial forests. But, the role of mangroves and
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wetlands in carbon sink were ignored previously

(Rattan 2008; Komiyama et al. 2008; Kridiborworn

et al. 2012).

Mangrove forests are serving as carbon sink; and

these forests provide feeding, breeding, and nursery

ground for a variety of fish and wild life, recreational

opportunities, and protection from coastal storms and

extreme weather events (Ellison 2008; Alongi 2009).

These forests support the dissolved and particulate

form of carbon to the aquatic ecosystem which is

important for the benthic and pelagic communities in

the adjacent waters (Bouillon et al. 2008). The

mangrove forests have high root-shoot ratios (Fujim-

oto et al. 1999; Page et al. 2002; Komiyama et al.

2008), and have the capacity to store great amount of

carbon in soil at several meters depth (Bouillon et al.

2003). Mangroves have more carbon in their soil alone

than most tropical forests have in all their biomass and

soil combined (Kristensen et al. 2008; Donato et al.

2011). In spite of their ecological, economic and social

importance, the mangrove forests are threatened by

land use changes. Rates of deforestation/conversion

are among the highest of all tropical forests, far

exceeding rates in upland forests (Valiela et al. 2001;

Langner et al. 2007).

Malaysia contributes about 4 % of the world

mangrove forest and these are under sustainable yield

management practices. Peninsular Malaysia contains

only 17 % of the country’s total mangrove forests,

which mostly concentrates on the sheltered west coast,

and almost continues from Kedah to Singapore. Of

these forests, only 0.3 % of mangrove areas are legally

gazetted as protected areas (Spalding et al. 1997).

Total mangroves area in Malaysia was about

650,000 ha during 1982 (Ong 1982) and this area

coverage was reduced to about 641,000 ha at the end

of 1993 (ISME 1993). During this time, about

9,000 ha of mangrove forest were destroyed, which

constituted 1.26 % of yearly destruction and remains

higher than the world average destruction rate. The

destruction of mangrove areas in Malaysia is mainly

due to the construction of sea ports, airports, and

industrial estates and agricultural land use. The

depletion of mangroves results in serious environ-

mental and economic constraint in the coastal region

(Ong 1982). These forests may be of high value in

terms of carbon storage, which is particularly relevant

to climate change mitigation strategies focusing on

reducing carbon emissions through reduction of

destruction. Reduced Emissions from Deforestation

and Forest Degradation (REDD?) in developing

countries has emerged as a likely component of the

next international policy effort addressing climate

change, to be implemented when the Kyoto Protocol

expires in 2012 (Kanninen et al. 2007). This

programme would offer economic incentives for

conserving forests and associated carbon stocks,

intended to offset the short-term economic factors

that promote deforestation. Malaysian mangrove for-

ests can be ideal candidates for REDD? strategies.

However, the viability of such a programme depends

heavily on having sound information on carbon

storage in forests, and how much carbon may be

released when these forests are converted. The quan-

tification of carbon emission from deforestation and

conversely their values as carbon reservoirs, it is

important to quantify the total ecosystem carbon stock.

Only one study (e.g. Ong 1993) has quantified the

carbon stock (above-ground and below-ground) in

Malaysian mangroves. Recent reviews of coastal

carbon dynamics and energetics contained little or

incomplete data on the total ecosystem carbon storage

of mangroves (Bouillon et al. 2008; Alongi 2009;

Laffoley and Grimsditch 2009). Therefore, the aims of

this study were to estimate the carbon pools and fluxes

(above and below ground) in the naturally growing

protected mangrove forest in Peninsular Malaysia.

Materials and methods

Description of the study site

The study area is Bruguiera parviflora Wight & Arn.

dominated naturally growing mangrove forest in

Kuala Selangor Nature Park (Latitudes 3�190–3�200N
and 101�140–101�150E) on the west coast of the Malay

Peninsula. It is a fringing mangrove growing at the

mouth of the Selangor River, which has an average

width of 200 m between sea and land interface. This

mangrove forest belongs to Watson’s (1928) tidal

inundation class 4 (the maximum tidal height is 4 m

above the datum). Bruguiera parviflora, Avicennia

alba Blume, Rhizophora apiculata Blume, R. mucro-

nata Lam and Sonneratia caseolaris (L.) Engl. are the

common species in this forest. The mean annual

rainfall is about 1,790 mm. The wet season (Septem-

ber–December), intermediate season (January–April)
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and dry season (May–August) contribute about 46, 31

and 23 % of the annual rainfall respectively. The mean

minimum and maximum temperatures are 24 and

32 �C respectively. Soil texture is clay and pH varies

from slightly acidic to neutral (6.77–7.07). Soil

salinity varies from 39.03 to 59.03 m.e./100 g and

cation exchange capacity varies from 34.53 to

38.23 m.e./100 g (Mahmood 2004).

