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Abstract

Interest in seasonally flooded pools, and the status of associated amphibian populations, has initiated
programs in the northeastern United States to document and monitor these habitats. Counting egg masses
is an effective way to determine the population size of pool-breeding amphibians, such as wood frogs (Rana
sylvatica) and spotted salamanders (Ambystoma maculatum). However, bias is associated with counts if egg
masses are missed. Counts unadjusted for the proportion missed (i.e., without adjustment for detection
probability) could lead to false assessments of population trends. We used a dependent double-observer
method in 2002–2003 to estimate numbers of wood frog and spotted salamander egg masses at seasonal
forest pools in 13 National Wildlife Refuges, 1 National Park, 1 National Seashore, and 1 State Park in the
northeastern United States. We calculated detection probabilities for egg masses and examined whether
detection probabilities varied by species, observers, pools, and in relation to pool characteristics (pool area,
pool maximum depth, within-pool vegetation). For the 2 years, model selection indicated that no consistent
set of variables explained the variation in data sets from individual Refuges and Parks. Because our results
indicated that egg mass detection probabilities vary spatially and temporally, we conclude that it is essential
to use estimation procedures, such as double-observer methods with egg mass surveys, to determine
population sizes and trends of these species.

Introduction

Concern over the alteration and loss of isolated,
seasonally-flooded wetlands and their surrounding
upland habitats has spurred several northeastern
states to document, monitor and attempt to pro-
tect these wetlands and their associated wildlife
(Kenney 1995; Colburn 1997; Tappan 1997; Pre-
isser et al. 2000; Burne 2001; Calhoun and Kle-
mens 2002; Calhoun 2003). Documenting the
presence or abundance of egg masses in seasonal

pools has been recommended as an effective way
to monitor pool-breeding amphibians, such as
wood frogs (Rana sylvatica LeConte) and spotted
salamanders (Ambystoma maculatum Shaw)
(Windmiller 1996; Crouch and Paton 2000). While
breeding activity of wood frogs and spotted sala-
manders in seasonal pools can be inferred from
calling activity or presence of spermatophores, egg
masses or larvae, counting egg masses is poten-
tially more useful for determining breeding popu-
lation size and persistence of these species than
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surveys of larvae or adults alone. Crouch and
Paton (2000) recommended the use of egg mass
counts over calling surveys and drift fence arrays
to provide indices of population size at consider-
ably less effort and cost. Wood frog females lay
one egg mass per year, so egg mass censuses for
this species may provide a 1:1 relationship to the
female breeding population at a seasonal pool
(Corn and Livo 1989; Crouch and Paton 2000; but
see Davis and Folkerts 1986). Spotted salamanders
lay 2–4 egg masses per year (Petranka 1998), so
greater error is associated with estimating female
spotted salamander breeding population sizes
from egg mass numbers. Despite this, population
trends from spotted salamander egg mass counts
could still yield important information, provided
the ratio of egg masses to females at a site is fairly
constant over the study period.

Wood frogs and spotted salamanders lay con-
spicuous egg masses attached to vegetation and
woody debris within pools. Wood frog egg masses
are typically aggregated in large rafts at the water’s
surface, often with over 100 egg masses laid com-
munally, although approximately 16% may be
distributed away from the main raft areas (Crouch
and Paton 2000). Wood frog egg masses consist of
up to 1500 eggs, viable embryos are black, and the
egg mass surface appears bumpy (Kenney and
Burne 2000). Spotted salamanders lay egg masses
individually or in aggregated clusters and tend to
lay eggs deeper in the water column, occasionally
on the bottom of pools (Windmiller 1996; Petr-
anka 1998). Spotted salamander egg masses are
quite distinct from those of wood frogs in that
each complement of 30–250 eggs in the mass is
surrounded by a firm smooth gelatinous matrix
that can be clear, opaque or green due to the
presence of certain proteins or symbiotic algae in
the jelly matrix (Kenney and Burne 2000; Petranka
1998). Opaque and green spotted salamander egg
masses may be more easily detected than clear
ones, particularly in sediment-clouded or tannic
acid stained waters of some seasonal pools.
Because of these factors, a complete census of egg
masses in breeding pools is logistically impossible.

In any wildlife survey designed to estimate the
abundance of animals, researchers must take into
account two important sampling issues: spatial
variability and detectability (Williams et al. 2002).
This paper focuses on the estimation of detect-
ability and incorporation of detection probabilities

in the estimation of egg mass numbers from survey
data. In this paper, the term ‘population’ refers to
the total number of egg masses, while the term
‘individual’ refers to each egg mass. Detectability
refers to the fact that counts of animals (or egg
masses) are typically incomplete and represent
only a proportion of the actual population present.
The probability that observers detect all individ-
uals in a survey area such as a seasonal pool is
likely very small (Lancia et al. 1994; Windmiller
1996; Crouch and Paton 2000; Williams et al.
2002). The relationship between counts and the
actual population size can be expressed as
E(C) = Np, where N is the true or actual popu-
lation size, C is the count collected during the
survey, E denotes statistical expectation, and p is
the detection probability, or the probability that a
member of N appears in C. If raw counts are used
as an index for true population abundance across
space and time, researchers are assuming that: (1)
the relationship between the count (C) and the
actual population (N) is approximately linear, and
(2) the detection probability (p), which can range
from 0 (none detected) to 1 (all detected, i.e.,
census), is constant across space and time. Some-
times this assumption can be relaxed if one can
assume that the average detection probability does
not vary over time or space. If these assumptions
are violated, unadjusted counts will not provide
robust estimates of change in population size, and
the estimation of detection probability becomes
critical to inferences about population size and
change. Accordingly, if detection probabilities are
<1 and vary over time and/or space, population
estimation procedures such as capture-recapture,
removal, or double-observer techniques must be
employed when conducting egg mass surveys
(Williams et al. 2002).

