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Abstract In New England salt marshes, man-made

earthen barriers, or berms, are generally historic,

small-scale (average height = 0.71 m ± 0.12 SE;

average length = 166 m ± 41 SE) tidal restrictions

which originated from past agricultural, industrial, and

environmental practices. The orientation and size

depends primarily on the original purpose of the

barrier, but this study examines the effects of berms

oriented parallel to the incoming tide such that some

landward portion of the marsh receives a different tidal

signal than the seaward portion. Our hypotheses

considered the impacts of the altered hydrology on

pore water chemistry and edaphic characteristics. The

results indicate that the effect of berms on salt marsh

physical structure varies significantly by site. Where

the tidal flooding frequency is restricted and drainage

is poor, the landward marsh shows pool development,

high salinity and sulfide concentrations, and low

vegetation cover. In contrast, where tidal flooding is

inhibited but the marsh soils are well-drained, salinity

and sulfide concentrations decrease and accelerated

decomposition results in subsidence and reduced soil

organic matter. Given these findings, impacts from

berms may impair salt marsh function and resilience to

invasive plants and sea level rise.

Keywords Phragmites australis � Sea level rise �
Marsh soil drainage

Introduction

Salt marshes, located at a critical interface between

terrestrial and marine habitats, strongly influence the

exchange of energy and materials across coastal

landscapes. As some of the most productive ecosys-

tems in the world, salt marshes maintain high rates of

net primary productivity and trophic support (Mitsch

and Gosselink 2000). The functions that salt marshes

provide, including wildlife habitat support, regulation

of nutrients, and toxin removal, are essential to

sustaining the larger estuarine system (Traut 2005;

Santin et al. 2008; Gedan et al. 2009). Salt marsh

services also translate into various economic advan-

tages for humans, such as protection of property and

infrastructure (e.g., during storm events), revenue

from commercial fishing and recreation, and aesthetic

value (Costanza et al. 1997; Brander et al. 2006;

Granek et al. 2010).

Although the environmental and economic benefits

associated with healthy salt marsh ecosystems are
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vast, salt marshes continue to be degraded in the

United States. Bromberg and Bertness (2005) estimate

that *37 % of the original salt marsh area in New

England (northeast region of USA) has been lost. By

disrupting the natural tidal regime, tidal restrictions,

which exist in the form of undersized culverts beneath

roads and railways, flap-gates, dikes and other

impoundments, have greatly contributed to the struc-

tural and functional deterioration of tidal marshes in

New England (Roman et al. 1995; Portnoy 1999;

Roman and Burdick 2012).

On an ecosystem-scale, man-made tidal restrictions

can result in increased aeration of the upstream soils

causing increased decomposition rates (Portnoy

1999), which is often a precursor to increased soil

acidification (Anisfeld and Benoit 1997), loss of

organic matter (Roman et al. 1995), and marsh surface

subsidence (Anisfeld et al. 1999; Turner 2004). If the

subsided area is flooded, pools of standing water can

develop that reduce vegetation density and alter

natural marsh processes (e.g., sedimentation, net

primary productivity, and bacterial respiration; Anis-

feld et al. 1999; Johnston et al. 2003).

Tidal restrictions can also decrease marsh resilience

against landscape-scale disturbances too, such as the

expansion of the aggressive, non-native variety of

Phragmites australis (Roman et al. 1984; Bart and

Hartman 2000; Burdick and Konisky 2003) and sea

level rise (Kirwan et al. 2010). Phragmites can cause

functional changes to the marsh, reducing biodiversity

(Burdick and Konisky 2003; Silliman and Bertness

2004). In order for Phragmites to colonize a marsh, the

seed or rhizome must initiate growth during a draw-

down of the water table or in an elevated, well-drained

area of the marsh (Mauchamp et al. 2001; Chambers

et al. 2003). Because Phragmites prefers well-drained

soils, common colonization points include spoil banks,

upland edges, levees/creek banks, and drainage

ditches (Bart et al. 2006). Once established in less

stressful zones of a salt marsh, Phragmites can expand

into more physiological stressful areas using clonal

connections (Amsberry et al. 2000; Burdick et al.

2001; Bart and Hartman 2003).