Standing biomass and annual biomass increment

Above-and below-ground biomass of B. parviflora

seedlings was estimated from destructive sampling

method. A total of eighteen plots (1 m 9 1 m) were

selected randomly and seedlings of B. parviflora

inside the plots were collected with their root system.

Low-pressure water jet was used to loosen the soil

from the collar region of seedlings and the surrounding

areas at 50 cm radius. Once the soil was sufficiently

loosened, the seedlings were uprooted. The collected

seedlings from each plot were then separated into

leaves, stems and roots. The fresh mass of each part

was measured and recorded in the field at plot basis.

Sub-samples from each part (about 0.25 kg) were

brought back to the laboratory to obtain fresh to oven

dry mass conversion ratios at 80 �C. The oven-dry

mass (kg) of seedling parts was calculated from the

respective fresh to oven-dry mass (kg) conversion

ratios. The above and below-ground biomass and

annual biomass increment of B. parviflora saplings

and trees were taken from Mahmood et al. (2008).

Litter standing crop and litter production

Natural litter bed (leaves, small branches, bracts and

propagules) of the study area was observed from 18

randomly selected plots (1 m 9 1 m) during the wet,

intermediate and dry seasons. All litter from the

individual plot was collected. The collected litter was

washed thoroughly to remove all the dirt and sediment

particles and sorted into leaves, small branches

(diameter \2 cm), bracts and propagules. Leaves

were again sorted into intact and broken leaves. The

sorted litter was oven dried at 80 �C until constant

mass. Total amount of litter standing crop and their

parts in different seasons were compared by one way

analysis of variance followed by Duncan Multiple

Range (DMRT) Test by using SAS (6.12) statistical

software. The amount and rate of litter production of

the study area was taken from Mahmood et al. (2005).

Carbon in plant and litter parts; and soil

Six seedlings were randomly selected, uprooted and

separated into parts as described earlier. Six saplings

were randomly selected and uprooted by low pressure

water jet and portable winch. Collected saplings were

then separated into different parts (leaves, buds,

branches, bark, stems and roots). Six trees were

selected randomly and sub-samples of leaves, buds,

and small branches (diameter \2 cm) were collected

by using sharp knife attached with long pole. Bark

samples were collected by using sharp knife and stem

samples were collected by using stem borer. One

buttress root was selected randomly from each tree and

roots were excavated followed by the buttress root by

using water jet. Sub-samples (about 100 g) of different

parts of seedlings, saplings and trees were collected

randomly during the dry, wet and intermediate

seasons. Sub-samples were then oven-dried at 80 �C

until constant mass. Eighteen litter traps (1 m 9 1 m)

were suspended under the tree canopy at a height of

1.5 m above the ground level (beyond the reach of

high tides). The trapped litter was collected at monthly

to get the litter samples during the dry, wet and

intermediate seasons. Season wise litter samples were

sorted into leaves, small branches, bracts, flowers and

propagules and oven dried at 80 �C until constant

mass. Nine samples of soil were collected randomly

for the determination of bulk density and carbon

concentration at the following depths: 0–15, 15–30,

30–50 and 50–100 cm by using core sampler of 5 cm

diameter. The different samples of seedlings, saplings,

trees and litter parts; and soil were processed accord-

ing to Allen (1974). Carbon concentrations in the

samples were measured by using Leco CR—12

Carbon determinator, USA. Carbon concentration in

different parts of seedlings, saplings and trees and

litter at different seasons were compared by one way

analysis of variance followed by DMRT (p \ 0.05) by

using SAS (6.12) statistical software. Carbon pool in

plant parts was estimated from their weighted mean

carbon concentration and the respective oven-dry

biomass. Carbon pool in each soil layer was estimated

as the product of the carbon concentration and their

corresponding bulk density of each layer.
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Results

Biomass and annual biomass increment

The above and below-ground biomass of seedlings,

saplings and trees of B. parviflora were 1.12, 0.89 and

142.46 Mg/ha; 0.25, 0.14 and 18.93 Mg/ha respec-

tively (Table 1). Mahmood et al. (2008) reported the

yearly average biomass increments for saplings and

trees were 0.58 and 16.51 Mg/ha/year respectively

(Table 2).

Litter standing crop and litter production

The amount of different parts of litter standing crop

showed significant (p \ 0.05) variation among the

seasons. Comparatively (p \ 0.05) higher amount of

leaf litter standing crop was observed during the

intermediate seasons and lower amount during the dry

seasons. The amount of total litter standing crop was

ranged from 0.66 to 0.88 Mg/ha (Table 3). Litter

production was 10.35 t/ha/year and the rate of leaf

litter, small branches, bracts, flowers, propagules and

total litter production varied from 1.63 to 3.07, 0.08 to

0.38, 0.13 to 0.39, 0.01 to 0.23, 0.03 to 2.29 and 2.31 to

4.46 g/m2/day respectively (Mahmood et al. 2005).