Several factors may influence detection proba-
bilities. Observer error, due to inexperience or
differences in visual ability, or other factors may
produce variation in detection probability (Hayek
1994). Density has been shown to influence dif-
ferences in observer detection probabilities from
bird point counts (Bart and Schoultz 1984).
Detection probabilities may also vary among
species and individuals of the same species because
of differences in habitats, egg mass deposition
sites, or season of observation (Diehl 1981).
Additionally, environmental factors such as
weather and time of day may influence the
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probability of detecting animals or egg masses
(Cook and Jacobson 1979).

One technique that has been employed to
account for observer differences and to estimate
detection probabilities and population sizes is the
incorporation of a second observer. Double-ob-
server estimates have been used for surveys of birds
(Nichols et al. 2000), musk oxen (Aastrup and
Mosbech 1993), moose and whitetail deer (Cook
and Jacobson 1979), and amphibian larvae (Jung et
al. 2002). In a dependent double-observer protocol,
two observers survey a pool together with observers
trading off between primary and secondary roles
(see Methods; Nichols et al. 2000). From resulting
statistics, one can compute detection probability
estimates for eggmasses and adjust counts based on
these probabilities to obtain unbiased estimates of
the total number of egg masses.

The study described herein is one component of
the US Geological Survey’s (USGS) Amphibian
Research and Monitoring Initiative (ARMI),
designed as a long-term monitoring survey of
amphibians on federal lands in the northeastern
United States. The primary goal of this study is to
draw inferences about changes in wood frog and
spotted salamander egg mass abundance in sea-
sonal pools over time (allowing inference about
population trends) and space (allowing inference of
the relationship between egg mass abundance and
landscape and habitat variables). Because of pos-
sible variation in detection probabilities over time
and space, estimation of detection probabilities
may be critical for inferring population trend and
relative abundance. In this paper, we present the
results of dependent double-observer egg mass
surveys and test whether detection probabilities
differ among species and observers or are influ-
enced by factors such as pool area, pool maximum
depth, or within-pool vegetation. We examine
whether survey- and site- specific covariates affect
detection probabilities across Refuges and Parks
over a two-year period (2002–2003), and address
strengths and weaknesses of the double-observer
protocol.

Regarding our a priori hypotheses, we predicted
moderate variation in the factors that influence
detection probabilities. The study areas covered a
large region, leading to the expectation that sour-
ces of variation in detection probability would
likely vary. Observer variation is common to most
animal survey methods and was expected to be

important. We predicted that observers trained by
primary study investigators might have higher
detection probabilities than observers receiving
secondary training from other personnel. Egg
masses of both amphibian species are readily
detectable, though we hypothesized that the egg
mass deposition behavior of wood frogs would
result in higher detection probabilities. We
expected detection probability to be negatively
related to water depth, wetland area, and vegeta-
tion, with egg masses more difficult to find in
larger, deeper, and more vegetated pools.

Methods

Wood frog and spotted salamander egg mass
double-observer surveys were conducted at 13
National Wildlife Refuges, 1 National Park, 1
National Seashore and 1 State Park in the north-
eastern US from March through June, 2002–2003
(Table 1). Data from Aroostook National Wildlife
Refuge could not be included in analyses for 2003
because single rather than double observers con-
ducted surveys. Refuge and Park biologists iden-
tified pools by examining USGS color infrared
digital ortho-photo quarter quadrangle (DOQQ)
maps (1:24,000 scale) using Arc View (Version 3.2,
Environmental Systems Research Institute), and
by ground-truthing in the field. Pools that
appeared likely to harbor breeding amphibians
were chosen so that we could conduct double-
observer estimation techniques and monitor pop-
ulation trends. Observers in the study included
USGS, US Fish and Wildlife Service, National
Park Service and State Park lead biologists trained
by REJ (primary training in double-observer
technique) and technicians and volunteers trained
by lead biologists (secondary training).

Each pool was visited at least twice during the
peak-breeding season, which varied depending on
geographic location. In the northeastern US, which
extends from Virginia to Maine and west to West
Virginia, wood frogs typically deposit their eggs
from late February to May (Wright and Wright
1949) and spotted salamanders fromMarch to June
(Petranka 1998). Wood frogs often breed earlier
than spotted salamanders, but presence of both
species’ egg masses overlapped in most pools dur-
ing at least one survey. Breeding phenologies of
both species can vary widely from year to year
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depending on the weather and can also differ by a
week or two among pools located within the same
county (Crouch and Paton 2000). The sampling
window for egg mass surveys is constrained by the
developmental rate of the embryos. Wood frog egg
masses last from 1 to 4 weeks prior to hatching, and
spotted salamanders from 4 to 7 weeks. By sur-
veying pools repeatedly over the breeding season,
we were able to obtain counts when the maximum
number of egg masses for each species was present.
We constructed models and estimated detection
probabilities for the survey date in which we re-
corded the maximum number of egg masses for
each species.

Observers surveyed the pools during the day
(0900–1500 h), recorded pool locations using a
global positioning system (GPS) receiver, mea-
sured pool maximum depth (cm), pool maximum
length (m), and maximum width (m), and summed
estimated categories of percent of the pool covered
with submerged aquatic vegetation, emergent veg-
etation, shrubs, and trees (0=0%, 1=1–10%,
2=11–25%, 3=26–50%, 4=51–75%, 5=‡76%),
resulting in a variable describing within-pool veg-
etation with a cover class scale ranging from 0 to
10. Pool area (m2) was estimated by multiplying
pool maximum width by maximum length. For

each survey, observers sketched a map of the site
including landmarks such as trees and shrubs to use
in recording the location of egg masses. Observers
wore polarized sunglasses to reduce solar glare re-
flected off the water’s surface. All areas within
pools <1.5 m in depth were surveyed.