Tidal restrictions also have the potential to reduce

the resilience of the salt marsh responding to sea level

rise (Delaune et al. 1994). Under normal circum-

stances, surface elevation adjustment processes enable

salt marshes to maintain equilibrium with rising sea

levels (Burdick and Roman 2012). As sea level rises,

the flooding frequency and duration of the tide

increases, resulting in accelerated rates of sediment

deposition (Nuttle et al. 1997) and plant productivity

(Morris et al. 2002). The accumulation of inorganic

sediments and plant material builds the elevation of the

peat over time. Models show that where flooding and

sediment supplies are restricted by dikes or other

barriers, the surface elevation does not increase with

rising sea levels as effectively (Muto and Steel 1997;

Fagherazzi et al. 2006). Also, steep upland slopes, like

those associated with rip-rap walls and dikes, will

inhibit landward migration of the marsh surface; where

landward expansion is limited, an increased submer-

gence of the seaward edge may result in reduced marsh

area, a process referred to as coastal squeeze (Wolters

et al. 2005).

Man-made historic earthen barriers, hereafter

referred to as berms, represent one type of hydrogeo-

morphic alteration present in New England marshes.

Berms are characterized as small-scale linear forma-

tions composed of soil (i.e., stone walls are not

included) located in the interior of tidal marshes.

Berms are prevalent in New England, resulting from

discontinued agricultural, industrial, and recreational

practices that were once culturally popular. Activities

that have produced berms in tidal marshes over the

centuries include tidal exclusions for agricultural

purposes, saltworks, and waterfowl impoundments

as well as spoil disposal from river dredging, marsh

ditching, brickmaking, and railroad construction.

While some of these actions produced berms that

were perpendicular or oriented haphazardly in relation

to the major tidal creek or river (Mitchell 1981),

oftentimes berms were oriented parallel to the upland

border and/or incoming tide.

The four bermed marshes chosen for this study are

located in Maine and New Hampshire (Fig. 1). All of

the selected berms exhibit parallel orientation such

that tidal flooding is likely reduced on the landward

side. The sites in southern Maine are located within

backbarrier marshes of the Webhannet Estuary in

Wells and the Mousam River Estuary in Kennebunk-

port. In New Hampshire, the sites are located in

riverine marshes within the Great Bay Estuary along

the Cocheco River in Dover and Crommet Creek in

Durham.

All berm sites are primarily surrounded by low-

density, residential development (Fig. 2). The berm at

Webhannet (Fig. 2d) was constructed in 1847 by
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removing neighboring marsh and piling it in a linear

form to prevent tidal flooding and create pastureland

for grazing cows (Belknap et al. 1997). The Mousam

River berm (Fig. 2b) represents an abandoned frag-

ment of the Boston and Maine Railroad built in 1882

(Seashore Trolley Museum, personal communica-

tions); it is currently used as a community footpath.

At Mousam, we speculate that the railroad company

may have imported soils to the area; however, this

conjecture could not be confirmed in historical records

or in our data.

The origins of the berms located in the Great Bay

Estuary are less clear. Based on historical references

of Dover, New Hampshire, the berm located on the

Cocheco River (Fig. 2c) may consist of side-cast

spoils from river dredging in 1871 (Whitehouse and

Beaudoin 1988). In correspondence with Dover’s

considerable history in wool production, the berm

located on Crommet Creek (Fig. 2a) is most likely an

agricultural tidal restriction created to expand pas-

tureland for sheep during the American Civil War era

in the mid-19th century (Scales 1923). A section of

landward marsh area (not included in the study)

appears to have been used to supply soils for the berm

construction—the remaining pool is too deep and the

edges are too clearly defined and linear to be natural.

Previous ecological research on tidal restrictions

have focused primarily on the impacts of perpendic-

ular-oriented, large-scale dikes which limit upstream

tidal flooding due to undersized culverts or flap gates

(Roman et al. 1984; Anisfeld and Benoit 1997;

Portnoy and Giblin 1997). However, due to the

difference in orientation and smaller scale, studying

the impact of berms in comparison to dikes is critical

to understanding sensitivity of tidal marsh systems to

human-induced hydrogeomorphic modifications. The

study of berms may provide further insight concern-

ing: (1) how modified flooding regimes and drainage

affect physical gradients (e.g., elevation, salinity,

sulfide concentration, etc.); (2) whether berms

increase marsh vulnerability to landscape-scale dis-

turbances (e.g., invasion of non-native plant species

and submergence during sea level rise); (3) the

potential for restoring lost marsh structure and func-

tion through berm removal.