Carbon concentration in plants and litter parts;

carbon pool and fluxes

Seasonal fluctuation in carbon concentration in different

parts of seedlings was observed and stems (48.64 ±

0.08–56.24 ± 0.03) contained relatively (p\0.05)

higher carbon followed by leaves and roots (Fig. 1). In

saplings parts, stems (46.53 ± 0.06–52.40 ± 0.08 %)

and branches (48.05 ± 0.03–50.28 ± 0.06 %) showed

comparatively (p \0.05) higher carbon concentrations

at different seasons and leaves contained lower carbon

(Fig. 2). In trees, stems (45.26 ± 0.01–57.52 ± 0.02 %)

and roots (46.06 ± 0.01–53.68 ± 0.03 %) contained

comparatively (p \0.05) higher carbon concentration

during different seasons (Fig. 3). However, compara-

tively (p \0.05) higher carbon concentration

(48.77 ± 0.07–54.92 ± 0.02 %) was found in leaves

of litter production in different seasons (Fig. 4) and all the

parts of litter standing crops showed wide range in carbon

concentration among the seasons (Fig. 5). Most of the

parts of seedlings, saplings, trees and litter were found to

contain higher carbon concentration during the dry T
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seasons (Figs. 1, 2, 3, 4, 5). Considerable variations in

weighted mean carbon concentrations (40.19 ±

0.87–56.52 ± 1.01) were observed for different parts

of seedlings, saplings, trees and litter (Table 4). The

carbon pools in above and below-ground plant material

were 74.45 and 9.78 Mg C/ha respectively. The estimated

carbon pool in the soil (up to 1 m) of the study area was

488.04 Mg C/ha. However, 13.95 Mg C/ha/year of

Table 2 Annual biomass increment in different parts of Bruguiera parviflora saplings and trees (after Mahmood et al. 2008)

Growing

stage

Leaves

(Mg/ha)

Bud

(Mg/ha)

Branches

(Mg/ha)

Stems

(Mg/ha)

Bark

(Mg/ha)

Roots

(Mg/ha)

Total

(Mg/ha)

Saplings 0.04 0.06 0.38 0.05 0.05 0.58

Trees 1.11 0.05 4.11 7.99 1.09 2.16 16.51

Table 3 Amount of litter standing crops at different seasons

Sampling season Intact leaves

(Mg/ha)

Broken leaves

(Mg/ha)

Small branches

(Mg/ha)

Bract

(Mg/ha)

Propagules

(Mg/ha)

Wet season 0.237 ± 0.005b 0.238 ± 0.008b 0.170 ± 0.019a 0.011 ± 0.000b 0

Intermediate season 0.296 ± 0.019a 0.329 ± 0.032a 0.169 ± 0.024b 0.015 ± 0.000a 0.01 ± 0.002b

Dry season 0.176 ± 0.014c 0.213 ± 0.005c 0.146 ± 0.009c 0.009 ± 0.000c 0.334 ± 0.141a

Mean values in each column identified with the same letter are not significantly (p [ 0.05) different
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carbon flux was associated with different parts of

saplings, trees and litter production (Table 5).

Discussion

Carbon concentrations in different parts of plant are

strongly related with the biological activities of the

plant parts (Santa Regina 2000) and structural com-

ponents of plant cell (Kaakinen et al. 2004). This could

be the reason for observing variation in carbon

concentration in different parts of plants and litter

components. Moreover, comparatively higher carbon

concentrations were usually observed in woody parts

of plants (Figs. 1, 2, 3, 4, 5) (Hart et al. 2003) because

they contain higher concentrations of cellulose,

hemicellulose and lignin (Schädel et al. 2009; Körner

2003). Plant species, types of plant parts and physi-

ological age of the tissue and seasons (dry and wet)

may influence the carbon concentration in plant parts

(Salazar et al. 2010). Seasonal variation in carbon

concentrations in plant parts was also reported and

higher concentrations were observed during dry

seasons (Figs. 1, 2, 3, 4, 5). Similar observation of

carbon concentrations in different parts of Sonneratia

apetala, Excoecaria agallocha and Avicennia alba

were also described by Mitra et al. (2011) for the

Sundarbans mangrove forest. The dry seasons of the

study area were characterized by high salinity (30 ppt)