We used a dependent double-observer technique
(Cook and Jacobson 1979; Nichols et al. 2000), in
which observer 1 points to and counts out egg
masses to observer 2 (Figure 1). Observer 2
records what observer 1 reports, but also records
in a separate column any additional egg masses
that observer 1 missed (withholding any comments
to observer 1). Halfway through the survey of the
pool, the observers switch roles, with observer 2
now initiating the counts and observer 1 recording
the number of egg masses detected by observer 2
and any additional egg masses that observer 2 may
have missed. We analyzed data from the survey
date(s) with the greatest number of detected egg
masses of wood frogs or spotted salamanders at
each pool.

Two methods were used to ask questions about
the detection probabilities of spotted salamander
and wood frog egg masses in northeastern pools.
As noted above, we modeled the detection prob-
ability, p, as a function of several covariates

Table 1. Participating National Wildlife Refuges (NWR), National Parks (NP), National Seashore (NS) and State Park, their state

locations and the number of pools and observers and survey dates and years in which double-observer egg mass surveys were

conducted.

Location (Park or Refuge) State 2002 2003

# pools # observers Survey dates # pools # observers Survey dates

Acadia Maine 4 3 Apr 18–May 5 4 2 Apr 29–May 20

Aroostook Maine 3 3 May 6–25 Jun – – –

Canaan Valley NWR West Virginia 4 2 Mar 19–May 1 4 2 Mar 27–May 13

Canaan Valley SP West Virginia 3 2 Mar 18–May 11 4 4 Mar 25–Apr 30

Cape Cod Massachusetts 6 3 Apr 12–May 17 4 3 Apr 14–May 2

E. Massachusettsa Massachusetts 2 2 Apr 12–May 9 4 6 Apr 7–May 9

Erie Pennsylvania 4 4 Apr 5–Apr 26 4 3 Apr 3–Apr 25

Great Bay New Hampshire 3 2 Apr 8–Apr 24 4 5 Apr 11–Apr 25

Great Swamp New Jersey 4 5 Apr 4–Apr 25 3 3 Mar 21–Apr 29

Iroquois New York 4 3 Apr 11–May 17 3 2 Apr 4–May 16

Lake Umbagog New Hampshire 4 4 May 1–Jun 5 4 4 Apr 28–May 20

Mississquoi Vermont 4 2 Apr 11–Apr 27 4 2 Apr 17–May 16

Moosehorn Maine 4 2 Apr 30–May 16 4 3 May 3–May 22

Patuxent Research Refugeb Maryland 13 8 Mar 6–Apr 3 3 6 Mar 22–Apr 8

Rachel Carson Maine 4 2 Apr 5–May 21 4 2 Apr 17–May 20

Wallkill River New Jersey 4 2 Mar 27–Apr 24 5 2 Mar 31–May 7

aEastern Massachusetts includes Assabett River NWR, Oxbow NWR, and Sudbury State Forest.
bPatuxent Research Refuge (PRR) also includes pools located on the US Department of Agriculture Beltsville Agricultural Research

Station.
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hypothesized to affect detection probabilities of
these species (Table 2). For most inferences we
used an information-theoretic approach (Burnham
and Anderson 1998) to select the most appropriate
model for each data set. However, one question
was whether variation in detection probability
varied between observers who received primary
versus secondary training. This question could not

be addressed via the use of general competing
models, so we used point estimates of detection
probabilities to address the question within a
hypothesis-testing framework.

Model development and selection

We used the program SURVIV (http://www.mbr-
pwrc.usgs.gov/software.html; White 1992 with
revisions by Hines 1996) to fit the various models
(Table 2). Models were developed for sets of pools
from each Refuge and Park separately. The most
general model, p(observer, pool, species), assumes
that detection probabilities were dependent on
observer, pool, and species, while the most specific
model, p(.), assumes detection probabilities are
constant and not dependent on observer, pool, or
species. A series of other models incorporated
parameter constraints on the general model [e.g.
p(observer), p(species), p(pool); see Appendix 1 for
an example of the SURVIV code]. Still other
models incorporated linear-logistic relationships
between detection probability and different habitat
variables (pool area and maximum depth, within-
pool vegetation; see Appendix 2 for an example of
the SURVIV code). We initially tried to model all
habitat variables simultaneously with observer and
species, but the data did not support this generality
in many cases. Thus, we addressed questions about
habitat variables using general models that
included observer, species, and single habitat
variables [e.g., p(observer, species, depth)] as well
as simple models with only habitat variables [e.g.,
p(depth)]. For example, model [p(observer, species,

Figure 1. Illustration of the dependent double-observer tech-

nique. The first observer (at left in the photograph) points out

egg masses to the second observer (standing), who records the

first observer’s count and any additional egg masses he sees.

The observers survey the pool together, with the second ob-

server following slightly behind the first. Midway through the

survey, the observers switch roles, and the first observer follows

the second observer around the pond, recording egg masses

seen and missed.

Table 2. Eleven models tested for the double-observer methods in 2002–2003 to explore assumptions regarding egg mass detection

probabilities and constraints of each.

Model Constraints

p(.) Detection probabilities independent of observer, pool, and species.

p(species) Detection probabilities dependent on species, independent of pool and observers.

p(pool) Detection probabilities dependent on pool, independent of observers and species.

p(obs) Detection probability dependent on individual observers, independent of species and pool.

p(obs, species, pool) Most parameterized model; detection dependent on observers, species, and pool.

p(area) Detection probabilities a function of pond area (m2).

p(obs, species, area) Detection probabilities a function of observer, species and pond area (m2).

p(depth) Detection probabilities a function of pond depth (m).

p(obs, species, depth) Detection probabilities a function of observer, species and pond depth (m).

p(veg) Detection probabilities a function of overall pond vegetation (cover class scale of 0–10).

p(obs, species, veg) Detection probabilities a function of observer, species and overall pond vegetation

(cover class scale of 0–10).
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depth)] was based on the following linear-logistic
relationship for detection probability:

p ¼ eðb1Oþb2Sþb3DÞ

1þ eðb1Oþb2Sþb3DÞ
;

where O denotes an indicator variable for ob-
server, S is an indicator variable for species
(0 = wood frog, 1 = spotted salamander), D is
the measurement for the depth covariate, and b1,
b2, and b3 are the associated model coefficients to
be estimated.