The descriptive study presented here examines how

berms impact flooding and drainage, a range of pore

water gradients, and several soil characteristics;

however, additional vegetation measurements were

also investigated and are presented in Mora and

Burdick (2013). At all four sites, data collected from

the bermed area of the marsh were compared with

measurements taken in a nearby reference area. The

following three hypotheses were proposed at the start

of the study: (1) a parallel-oriented berm obstructs

regular tidal flooding landward of the berm while the

flooding in the seaward area resembles the reference

system; (2) the restricted tidal flooding results in

reduced salinity and sulfide levels on the berm slope

and in the landward marsh area; (3) the berm soil

texture (including bulk density, organic matter, and

soil moisture) differs from the surrounding marsh and

reference area.

Methods

A series of marshes with berms were found in the

Great Bay Estuary and southern Maine region using

aerial photographs. In order to be included in the

study, the berm site needed to be oriented parallel to

the major river or creek and have a non-bermed area

suitable as a reference. Several of the berms contained

breaks (i.e., small creeks or eroded areas); however,

any breaks in the berm were substantially smaller than

Fig. 1 Four man-made berm sites in northern New England.

Map designed by J. Mora; data provided by NH Granit
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the major creek or river acting as the inundation

source.

Hydrology

Three automatic water level recorders (Odyssey,

Model Z412, 2 m) were deployed in each marsh for

*2 week intervals. In order to record the full range of

tidal influence, deployment and removal dates were set

such that the neap and spring tide periods were

recorded. Two of the water level recorders were

installed 1 m from the landward and seaward edges of

the berm slope, and the third was located in the

reference area at a similar orientation and distance to

the creek edge as the seaward berm water level

recorder. When data loggers were deployed, the

relative elevation of ground level at the installation

site was measured using rod and laser-level survey.

Comparative water level data was successfully

retrieved from all the sites except for Webhannet

where one of the data logger instruments failed soon

after deployment.

(d)

(a)

(c)

(b) 105m

145m76m

84m

Fig. 2 Aerial photographs of study sites: a Crommet Creek in

Durham, NH (Durham 2009); b Mousam River in Kennebunk-

port, Maine (Kennebunkport 2012); c Cocheco River in Dover,

NH (Dover 2009); d Webhannet Estuary in Wells, Maine (Wells

2012). Dotted lines represent berm location. Solid lines

represent reference area (reference transects were perpendicular

to this center line). Circles represent eroded areas of the berm.

Double arrows indicate tidal flow direction on the marsh
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Elevation

Eight transects were randomly demarcated on the

berm and in the reference area using a random number

table for the distances between transects. For the berm

measurements, transects were oriented perpendicular

to the berm. In order to compare the elevation of the

berm against a natural marsh gradient, a nearby

reference area was designated in the high marsh at

each site. The reference transects were established

along the natural elevation gradient in perpendicular

orientation to the upland edge. At each site, the center

of the reference transects corresponds to the peak of

the berm in distance and orientation to the major creek

or river (Fig. 2). The surface elevation was recorded in

eleven locations along every transect using rod and

laser-level survey (Fig. 3). Elevation surveys were

started in August and finished in September 2009.

Benchmarks were created at the start of the field

season to link the data logger elevations to the plot

elevations. In September of 2010, the true elevation of

the benchmarks (±2 cm), corrected to the North

American Vertical Datum (NAVD 1988), was col-

lected using a Trimble Real Time Kinematic (RTK)

device. All previously recorded elevations were

computed based on the NAVD-referenced

benchmarks.

Soil samples

Three of the eight elevation transects at both berm and

reference areas were haphazardly (non-randomly)

selected for physical characteristics sampling, includ-

ing soil and pore water (water that exists in the

interstitial space within the soil) extractions. Physical

measurements were taken at four different plot

locations. For the berm sampling, the outer two plots

were located 1 m from the slope break on the seaward

and landward edges of the berm. A vertical distance of

*0.20 m was measured for the placement of the two

plots on the berm slope (Fig. 3). The location of the

slope plots was chosen based on the need to acquire

pore water samples within the transitional slope edge

plant community. For the reference sampling, the plots

were arranged to mimic the sampling locations of the

berm (0.5 and 1.5 m from the center of the reference

transect; Fig. 3).

