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Abstract  Heavy metals (HMs) and microplastics 
(MPs) are toxic environmental pollutants that severely 
risk ecosystems and living organisms. The interactions 
of these pollutants in the aquatic environment can 
impact their bioavailability, toxicity, and bioaccumula-
tion potential in organisms. Various factors, including 
temperature, pH, salinity, polymer type, particle size 

and microbial abundance, influence these interactions 
and are likely to increase their influence on aquatic 
biota and human beings. MPs have been recognized as 
heavy metal transporters in aquatic environments that 
exhibit various harmful effects. However, MP interac-
tions with heavy metals are poorly understood. Hence, 
it is important to understand the detailed mechanism, 
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mainly absorption vs ingestion, MPs degradation 
with metal fate and combined effects on living organ-
isms. To tackle and reduce the harmful effects on 
biodiversity, it is essential to comprehend the under-
lying mechanisms (e.g. adsorption, desorption, bio-
uptake, and synergistic effects). Also, more research 
is required to comprehend the intricate connections 
between MPs and HMs in an array of environmental 
situations, which could lead to innovative solutions 
for mitigating their detrimental environmental conse-
quences. This review paper discusses microplastic’s 
prevalence, concentration, adsorption, and dissocia-
tion characteristics concerning HMs in aquatic eco-
systems that must be understood to reduce their del-
eterious effects on aquatic biodiversity. Understanding 
these complex interactions between MPs and HMs is 
critical to assessing the ecotoxic effects and prevent-
ing environmental pollution. This review paper also 
underscores the nature of environmental pollutants, 
including the interaction mechanisms of MPs and 
HMs, emphasizing the importance of multifaceted 
approaches that need to be adapted to mitigate their 
combined effects.

Keywords  Microplastics · Heavy Metals · 
Micropollutants · Adsorption · Toxicity · Aquatic 
ecosystem

1  Introduction

Microplastics (MPs) have attracted significant interest 
on a global level due to their widespread environmen-
tal distribution and unidentified risks to living spe-
cies. MPs are persistent organic pollutants (Vaisakh 
et al., 2023) defined as a particle of plastic sized lesser 
than 5 mm (Birch et al., 2020); or sizes from 100 nm 
to 5 mm (Sobhani et  al., 2020). MPs may be classi-
fied into two discrete groups: primary and secondary 
(Lehtiniemi et al., 2018). Primary MPs are produced 
in significant quantities for a defined purpose and can 
be derived from specific sources, such as plastic pel-
lets used in industrial manufacturing, microbeads 
found in cosmetics, and nylon fibers used in the textile 
sector. In contrast, secondary MPs are produced due 
to the fragmentation or degradation of larger plastic 
items, including macro-plastics (the term refers to rel-
atively larger pieces of plastic debris typically greater 
than 5 mm such as plastic bottles) and meso-plastics 

(refer to smaller plastic particles ranging from 1 to 
5  mm for instance microbeads) (Jeyasanta et  al., 
2020). Chemical and physical ageing, UV radiation 
(photo-oxidation), mechanical transformation, and 
biodegradation by microorganisms are all examples of 
degradation mechanisms (Rose et al. 2023b).

Each year, around 8 million metric tons of plastic 
enter the oceans, and by 2050, there will probably be 
more plastic by weight in the oceans than fish (Jam-
beck et al., 2015). The ubiquitous presence of MPs in 
many environmental matrices is attributable to their 
use in a variety of applications due to their afford-
ability, toughness, and adjustable properties (Ahmed 
et al., 2023). As of 2016, estimates of the amount of 
plastic garbage released into rivers, lakes, and the 
ocean worldwide ranged from 9 to 23 million met-
ric tons annually (Borrelle et  al., 2020). The amount 
released into the terrestrial environment was estimated 
to be between 13 and 25 million metric tons annually 
(Lau et al., 2020). In the event that things go as esti-
mated, these projected 2016 emission rates will nearly 
quadruple by 2025. Marine activities such as ship-
ping and fishing contribute only 20% of the plastic in 
the water (Khalid et al., 2021b; Vedolin et al., 2018). 
The remaining amount of plastic being transported to 
marine environments comes from terrestrial sources. 
The atmosphere also contributes to transport of many 
suspended microplastic particles locally or globally 
(Camarero et al., 2017). According to a recent study, 
atmospheric MPs were the most dominant particles 
transferred to ocean surface air and isolated places in 
aquatic systems (Evangeliou et al., 2020). The atmos-
pheric transport of MPs is yet to be revealed; how-
ever, the atmospheric MPs fallout has been reported 
in Paris, France (110 ± 96/m2/d) and Dungguan, China 
(53 ± 38/m2/d) (Wright et al., 2020).