Goodness-of-fit tests for our most general model
[p(observer, pool, species)] indicated that the
model fit the dataset for each Park or Refuge well
(Table 3(a), (b)). Therefore, we used the second-
order Akaike’s Information Criterion differences
(DAICc) to compare models and select the model
that most parsimoniously explained the variation
in the data using the smallest number of parame-
ters (Burnham and Anderson 1998). Small DAICc

values (<2) indicated models similar in their
ability to fit the structure of the data (Burnham
and Anderson 1998; Nichols et al. 2000).

Hypothesis testing

As noted, the hypothesis about observer training
could not be placed in a model selection frame-
work. To test whether primary training resulted in
larger observer detection probabilities, we used a
nonparametric Wilcoxon two-sample rank test.
This test was conducted using SAS version 8, and
results were considered significant at a < 0.05.

Results and discussion

A total of 73 pools were surveyed in 2002 and 59
pools were surveyed in 2003, with 45 pools sur-
veyed in both 2002 and 2003. The number of
observers in a season per Refuge or Park ranged
from 2 to 8 (Table 1). A total of 67 observers
participated in the egg mass surveys in 2002–2003,
with 21 observers participating in both survey
years.

Development of models using the program
SURVIV allowed us to evaluate whether observ-
ers, amphibian species, and/or habitat covariates
influenced detection probabilities of individual egg

masses (Table 3). We were particularly interested
in assessing: (1) whether detection probabilities
differed among species, observers, pools, or habitat
variables, and (2) whether specific models were
selected at a large proportion of the Refuges and
Parks (i.e., whether there was a consistent pattern
in the variables that affected detection probabili-
ties among the Refuges and Parks).

The analyses provided evidence of the impor-
tance of most of the identified potential sources
of variation in detection probability for at least
some study locations in some years (Table 3).
No specific model was consistently selected as
‘best’ across the study locations during the sur-
vey period. Observer, species, and habitat vari-
ables were all found to be important
determinants of detection probability throughout
the analyses.

We had no expectation of a single model being
generally applicable to all data sets. The spatial
and temporal heterogeneity associated with our
data sets, spanning a distance of nearly 1500 km in
the northeast region, may explain some of the
differences in importance of covariates across the
data sets. Differences among data sets and years in
pools, observers, precipitation, vegetation pat-
terns, canopy closure, water chemistry, and other
factors may contribute to the variation at the scale
of Park or Refuge among years. This identification
of the potential importance of several variables as
sources of variation in detection probability, ra-
ther than a single dominant factor, underscores the
need to adjust egg mass counts to infer population
sizes and trends.

Variation in detection probability associated with
species

We detected wood frog egg masses in 63/73 pools
in 2002 and 51/59 pools in 2003, and spotted sal-
amander egg masses in 50/73 pools in 2002 and 44/
59 pools in 2003. Although model selection results
suggested the importance of species as a source of
variation in detection probability (Table 3), the
difference between the species did not appear to be
consistent over time or area. The differences
between point estimates from the same locations
differed in sign from one location to another as did
the estimated species coefficients in the habitat
models (Table 4). Point estimates from the
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SURVIV model p(species) were averaged over all
areas for each year and replication-based SE’s
computed. These estimates were high for both
species for both years (wood frogs in 2002:
0.96 ± 0.02, 2003: 0.96 ± 0.01; spotted sala-
manders in 2002: 0.95 ± 0.01, 2003: 0.93 ± 0.32).

Despite the differences in breeding phenology
and egg mass deposition behavior (aggregated in
wood frogs and separate deposition of egg masses
in spotted salamanders), the double-observer
method appears to be effective at detecting both
species.

Variation in detection probability associated with
observers

Model selection results provided strong evidence
of variation between observers in detection prob-
ability. Models with separate parameters for dif-
ferent observers typically had high model weights,
emphasizing the need to deal with observer dif-
ferences in egg mass surveys.

Previous egg mass count studies have also
found differences between observer counts.
Windmiller (1996) used an independent single-

Table 4. Estimated detection probabilities for Rana sylvatica and Ambystoma maculatum in (a) 2002 and (b) 2003 from the p(species)

model, and estimates of the species coefficient in the covariate model p(observer, species, depth).

Estimated detection probability (p)

for Rana sylvatica

Estimated detection probability (p)

for Ambystoma maculatum

Estimated coefficient

(a) 2002 Location (data set)

Acadia 1.00 (–) 0.96 (0.01) –

Aroostook 0.99 (0.01) 0.95 (0.02) –

Cape Cod 1.00 (–) 0.96 (0.01) –

Canaan Valley SP 1.00 (–) 0.98 (0.00) 0.07 (0.30)

CanaanValley NWR 0.94 (0.13) 0.96 (0.11) �5.15 (5.41)

E. Massachusetts 0.78 (0.12) 0.93 (0.01) 10.00 (–)

Erie 0.98 (0.02) 0.94 (0.02) –

Great Bay 0.94 (0.04) – –

Great Swamp 0.94 (0.02) – –

Iroquois 1.00 (–) – –

Lake Umbagog 1.00 (–) 0.88 (0.03) �3.55 (3.29)