Pore water data were collected four times at each

site between June and September 2009. In order to

account for neap and spring tide variability, two of the

four pore water samplings occurred following spring

tides and two followed neap tides. Pore water samples

provided measurements of sulfide concentration and

salinity. The sulfide fixation and colorimetric analyses

were performed using the method of Cline (1969).

L-3m S-3m 

Berm 

surface L-5m S-5m 

(a)

L-1m 

L-slope S-slope 

S-1m 

3m 3m 

Slope 
break 

Slope 
break 

1 m 1 m

0.20 m 

Seaward side Landward side 

5 m 
Peak 

5 m

(b)

Reference 

surface 

3m 3m 

Transect 
Center 

1.5 m 1.5 m
0.50 m 0.50 m

5 m 5 m

Fig. 3 Cross-section diagram of elevation (all circles) and physical sampling (gray circles) points along berm (a) and reference

(b) transects. The center of the reference transects compares to the peak of the berm in analyses
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Sulfide samples were fixed in the field using 2 % zinc

acetate solution and stored in a cold room (4 �C) for no

more than 2 weeks before the analyses. Salinity was

measured using a temperature-corrected optical

refractometer (±2 ppt). Where soil was dry and pore

water could not be extracted, 5 cm soil cores were

removed from depth (10–15 cm) and hydrated with

20 ml of deionized water. Hydrated cores were sealed

and allowed to settle for 2–7 days before the water was

extracted and measured for salinity using the refrac-

tometer. Dilution factors were calculated to correct the

salinity measurements based on soil moisture.

Soils cores were used to determine specific soil

characteristics: percent moisture content, percent

organic matter, bulk density, and sand: silt ? clay

ratio. Soil cores were extracted once from the plots

designated for physical measurements at the berm and

reference areas of each site (Fig. 3) between June and

September 2009. Soil cores (radius = 1.65 cm,

depth = 15 cm) were stored in a cold room (4 �C)

until processed. The soil cores were separated into top

(0–5 cm) and bottom (10–15 cm) sections (the mid-

section was discarded), weighed wet, dried at *80 �C

for 2 days, and weighed dry. After drying, the soil

samples were burned in a muffle furnace for 4 h at

465 �C. The samples were weighed after cooling to

determine the loss of organic matter. Lastly, the

remaining ash was disaggregated and sifted in a 63 lm

(0.0025 in.) sieve to separate the sand (coarse grain

sediments) from the silt and clay (fine grain sediments)

to gravimetrically determine the sand: silt ? clay

ratio.

Statistical analysis

All analyses of variance (ANOVAs) were computed

using the statistical software, JMP 8, and results were

considered significant at a = 0.05. Where ANOVAs

showed significant effects, the Tukey post hoc test was

used to assess significance between groups

(a = 0.05). Residuals were examined for evenness

of variance and tested for normal distribution using a

Shapiro–Wilk test. In order to improve variance

evenness and enhance the normal distribution of

residuals, several variables underwent transforma-

tions: pore water salinity (square root of x); soil

moisture content (arcsine of the square root of x); and

pore water sulfide concentration, soil bulk density, soil

organic matter, and sand: silt ? clay ratio (log of

x ? 1).

The berm effect on pore water and soil measures

was tested using a split-plot ANOVA model whereby

berm versus reference and site were considered the

main effects and plot was set as the subplot effect

(total observations = 32; 4 plots 9 4 sites 9 2 for

berm treatment). The three transects within a bermed

or reference section of a site were averaged for the soil

and pore water comparisons. Tide averages (combined

spring and neap) were used for the analyses of berm

effect on pore water. Soil core sections (top and

bottom) were averaged for soil texture comparisons.

Soils were also analyzed by site using a two-way

crossed ANOVA to compare physical conditions

between the plots 1 m landward and seaward of the

berm. No reference plots were included in these

comparisons. Transects provided replication and were

not averaged. Two treatment levels were provided by

transect plot location and soil depth (total observa-

tions = 12; 2 plots 9 2 soil depths 9 3 transects) for

each site. Due to the low sample size, marginal

differences (a = 0.10) are reported for individual site

results to highlight ecologically relevant trends.