In contrast, the terrestrial discharge contains a huge 
load of organic and inorganic pollutants, especially 
HMs, which are the major sources of toxicity, particu-
larly cadmium (Cd) in aquatic ecosystems (Kakakhel 
et  al., 2023b). HMs are inert and non-biodegradable 
inorganic pollutants with a density of > 5 g/cm3 (Dixit 
et al., 2015; Musilova et al., 2016; Rose et al., 2023a). 
HMs pollution in the environment primarily originates 
from mining operations, industrial discharges, weath-
ering processes, water cycles, oil refineries, untreated 
waste, automotive activities, paint and dye indus-
tries, domestic effluents, agricultural runoff, exces-
sive water resource utilization, effluent discharges, and 
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wastewater treatment plants (Thompson & Darwish, 
2019). Toxic HMs, including lead (Pb), mercury (Hg), 
Cd, arsenic (As), and chromium (Cr), when deposited 
in the body, are likely to cause health issues ranging 
from developmental delays, neurological damage, and 
organ damage to increase risk of cancers (Kayiranga 
et  al., 2023). HMs exhibit strong adsorption tenden-
cies, and their interaction with microplastic causes 
them to bind microplastic’s surface because of hydro-
phobicity, large surface area, electrostatic interactions, 
and chemical properties (Shi et al., 2023; Zhang et al., 
2023). Consequently, MPs are responsible for dispers-
ing hazardous metals across various environmental 
substrates (Liu et al., 2022b).

Aquatic animals’ uptake microplastic using vari-
ous mechanisms, including feeding, direct inges-
tion, and trophic transfer (da Costa Araujo & Mala-
faia, 2021). A study reported that MPs adhere to the 
surfaces of aquatic organisms such as crustaceans, 
molluscs and mammals with mucus bodies leading 
to ingestion and accumulation on external bodies 
(Amini-Birami et  al., 2023). The absorption of MPs 
by numerous marine organisms like crabs, shrimp, 
fish, mussels and oysters has been extensively docu-
mented (Van Cauwenberghe et al., 2013). Experimen-
tal studies have suggested the inadvertent ingestion 
of MPs by a variety of planktonic organisms such as 
copepods during feeding (Setälä et al., 2014). Subse-
quently, large predators and fishes indirectly consume 
these MPs (Roch et al., 2020). Previous studies have 
demonstrated that MPs clubbed with HMs can have 
detrimental effects on the development and repro-
ductive capabilities of aquatic organisms, including 
photosynthetic phytoplankton (Fu et al., 2019; Wang 
et  al., 2020b). This observation illustrates the dire 
health risks that human health faces due to the poten-
tial propagation of heavy metal-associated MPs up 
the food chain.

Many studies are being conducted on toxicity of 
heavy metals and negative effects of microplastics. 
But the collective lethality needs to be studied upon. 
In this view, the current review article provides an in-
depth overview and evaluation of research pertaining 
to the environmental consequences of MPs associ-
ated with HMs. The primary objective of this review 
is to address knowledge gaps while providing certain 
details by investigating the effects of toxic pollutants 
originating from MPs and HMs on aquatic organisms 
and humans. Additionally, the correlation mechanism 

between HMs and MPs, as well as potential influ-
encing factors, have been explored. In addition to 
evaluating a range of mitigating strategies, the cur-
rent study also proposes several potential directions 
for future research. This review article thus aims to 
improve our understanding of the origins, pathways, 
processes, and ecological risks that MPs and HMs 
collectively pose to human and environmental health.

2 � Review Methodology

The methodology employed in this review paper 
on MPs and HMs followed the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses) framework, ensuring a rigorous and sys-
tematic approach. The study consisted of four main 
steps: 1: Identification, 2: Screening, 3: Eligibility, and 
4: Inclusion criteria. These stages were accomplished 
in three sequential phases. The first phase involves 
searching for reliable literature using Scopus as a 
search engine by providing relevant keywords such 
as “microplastic”, “Heavy Metals”, and "microplas-
tic and Heavy metals toxicity”. A total of 2126 ini-
tial results were gathered and subsequently subjected 
to screening. The screening process applied various 
inclusion and exclusion criteria, i.e., the inclusion of 
articles published in journals in the English language 
and the exclusion of conference proceedings and book 
chapters, considering that journal articles provide a 
more comprehensive representation of research and 
in the field and English is a widely used language for 
scholarly communication. Articles within the specific 
subject areas relevant to the present study were also 
considered and categorized into different sub-areas.