Mississquoi 0.98 (0.01) – –

Moosehorn 0.83 (0.09) 0.94 (0.01) –

PRR 0.97 (0.01) 0.99 (0.00) –

Rachel Carson 1.00 (–) 0.84 (0.04) –

Wallkill River 0.99 (0.01) 1.00 (–) –

(b) 2003 Location (data set)

Acadia 0.98 (0.01) 1.00 (–) –

Cape Cod 1.00 (–) 0.95 (0.09) –

Canaan Valley SP 1.00 (–) 0.97 (0.01) –

CanaanValley NWR 0.96 (0.02) 0.99 (0.01) 1.30 (1.07)

E. Massachusetts 0.98 (0.01) 0.89 (0.02) �2.20 (2.04)

Erie 0.94 (0.03) 0.63 (0.14) 10.00 (–)

Great Bay 0.99 (0.01) 1.00 (–) –

Great Swamp 0.89 (0.03) – –

Iroquois 0.99 (0.02) – –

Lake Umbagog 1.00 (–) – �1.01 (3.05)

Mississquoi 0.98 (0.01) – –

Moosehorn 0.88 (0.09) 0.99 (0.01) 4.14 (5.13)

PRR 0.85 (0.03) 0.92 (0.02) �0.44 (2.47)

Rachel Carson 1.00 (–) 0.95 (0.03) –

Wallkill River 1.00 (–) 0.96 (0.03) –

Standard errors follow the estimates in parentheses. Standard errors could not be estimated [denoted as (–)] when parameter estimates

were on the boundary of the parameter space (e.g., 1.00). In the last column, a negative coefficient indicates that the detection

probability was higher for Rana sylvatica, while a positive coefficient indicates that the detection probability was higher for Ambystoma

maculatum. A (–) indicates that the model could not be fit to the data.
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observer count – recount of spotted salamander
egg masses in four seasonal pools in Massachu-
setts and found <10% difference between
counts. Crouch and Paton (2000) found that
counts of wood frog egg masses in the same
pools by two independent observers varied by
12%. Egan (unpubl. data) found that indepen-
dent double-observer counts of spotted sala-
mander egg masses varied by 25%, while wood
frog egg mass counts varied by 11%. Though
double-observer estimation techniques were not
used in these studies, the percent difference in
raw counts among observers indicates that some
observers failed to detect all egg masses.

We used point estimates of detection probabili-
ties from the SURVIV model p(observer) to test
whether observers who received primary training
exhibited increased detection probabilities when
compared to observers who received secondary
training in the double-observer egg mass detection
method. We averaged the detection probabilities
for 21 observers who participated in both survey
years, with a total of 67 observers included in the
analysis. Observers who received primary training
(n = 23) had a mean detection probability of
0.93 ± 0.02 (replication-based SE), while observ-
ers who received secondary training (n = 44) had
a mean detection probability of 0.88 ± 0.03,
though the difference was not significant (Wilco-
xon Z = �0.53, p = 0.60). Observers with sec-
ondary training nearly always conducted surveys
with an observer who had received primary
training, likely reducing the effects of a naı̈ve
observer included in the counts. Estimating
detection probabilities for each observer partici-
pating in a survey allows realistic approximations
of actual population sizes irrespective of variation
in the relative ability of each observer to detect egg
masses.

These results, as well as double-observer data
unadjusted for differences in detection probabil-
ity from Windmiller (1996); Crouch and Paton
(2000), and Egan (2001) indicate that observer
differences in counts between two observers are
inherent in egg mass surveys. Estimation of
detection probabilities using a double-observer
method, such as those outlined in this study,
allow for the removal of this bias from the
estimation of population size by adjusting pop-
ulation estimates for the probability that both
observers missed egg masses.

Variation in detection probability associated with
habitat variables

Models with detection probabilities modeled as
functions of habitat variables sometimes had high
model weights (Table 3), but the estimated rela-
tionships showed no real consistency (Table 5).
Estimated coefficients relating detection probabil-
ities and habitat variables varied in magnitude and
direction across the different data sets. The pre-
diction of negative association between detection
probability and depth, area, and vegetation
seemed to hold in some cases, but was not sup-
ported overall (Table 5). Over the range of vari-
able values encountered in this study, these
variables were not good predictors of detection
probabilities.

Windmiller (1996) reported that, in a Massa-
chusetts pool lacking vegetation, spotted sala-
manders deposited 91% of egg masses at depths
within 36–56 cm, with 49% of egg masses
deposited at depths between 40 and 50 cm. Wood
frog egg masses are typically aggregated on the
water surface, and thus, pool depth likely has
little influence on the detection of egg masses of
this species. Pool maximum depth is an indicator
of pool hydroperiod (Brooks and Hayashi 2002)
and therefore an indicator of larval survival to
metamorphosis (Rowe and Dunson 1995), yet
may not be necessarily associated with the
detection probability of egg masses. A more
meaningful measurement may be the slope of the
pool bottom, which would provide a greater area
for egg deposition. A combination of pool max-
imum area and the slope of the pool bottom may
better explain the variation in spotted salamander
detection probabilities than a single maximum
depth or area measurement alone. We are sur-
prised that the percentage of vegetation located
within a pool did not show high model weights
more consistently. Submerged and emergent veg-
etation are typically located on the margins of
seasonal pools, and therefore, we expected a pri-
ori that the percentage of vegetation would
influence the ability of observers to detect egg
masses. Perhaps, because observers were aware
that wood frogs and spotted salamanders are
likely to attach egg masses to vegetation (Kenney
and Burne 2000), observers searched the vegeta-
tion more thoroughly, and reduced the influence
of vegetation on detection probability.
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Alternatives to the dependent double-observer
method

Besides the dependent double-observer technique
employed in this study, other survey options might
include single-observer capture-recapture or
‘‘independent’’ double-observer methods. A single
observer could survey a pond multiple times in a
capture-recapture framework. Because the same
observer would be more likely to see (and miss) the
same egg masses, a behavioral response model
(e.g., M(b) or M(bh), Williams et al. 2002) is likely

to be most useful for such sampling. The time
interval between sampling occasions should also
be kept short, in order not to violate the closure
assumption (i.e., all egg masses must be available
to be detected at each occasion).