Results

Hydrology and elevation

The four berms had an average height (distance from

the mean slope break elevation to the average peak

elevation) of 0.71 m ± 0.12 SE, an average length of

166 m ± 41 SE, and an average width (distance from

seaward slope break to landward slope break) of

5.2 m ± 1.4 SE. At all sites where data were available

(i.e., excluding Webhannet) the seaward tidal flux was

similar to the reference area; whereas, the tidal range

landward of the berm was reduced in comparison to

the reference and seaward areas. Reduced flooding on

the landward side of the berm was also noted at

Webhannet (where the data loggers failed) during field

observations. Figure 4 provides water level and ele-

vation data for Crommet Creek and Mousam River as

examples. At the two riverine sites (Crommet Creek

and Cocheco River) the elevation on the landward side

was considerably higher than the seaward side

(Fig. 4a). However, the two backbarrier sites
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(Mousam River and Webhannet) did not follow the

same trend. At Mousam River, the trend was reversed

with the lower elevation on the landward side of the

berm (Fig. 4b). At Webhannet, the average elevations

of the two areas were nearly the same.

Pore water

Pore water gradients in salinity and sulfides were

compared using a split plot ANOVA. There were

significant interaction effects with plot and berm

treatment (Fig. 5). The reference area showed a very

gradual, non-significant reduction in both pore water

salinity and sulfides from seaward to landward as

elevation increased. In contrast, salinity and sulfide

showed steep gradient changes at the berm, with

significant declines in both salinity and sulfides

(Fig. 5). Surprisingly, the pore water at stations 1 m

from the berm was not significantly different between

the landward and seaward sides of the berm or

different from the reference samples.

Soils

The ANOVA results show a berm effect on three of the

four soil texture characteristics: bulk density, soil

moisture, and organic matter. The ANOVA results for

sand: silt ? clay ratio only showed a significant

difference by site (Fig. 6). The backbarrier marsh

soils had, on average, larger grain size than the riverine

marshes of the upper Great Bay Estuary.

The average bulk density (combined average of the

0–5 and 10–15 cm sections) was significantly higher
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on the berm than in the marsh soils beside the berm or

in the reference area (Fig. 7a). The average bulk

densities of the marsh soils surrounding the berm were

comparable to those in the reference area. As

expected, the average soil moisture content was

significantly lower on the berm than in the plots 1 m

from the berm or the plots in the reference area

(Fig. 7b). The soil organic matter averaged over depth

followed a similar trend as the soil moisture content

results; however, the average organic matter within the

berm cores was not statistically different from the

reference area (Fig. 7c).

Individual site analyses

To compare physical properties on the landward and

seaward sides of the berm on a smaller scale, each site

was also analyzed individually. Pore water was

analyzed by plot (seaward-1 m, and landward-1 m)

and tide (spring and neap) using a crossed ANOVA;

however, there were no statistically significant plot or

interaction effects among the four sites. Crommet and

Cocheco showed marginal differences in sulfide and

salinity concentrations between the seaward and

landward marsh plots; salinity was 17 % higher on

the landward side at Crommet (F1,10 = 4.4, p =

0.069), and sulfide concentration was 79 % higher

on the landward side at Cocheco (F1,10 = 3.8, p =

0.086).

The soil texture parameters were also compared

between the plots 1 m seaward and landward of the

berm as part of a crossed ANOVA including soil depth

(0–5, 10–15 cm). At Webhannet and Cocheco, soil

texture characteristics did not differ significantly by

plot location relative to the berm or by depth.

However, soil properties were significantly affected

by berm presence at the other two sites: Mousam River

and Crommet Creek (Table 1). At Crommet Creek,

differences in moisture content, organic matter and

bulk density pointed to wetter soils landward of the

berm. In contrast to Crommet, at Mousam River the

bulk density, moisture content and organic matter

pointed to denser, drier soils on the on the landward

side of the berm. There were no significant plot-by-

depth interaction effects on soil texture at any of the

sites.
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Fig. 7 Tukey post hoc results assessing the berm effect on bulk

density (a), moisture content (b), and organic matter (c).

Average results from four bermed tidal marshes (n = 4; ±1 SE).

Columns sharing the same letters are not significantly different

(a = 0.05). The berm slope soils differed significantly from the

reference areas, but the 1-m plots on either side of the berm were

comparable to the reference soils (S seaward; L landward)
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Discussion

Hydrology and elevation

The water level recorders and our observations

confirmed all sites experienced reduced flooding on

the landward side of the berm. Given these results, the

first hypothesis is accepted: parallel-oriented berms do

restrict tidal flooding of the landward section of the

marsh, even if breached in some locations. In addition

to the modified tidal range, the drainage of the marsh

appeared to be impacted by the berm. The pools of

standing water located landward of the berm at all four

sites signify poor drainage caused by the berm.