of water and lower numbers of tidal inundation (25

tides, May–August) compared to wet seasons (25 ppt

water salinity; 45 tides, September–December) (Mah-

mood 2004). Salinity may have positive relationship

with carbon assimilation in salt tolerant species (Asch

et al. 2000) and tidal inundation showed negative

relationship with net ecosystem exchange of CO2 and

carbon assimilation for the salt marshes (Kathilankal

et al. 2008). Irrespectively, seasonal variation in

carbon concentrations in different parts of plants and

litter may be due to the variability in assimilation of

CO2 by plants in relation to solar irradiation, moisture,

temperature (Kato and Tang 2008), and different stress

factors like high salinity, arid environment, and low

availability of nutrients (Bouillon et al. 2008; Barr

et al. 2010). Higher amounts of net ecosystem

exchange of CO2 and net primary productivity are

observed during the growing season and expecting

higher increment of biomass and carbon concentration

in plant parts (Zha et al. 2007; Ardö et al. 2008).

Moreover, these variations of carbon concentration in

plant parts may affect the carbon pools and fluxes at

season as well as annual scales in mangroves as

reported by Mitra et al. (2011).

Quantification of mangrove carbon pools and its

monitoring over time can be important information for

formulating climate change mitigation strategies. The

total carbon pool (572.27 Mg C/ha) (above and below-

ground plant material and soil carbon to 1 m) in the

study area was comparatively higher than the carbon

pool (411–414 Mg C/ha) in Palau and Yap site of

Micronesian mangrove forest dominated by S. alba, R.

apiculata and B. gymnorrhiza (Kauffman et al. 2011).

Moreover, the much lower carbon pools (119.3 Mg

C/ha) in Kandelia obovata dominated mangrove stand

at Okinawa Island of Japan was reported by Khan et al.

(2007). While comparatively higher carbon pool

(993.3 Mg C/ha) and higher carbon flux (20 Mg

C/ha/year) were recorded from the Indonesian man-

grove forests (Murdiyarso et al. 2009) and Matang

mangrove forest of Malaysia (Ong 1993) respectively.

The variation in carbon pool in different mangrove

forest arises from carbon storage in above-ground

biomass, forest structure (Bradford et al. 2010), forest

age (Kridiborworn et al. 2012; Cerón-Bretón et al.

2011), disturbance history (Goodale et al. 2002),

dominant species (Ksawani et al. 2007) and below-

ground carbon pool. Below-ground pools contribute to

a significant proportion (88–98 %) to the total pool of

carbon of mangroves (Murdiyarso et al. 2009). This

below ground carbon pool largely depends on the

depth of the organic soil, carbon concentration in soil,

vegetation cover (Conant et al. 1998). Significant
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differences in carbon flux in mangrove forests depend

on soil conditions (Oren et al. 2001), climatic condi-

tions (Barford et al. 2001), variations in rate of

biomass increment among the species and litter

production (Bradford et al. 2010). These factors and

relationships are essential for understanding the con-

trol over forest carbon pools and fluxes over large

areas (Waring and Running 1998; Kennedy et al.

2006).

Estimation of carbon pools as well as carbon flux in

naturally growing mangrove forests give more insight

into the ecological services and role of mangroves.

Moreover, this study helps to develop the rapid

assessment and monitoring of the carbon pool in

Malaysian mangroves. Mangroves appear to be one of

the most carbon dense types of tropical forest. The

information generated from this study will help in

evaluating their values and benefits from conservationT
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Table 5 Carbon pool and carbon flux in Bruguiera parviflora

dominated mangrove forest

Category Unit

Carbon pool (Mg C/ha)

Live above-ground

Seedlings 0.57

Saplings 0.44

Trees 73.03

Live below-ground

Seedlings 0.12

Saplings 0.07

Trees 9.59

Forest floor

Litter standing crops 0.41

Soil carbon (cm)

0–15 62.96

15–30 77.77

30–50 100.41

50–100 246.90

Carbon flux (Mg C/ha/year)

Live above-ground

Saplings 0.26

Trees 7.35

Live below-ground

Saplings 0.02

Trees 1.09

Forest floor

Litter production 5.23
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and restoration of mangroves. Moreover, mangroves

could benefit from REDD? and should be considered

among strategies for climate change mitigation.
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and component carbon fluxes of a scots pine ecosystem

from chamber measurement and eddy covariance. Ann Bot

99:345–353

Wetlands Ecol Manage (2014) 22:15–23 23

123


	Carbon pools and fluxes in Bruguiera parviflora dominated naturally growing mangrove forest of Peninsular Malaysia
	Abstract
	Introduction
	Materials and methods
	Description of the study site
	Standing biomass and annual biomass increment
	Litter standing crop and litter production
	Carbon in plant and litter parts; and soil

	Results
	Biomass and annual biomass increment
	Litter standing crop and litter production
	Carbon concentration in plants and litter parts; carbon pool and fluxes

	Discussion
	Acknowledgments
	References