In an independent double-observer method, a
different observer conducts a second count sepa-
rately without sharing information until after the
survey has been completed. We used this approach
in 2001 (unpubl. data), but had difficultiesmatching
observer counts (for each identified egg mass, it is
important to note whether one or both observers

Table 5. Estimates of the slope coefficients (estimable standard errors in parentheses) relating detection probability and habitat

covariates in different covariate models in (a) 2002 and (b) 2003.

p(depth) p(observer, species,

depth)

p(area) p(observer, species,

area)

p(veg) p(observer, species,

veg)

(a) 2002 Location data set

Acadia NP �0.16 (1.46) – 0.17 (0.65) – 0.09 (1.50) –

Aroostook NWR – – – 0.59 (5.66) – –

Cape Cod NS 1.27 (1.00) – �0.62 (0.38) – �3.56 (3.61) –

Canaan Valley SP �0.002 (0.30) 0.07 (0.30) �0.09 (0.77) �0.08 (0.77) �0.13 (1.82) –

CanaanValley NWR �2.93 (4.04) �5.15 (5.41) �0.28 (0.09) �1.32 (1.93) 1.98 (2.25) 3.89 (2.52)

E.Mass NWR 3.5 (1.33) 10.00 (–) 0.73 (0.34) 0.77 (0.66) 5.28 (2.49) 4.24 (4.34)

Erie NWR – – – – – –

Great Bay NWR �9.37 (3.95) – – – �8.21 (4.89) –

Great Swamp NWR – – 10.00 (0.36) – 10.00 (–) –

Iroquois NWR – – – – – –

Lake Umbagog NWR �5.83 (9.40) �3.55 (3.29) 1.65 (0.57) – 3.17 (1.22) 2.23 (1.06)

Mississquoi NWR 10.00 (–) – �1.56 (3.61) 1.08 (0.48) 3.43 (3.49) 4.70 (3.39)

Moosehorn NWR – – 2.70 (1.52) 3.06 (1.51) 4.97 (3.59) –

PWRC-USDA RR 2.36 (0.63) – 10.00 (–) 10.00 (–) 0.18 (0.81) �0.17(0.70)
Rachel Carson NWR – – – – �10.00 (–) –

Wallkill River NWR – – 2.83 (3.49) – �0.27 (4.22) –

(b) 2003 Location data set

Acadia NP – – – – – –

Cape Cod NS �1.30 (2.28) – – – �0.33 (0.61) –

Canaan Valley SP �0.31 (0.69) – 1.79 (1.99) – 0.70 (0.77) –

CanaanValley NWR 1.35 (1.07) 1.30 (1.07) 6.99 (4.46) – – 6.57 (4.55)

E.Mass NWR �2.61 (2.28) �2.20 (2.04) �8.75 (8.47) �0.84 (0.73) �1.04 (0.68) �7.15 (8.94)

Erie NWR 1.79 (2.48) 10.00 (–) 7.48 (1.49) 9.74 (0.83) 9.60 (0.85) 10.00 (–)

Great Bay NWR – – 10.00 (–) – – –

Great Swamp NWR – – 10.00 (–) – – –

Iroquois NWR – – 10.00 (–) – – –

Lake Umbagog NWR �4.36 (2.14) �1.01 (3.05) 2.33 (0.49) 2.24 (3.00) 2.75 (0.31) 1.24 (3.26)

Mississquoi NWR 0.22 (6.34) – – – 0.29 (1.36) –

Moosehorn NWR – 4.14 (5.13) – – �0.91 (3.58) –

PWRC-USDA RR �1.09 (2.73) �0.44 (2.47) 0.21 (1.77) 0.22 (0.60) 0.12 (0.60) �1.16 (3.38)

Rachel Carson NWR 0.66 (5.98) – �2.70 (7.49) – – �9.78 (7.32)

Wallkill River NWR – – – – – –

A negative coefficient indicates that increases in the habitat covariate (e.g., increased depth, area, or vegetation) reduced the detection

probability for both species. A (–) indicates that the model could not be fit to the data. Standard errors could not be estimated [denoted

as (–)] when parameter estimates were on the boundary of the parameter space (e.g., 10.00). For each covariate, the first model

expresses detection probability as a function of the covariate of interest only. Under the second model of each pair, detection

probability is modeled as a function of observer and species, as well as the habitat covariate.
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detected it) and found that the dependent double-
observer method was superior for interpretation of
the data. Combining capture-recapture (i.e., mark-
ing egg masses in some fashion; Windmiller 1996;
Hels and Buchwald 2001) with independent ob-
server methods may increase precision, reduce bias,
and allow estimation of detection probabilities.

The study objectives and the resources available
should determine the selection of egg mass survey
technique. One possible compromise between the
need for precision in estimates and limited resources
for monitoring is to employ the dependent double-
observer approach only periodically or on a subset
of pools, for example, where detection probabilities
of egg masses may be especially low because of
habitat parameters, such as deep water or dense
vegetation. The results of this study caution against
this approach because of the wide variety of factors
that were determined to be important in the esti-
mation of detection probabilities.

Conclusions

This study tested a procedure designed to provide
more accurate estimates of population trends of
wood frog and spotted salamanders. Our results
indicate that the factors that affected detection
probabilities were not consistent among years and
Park or Refuge data sets, and no consistent set of
covariates adequately explained variation in
detection of wood frog and spotted salamander
egg masses. Based on these results, we conclude
that the estimation of detection probabilities using
a double-observer sampling procedure or some
other capture-recapture method is essential when
the goal of the study is to draw inferences about
population change in wood frog and spotted sal-
amanders based on numbers of egg masses.