Redfield (1972) recognized that pools can form where

natural drainage or flushing mechanisms are inhibited.

If the marsh surface subsides from impaired marsh

processes (e.g., reduced sediment supply, peat com-

paction from wrack or ice, increased decomposition,

etc.), flooding events result in pools of standing water

(Portnoy and Giblin 1997). The waterlogged soils can

become too stressful for the plant community causing

plant mortality and root zone collapse, which leads to

further marsh subsidence (Delaune et al. 1994).

Pore water

Because there were no significant differences in

salinity or sulfide concentration between the seaward

and landward marsh plots, the second hypothesis was

rejected as a general rule for all berms. Salinity and

sulfide concentration followed similar patterns along

berm transects such that both physical gradients

showed a wider range of variation at the berm than

in the reference area. The rate of change in the

gradients corresponded to rate of change in elevation.

At the reference site, the elevation change is gradual

and flooding frequency does not vary greatly across

the reference plots. Subsequently, the salinity and

sulfide gradients follow a gradual decline from

seaward to landward across the reference plots. In

contrast, the berm presents a much steeper set of

physical gradients, including elevation change, lower

salinity levels, and almost no sulfide accumulation.

The lack of sulfide buildup suggests that aerobic

respiration is more important in the better drained soils

(Howarth and Teal 1979).

Although the second hypothesis was rejected as a

rule across all sites, there were noteworthy trends

within individual sites. Behind berms, where drainage

is poor and pools develop, salinities increase as water

is lost to evaporation (Crommet site) and sulfides

accumulate (Cocheco site) as sulfate reducing bacteria

produce sulfide, a byproduct of anaerobic respiration

(Howarth and Teal 1979; Portnoy 1999).

Soil texture

Based on the data from all four sites, the third

hypothesis regarding soil texture was accepted; the

berm soils did differ significantly in texture from the

surrounding marsh soils and reference area. The only

soil texture measure which did not show overall

differences between the berm and adjacent soils was

sand: silt ? clay ratio, however, it did differ signif-

icantly by site. The soil cores taken from the

backbarrier sites, Webhannet and Mousam, contained

a greater percentage of large grain sediments than the

riverine sites, Cocheco and Crommet. These findings

Table 1 Statistically significant results from the crossed ANOVA (total number of observations = 12; 2 plots 9 3 transects 9 2 soil

depths) testing of soil properties by plot (S-1 m, L-1 m) on either side of the berm

Site Soil property df F1,10 p Mean (±SE) Mean (±SE)

S-1 m L-1 m

Crommet Bulk density (g/cm3) 1 4.9 0.058 0.23 (±0.03) 0.16 (±0.01)

Moisture content (%) 1 12.5 0.008 81.3 (±1.7) 87.1 (±0.5)

Organic matter (%) 1 23.2 0.001 46.8 (±4.4) 67.2 (±2.5)

Mousam Bulk density (g/cm3) 1 10.4 0.012 0.10 (±0.01) 0.20 (±0.02)

Moisture content (%) 1 13.8 0.006 88.6 (± 0.7) 83.2 (±1.1)

Organic matter (%) 1 8.1 0.022 72.2 (±2.0) 49.0 (±6.6)

Soil depth effects not shown

S seaward, L landward
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are consistent with earlier research (Redfield 1972),

which proposed that coarse grain and fine particles are

mobilized by the tidal influence, but coarser sand

sediments are deposited closer to the tidal inlet while

fine sediments, like silt and clay, stay in suspension

longer and accumulate in marshes further upstream.

When each site was examined separately, two of the

sites showed significant differences in soil texture

between the landward and seaward sides of the berm.

The differences in soil bulk density, organic matter,

and moisture between the seaward and landward 1-m

plots appear to reflect variation in flooding frequency

and drainage.

At Crommet Creek, the increased organic matter

and soil moisture on the landward side of the berm

may be an example of a tidally-restricted marsh with

saturated, waterlogged soils. The presence of the berm

seems to restrict landward tidal flooding, and the pools

located landward of the berm indicate poor drainage.