Furthermore, any duplicate articles were removed, 
ensuring no overlap in the final dataset. The inclusion 
criteria focused on studies that specifically investi-
gated the interaction, adsorption, or accumulation 
of HMs on MPs. Data extraction and synthesis were 
conducted to extract relevant information from the 
selected articles, including study design, sample char-
acteristics, methodology, results, and conclusions. 
The extracted data was recruited to find the trends, 
and gaps in the MPs and HMs research. The search 
process utilized the appropriate use of Boolean opera-
tors to refine search queries and relevant results. As a 
result, a final dataset of 153 published articles from 
2010 to 2023 was selected for the present review.
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3 � Interactions of Microplastics and Heavy Metals: 
Environmental and Health Concerns

Microplastics and HMs pose a significant environ-
mental and health concern to humans and other 
organisms (Lin et al., 2021). The occurrences of HMs 
on microplastic surfaces can intensify the toxicity 
and ecological risks through synergistic interactions 
(Vaisakh et  al., 2023). HMs concentrations on plas-
tic (polyethylene) pellets after 8 weeks of suspension 
in a harbor showed HMs concentration in the fol-
lowing order: silver (Ag), iron (Fe), aluminum (Al), 
manganese (Mn), Pb, copper (Cu), and zinc (Zn). The 
plastic pellets absorbed the metal through co-precipi-
tation, direct adsorption of cations or complexes onto 
charged sites or neutral regions of the plastic sur-
face, and adsorption onto Fe and Mn hydrous oxides 
(Ashton et  al., 2010). The age of the MPs signifi-
cantly influences the accumulation of HMs. Santos-
Echeandia et al. (2020) investigated Hg accumulation 
on plastics on the Spanish Mediterranean coast and 
reported a significant relation between the accumu-
lation of Hg and the age of the MPs. There are four 
mechanisms by which the plastic-degradation takes 
place, including hydrolytic, bio-degradation, ther-
mal-degradation, and photodegradation (Yao et  al., 
2022). Aghilinasrollahabadi et al. (2021) showed that 
weathered polyethylene terephthalate MPs had higher 
Pb adsorption than recently introduced polyethylene 
MPs and low Zn uptake in either condition. When 
exposed to rainwater, low-density polyethylene MPs 
released Pb and Zn. HMs can influence MPs adsorp-
tion characteristics and processes in the natural envi-
ronment. To fully comprehend the environmental 
effects of MPs, it is vital to investigate the interac-
tions between MPs and these co-existing pollutants, 
as given in Table 1.

3.1 � Interactions in Aquatic Environments

While, multiple research studies have documented 
the abundance of organic contaminants in plastic 
debris (Karapanagioti & Rios-Mendoza, 2022), the 
occurrence of metals on plastic debris, either through 
adsorption, adhesion or as additives in the plastic 
itself, has only been more recently acknowledged and 
investigated (Attaelmanan et al., 2023; Vaisakh et al., 
2023). Polyethylene, polyethylene terephthalate, high-
density polyethylene, polystyrene, polyvinyl chloride, 