Alford and Richards (1999) and more recently
Schmidt (2003) indicated that the amphibian

decline literature makes inferences about popula-
tion trends largely without estimation of the
detection probability of different species or of the
detection probabilities associated with individual
survey locations or observers. Indices derived from
unadjusted count data may have bias associated
with sampling variation, whereas the parameter of
interest is population size and the change in a
population over time. In long-term monitoring
programs, in which detection probabilities are
likely to vary due to differences in observers and
other variables, there is a need to estimate popu-
lation sizes in a manner that is not confounded
with the variation in detection probabilities in
order to make reasonable inference about popu-
lation change. The dependent double-observer
method allows for the assessment of variables that
may influence the detection of biologically
important parameters, such as the number of egg
masses in a seasonal pool.
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Appendix 1. Example SURVIV code as modified for this study.

PROC TITLE ’SURVIV code for E. Massachusetts NWR detection probability analysis’;

PROC MODEL NPAR = 12 addcell;

/* Pool ‘A’ */

COHORT = 1 /* # of AMAC egg masses seen by both observers */;

1:S(1)/(S(1) + S(2) � S(1)*S(2))/*# of AMAC egg masses seen by observer 1 only*/;

COHORT = 0 /*# of AMAC masses seen by both observers when observer 2 acted as first observer */;

0:(1.-S(2))*S(1)/(S(1)+S(2)-S(1)*S(2)) /*# seen by observer 1 when acting as second observer */;
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Appendix 1. Continued.

/* Pool ‘B’ */

COHORT = 0 /*# of AMAC egg masses seen by both observers at */;

0:S(3)/(S(3) + S(4) � S(3)*S(4)) /*# of AMAC masses seen by observer 1 only*/;

COHORT = 1 /*# of AMAC masses seen by both observers when observer 2 acted as the first observer */;

0:(1.-S(4))*S(3)/(S(3)+S(4)-S(3)*S(4)) /* number seen by observer 1 when acting as second observer */;

COHORT = 1 /*# of RSYL egg masses seen by both observers */;

1:S(5)/(S(5) + S(6) � S(5)*S(6)) /*# of RSYL masses seen by observer 1 only*/;

COHORT = 19 /*# of RSYL egg masses seen by both observers when observer 2 acted as first observer */;

4:(1.-S(6))*S(5)/(S(5) + S(6) � S(5)*S(6)) /* number seen by observer 1 when acting as second observer */;

/* Pool ‘C’*/

COHORT = 138 /*# of AMAC egg masses seen by both observers */;

121:S(7)/(S(7) + S(8) � S(7)*S(8)) /*# of AMAC masses seen by observer 1 only */;

COHORT = 297 /*# of AMAC egg masses seen by both observers when observer 2 acted as first observer */;

9:(1.-S(8))*S(7)/(S(7) + S(8) � S(7)*S(8)) /* number seen by observer 1 when acting as second observer */;

/* Pool ‘D’*/

COHORT = 1 /*# of AMAC egg masses seen by both observers */;

0:S(9)/(S(9) + S(10) � S(9)*S(10)) /*# of AMAC masses seen by observer 1 only */;

COHORT = 0 /*# of AMAC egg masses seen by both observers when observer 2 acted as first observer */;

0:(1.-S(10))*S(9)/(S(9) + S(10) � S(9)*S(10)) /* number seen by observer 1 when acting as second observer */;

COHORT = 2 /*# of RSYL egg masses seen by both observers */;

2:S(11)/(S(11) + S(12) � S(11)*S(12)) /*# of RSYL masses seen by observer 1 only */;

COHORT = 0 /*# of RSYL egg masses seen by both observers when observer 2 acted as first observer */;

0:(1.-S(12))*S(11)/(S(11) + S(12) � S(11)*S(12)) /* number seen by observer 1 when acting as second observer */;

LABELS;

S(1) = p1(pool ‘A’ AMAC);

S(2) = p2(pool ‘A’ AMAC);

S(3) = p1(pool ‘B’ AMAC);

S(4) = p2(pool ‘B’ AMAC);

S(5) = p1(pool ‘B’ RSYL);

S(6) = p2(pool ‘B’ RSYL);

S(7) = p1(pool ‘C’ AMAC);

S(8) = p2(pool ‘C’ AMAC);

S(9) = p1(pool ‘D’ AMAC);

S(10) = p2(pool ‘D’ AMAC);

S(11) = p1(pool ‘D’ RSYL);

S(12) = p2(pool ‘D’ RSYL);

proc estimate novar maxfn = 32000 name = p(.);

constraints; /* sets expected cell probabilities equal */

S(2) = S(1);

S(3) = S(1);

S(4) = S(1);

S(5) = S(1);

S(6) = S(1);

S(7) = S(1);

S(8) = S(1);

S(9) = S(1);

S(10) = S(1);

S(11) = S(1);

S(12) = S(1);

proc estimate novar maxfn = 32000 name = p(species);

constraints; /* sets expected cell probabilities which describe the same species equal */

S(2) = S(1);

S(3) = S(1);

S(4) = S(1);
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Appendix 1. Continued.