Studies show that where flooding is limited due to tidal

restrictions, subsidence can occur from reduced sed-

iment supply (Portnoy 1999). Where sediment input is

interrupted, the accumulation of organic matter acts as

the primary mechanism controlling vertical accretion

(Nyman et al. 2006). If the supply of marine sediments

is reduced due to restricted flooding at Crommet,

maintenance of the marsh elevation via vegetation

growth may explain the high percentage of organic

matter landward of the berm (Nyman et al. 2006).

Furthermore, the anaerobic conditions of the landward

pools would slow decomposition and further promote

the buildup of organic matter.

In drained scenarios where the tidally-restricted

marsh surface experiences soil desiccation, decompo-

sition of organic matter can increase dramatically

resulting in subsidence (Anisfeld 2012). Mousam

River resembles a site where the decreased tidal

flooding has led to better drained soils and increased

decomposition on the landward side of the berm. The

acceleration in decomposition by aerobic microbes

would deplete the amount of organic matter in the soil.

Also, due to the decomposition, the proportion of

inorganic sediments would be greater on the landward

side resulting in higher bulk density (Portnoy and

Giblin 1997). The increase in decomposition would

also explain the subsidence of the landward marsh

elevation (as seen in the Mousam data) since decom-

position eventually leads to the deterioration of the

peat layer in the soil, or peat collapse (Delaune et al.

1994).

In summary, when the four sites are analyzed

together, the results indicate that the marsh areas

seaward and landward of the berm are comparable to

the reference area in terms of several soil variables.

However, when each berm site is examined separately,

the subtleties in the soil texture results become more

pronounced. The impact of the berm varies by site and

appears to depend on the extent of the tidal restriction,

marsh topography, and landward drainage.

Conservation implications

Tidal marshes in New England already face severe

degradation due to numerous anthropogenic distur-

bances, including but not limited to invasion by the

non-native variety of P. australis (Cav.) Trin. ex

Steudel, or common reed (Chambers et al. 2003; Bart

et al. 2006) and submergence with accelerated sea

level rise (Kastler and Wiberg 1996; Morris et al.

2002; Kirwan et al. 2010). Similar to large-scale dikes,

the impact of these human-induced threats will likely

be magnified where berms have already disrupted the

local biogeochemistry of the tidal marsh (Portnoy

1999; Turner 2004; Bart et al. 2006).

When Phragmites invades a marsh, the surrounding

plant diversity can be significantly reduced and the

functional quality of the tidal system greatly impaired

(Warren et al. 2001; Silliman and Bertness 2004;

Smith et al. 2009). Laboratory and field experiments

show that Phragmites is sensitive to sulfide concen-

tration (Chambers et al. 1998; Bart and Hartman 2000)

and prolonged flooding (Mauchamp et al. 2001;

Chambers et al. 2003). Since berms offer a well-

drained site for Phragmites colonization with low

salinity or sulfide stress, bermed tidal marshes may be

especially vulnerable to invasion. Additionally, berms

pose a barrier to wind-driven wrack, and wrack

accumulation along the berm provides a disturbed

area already shown to facilitate growth and expansion

of Phragmites (Minchinton 2002). With clonal inte-

gration, Phragmites can become established at the

berm where the conditions are less stressful (e.g., the

soils are better oxidized), and then extend into the

more stressful areas of the marsh using underground

rhizomes or surface runners (Amsberry et al. 2000;

Bart and Hartman 2000). Restoration of the natural
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hydrology by excavating the berm may help the marsh

regain some resilience against non-native Phragmites

(Turner and Lewis 1997), but further research is

required to confirm that berms increase the vulnera-

bility of tidal marshes to invasion.

While New England tidal marshes contain self-

adjustment processes which have allowed historical

changes in surface elevation of 2–3 mm/year, pro-

jected sea level rise rates of 6 mm/yr or greater pose a

significant threat to the stability of tidal marsh system

(Donnelly and Bertness 2001; Kirwan et al. 2010).

Berms that are oriented parallel to the incoming tide

may jeopardize the resilience of the system against sea

level rise and may interfere with landward migration

by muting tides, reducing the sediment supply and

promoting subsidence. However, further research is

necessary to corroborate this inferred impact of berms

on accretion mechanisms and to assess the long-term

integrity of bermed marshes as sea levels rise.
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