S(6) = S(5);

S(7) = S(1);

S(8) = S(1);

S(9) = S(1);

S(10) = S(1);

S(11) = S(5);

S(12) = S(5);

proc estimate novar maxfn = 32000 name = p(pool);

constraints; /* sets expected cell probabilities which describe the same pool equal */

S(2) = S(1);

S(4) = S(3);

S(5) = S(3);

S(6) = S(3);

S(8) = S(7);

S(10) = S(9);

S(11) = S(9);

S(12) = S(9);

proc estimate novar maxfn = 32000 name = p(observer);

constraints; /* sets expected cell probabilities which explain the same observer equal */

S(3) = S(1);

S(4) = S(2);

S(5) = S(1);

S(6) = S(2);

S(7) = S(1);

S(8) = S(2);

S(9) = S(1);

S(10) = S(2);

S(11) = S(1);

S(12) = S(2);

proc estimate novar maxfn = 32000 name = p(observer, species, pool);

initial; /* sets the values for S(I) back to the original values */

retain = p(observer); /* obtains initial estimates from output of p(observer) model */

constraints;

S(2) = 1;

S(3) = 1;

S(10) = 1;

S(12) = 1;

proc test;

proc stop;

See the SURVIV user’s manual for explanation of the basic command syntax (http://www.mbr-pwrc.usgs.gov/software/doc/sur-

viv.html). A group of COHORT statements followed by user-specified algebraic expressions allow the calculation of detection

probability estimates. User-specified modeling constraints can be used to create multiple models based on the same general model

structure. Counts of egg masses of each species are included in separate sets of COHORT statements to allow calculation of individual

species’ detection probabilities in the p(species) model. Each <proc estimate> statement is followed by the name of the model, and a

group of constraint statements that alter the individual cell probabilities [S(I)] and allow the calculation of detection probability

estimates for each model. In the most general model (largest number of parameters), [p(observer, pool, species)], the code constrains a

parameter equal to 1 when the COHORT = 0 [i.e., the parameters S(2), S(3), S(10) and S(12) are constrained to ‘1’ in the final <proc

estimate> constraints line], which allows the fitting of a general model to sparse data. The code (below, in bold) is then entered into the

SURVIV program (http://www.mbr-pwrc.usgs.gov/software/surviv.html). Text enclosed between /* and */ symbols describes each line

of code.
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Appendix 2. Example SURVIV code including a covariate, <max area>, which is the maximum pool area (as defined in the text). The

explanations of the COHORT statements are identical to those described above, but the syntax is altered to allow inclusion of the logit

functions specified in the <inline> statements. The individual cell probabilities [S(I)] are estimated when the measured covariate is

entered for each pool surveyed [e.g., V1 = EXP(S(1) + S(2)*(max area))/(1 + EXP(S(1) + S(2)*(max area)))]. The constraint

statements are provided to bound the estimate between �10 and 10, and to further restrict the model for the detection probabilities.

The code (below, in bold) is then entered into the SURVIV program (http://www.mbr-pwrc.usgs.gov/software/surviv.html). The

p(slopes equal) model returns the point estimates and AIC values to use in model comparison. Values for other covariates can be

entered to determine the most suitable model to explain the variation in detection.

PROC TITLE ’E. Massachusetts NWR detection probability analysis: Dependent double-observer method, including a covariate

<max area>’;

PROC MODEL NPAR = 4 addcell;

/* Pool ‘A’*/

inline V1 = EXP(S(1) + S(2)*0.145)/(1 + EXP(S(1) + S(2)*0.145));

inline V2 = EXP(S(3) + S(4)*0.145)/(1 + EXP(S(3) + S(4)*0.145));

/* Pool ‘B’*/

inline V3 = EXP(S(1) + S(2)*0.304)/(1 + EXP(S(1) + S(2)*0.304));

inline V4 = EXP(S(3) + S(4)*0.304)/(1 + EXP(S(3) + S(4)*0.304));

/* Pool ‘C’*/

inline V5 = EXP(S(1) + S(2)*2.78)/(1 + EXP(S(1) + S(2)*2.78));

inline V6 = EXP(S(3) + S(4)*2.78)/(1 + EXP(S(3) + S(4)*2.78));

/* Pool ‘D’*/;

inline V7 = EXP(S(1) + S(2)*0.140)/(1 + EXP(S(1) + S(2)*0.140));

inline V8 = EXP(S(3) + S(4)*0.140)/(1 + EXP(S(3) + S(4)*0.140));

/* Pool ‘A’ */

COHORT = 1;

1:V1/(V1 + V2 � V1*V2);

COHORT = 0;

0:(1.-V2)*V1/(V1 + V2 � V1*V2);

/* Pool ‘B’ */

COHORT = 0;

0:V3/(V3 + V4 � V3*V4);

COHORT = 1;

0:(1.-V4)*V3/(V3 + V4-V3*V4);

COHORT = 1;

1:V3/(V3 + V4 � V3*V4);

COHORT = 19;

4:(1.-V4)*V3/(V3 + V4 � V3*V4);

/* Pool ‘C’ */

COHORT = 138;

121:V5/(V5 + V6 � V5*V6);

COHORT = 297;

9:(1.-V6)*V5/(V5 + V6 � V5*V6);

/* Pool ‘D’ */

COHORT = 1;

0:V7/(V7 + V8 � V7*V8);

COHORT = 0;

0:(1.-V8)*V7/(V7 + V8 � V7*V8);

COHORT = 2;

2:V7/(V7 + V8 � V7*V8);

COHORT = 0;

0:(1.-V8)*V7/(V7 + V8 � V7*V8);

labels;

S(1) = intercept observer_1;

S(2) = slope observer_1;

S(3) = intercept observer_2;

S(4) = slope observer_2;

proc estimate novar maxfn = 32000 name = p(slopes equal);

constraints;

�10<S(1)<10;

�10<S(2)<10;
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Appendix 2. Continued.

�10<S(3)<10;

S(4) = S(2);

initial;

S(2) = �1;
S(4) = �1;
proc estimate novar maxfn = 32000 name = p(area);

constraints;

�10<S(1)<10;

�10<S(2)<10;

�10<S(3)<10;

�10<S(4)<10;

initial;

retain = p(slopes equal);

proc test;

proc stop;
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