polyoxymethylene, polypropylene, polybutylene adi-
pate terephthalate, low-density polyethylene, and 
polyacetic acid are different plastics found in aquatic 
environments (Pandiyan et al., 2013). While plastics 
are disposed of into the environment, it would attract 
and absorb potential pollutants from their surround-
ings and serve as reservoirs for toxic substances. 
Research based examinations and laboratory studies 
have unequivocally exhibited the occurrences and tes-
timony of heavy metals onto these MPs (Xuan Guo 
& Wang, 2019). HMs such as Cr, Cd, and Fe are pre-
dominantly discharged into the environment through 
industrial effluents, often finding their way into water 
bodies (Khalid et al., 2021a; Zhou et al., 2020). These 
effluents are carelessly discharged into water bod-
ies in developing countries without proper treatment. 
Furthermore, automotive emissions are a common 
source of Pb, Cd, Zn, and Fe, contaminate roadside 
soil and reach water sources during rainstorms (Guan 
et al., 2020). The spread and breaking down of anti-
fouling coatings (biocide based coatings and silicon-
based coatings), as well as the combustion of fuel, 
induces  heavy metal contamination in marine envi-
ronments, particularly in harbors, waterways, and 
bays (Abbasi et al., 2020). Recent studies have shown 
MPs propensity to attract and interact with HMs, 
suggesting their possible contribution to the dynam-
ics of heavy metal pollution. Despite the uptake of 
HMs from the surrounding environment, MPs also 
act as a carrier source of HMs deposition. Hazard-
ous metals have been obtained from plastic surfaces 
in ocean floors. This indicates the ocean litter is a 
potential "pathway" to pollution of the beach environ-
ment climate because of their deposition in oceanside 
soil for a long time. The total mass of Pb that could 
leach from polyvinyl chloride plastic litter over a year 
onto Ookushi Beach, Goto Islands, Japan was esti-
mated to be 0.6 ± 0.6 g/year (Nakashima et al., 2012). 
In another study, (Imhof et al., 2016) reported differ-
ent types of HMs including Fe (23.64 µg/g), Cr (4.06 
to 456.25 µg/g), Zn (0.76 to 89.75 µg/g), Pb (219.70 
to 227.02 µg/g) and Ti (1046.01 to 175,513.36 µg/g) 
associated with paint particles in Lake Garda, Italy. 
Previously, Massos and Turner (2017) examined 
sandy beaches in southwest England and reported 
the presence of Cd (3390 µg/g), Pb (5330 μg/g), and 
beryllium (13,300 μg/g) on MP pellets and fragments 
in water bodies. Additionally, Zn (2.39), Cd (17.56), 
Pb (131.1), Fe (500.6), and Ti (38,823.7) adsorption 
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were determined on polypropylene and polyethylene 
particles in the Beijing River in China (Wang et  al. 
2021a). The occurrence of HMs (maximum concen-
tration) such as Cd (45 ± 9  mg/kg), Fe (1.0 ± 1  mg/
kg), Fe (228.0 ± 142  mg/kg), Mn (9.0 ± 6  mg/kg), 
Zn (8.0 ± 9 mg/kg), and Ti (3.0 ± 0.4 mg/kg) in MPs 
(e.g., polypropylene, polyethylene, and high-den-
sity polyethylene) was reported along the coast of 
Sao Paulo State in southern Brazil (Vedolin et  al., 
2018).  About 0.1  μg/g  of Pb was adsorbed to the 
beach pellets, and its avian bio-accessibility was 
around 60 and 70% (Turner et al., 2020). Purwiyanto 
et  al. (2020) reported the dominance of polypropyl-
ene followed by polyethylene, polyester, polyvinyl 
chlorine, and nylon, and the average concentration of 
Pb (0.470 mg/kg) was higher than Fe (0.0138 mg/kg) 
on MPs in the Musi River, South Sumatera Province, 
Indonesia. Ta and Babel (2020) reported the occur-
rence of polypropylene, polyethylene, and polystyrene 
MPs with high concentrations of Pb (17.61 µg/g) and 
Fe (13.02 µg/g) adsorbed on MPs in the Chao Phraya 
River at the Tha Pra Chan area of Bangkok, Thailand. 
In the wetlands of Eastern India, Sarkar et al. (2021) 
reported various HMs (wastewater canal, treatment 
plant, µg/g) such as Cd (4.51 µg/g), Cr (342.2 µg/g), 
Fe (119.5 µg/g), Zn (75.5 µg/g), and Pb (104.6 µg/g), 
which were adsorbed in MPs manufactured of poly-
ethylene and polyethylene terephthalate.

The presence of MPs in food chains and food webs 
has raised concerns due to their potential interaction 
with HMs (Huang et al., 2021a, b). Initially, the pol-
lutants are exposed to aquatic organisms by ingestion, 
or sorption by phytoplankton and zooplankton fol-
lowed by transfer to higher trophic levels and depo-
sition from water to sediments. MPs with attached 
HMs deposited in sediments are consumed by ben-
thic organisms such as clams and polychaetas, which 
can subsequently be directly ingested by large verte-
brates such as fish and the fish is further consumed 
by the human (Kakakhel et  al., 2023a; Zaheer Ud 
Din et  al., 2023). The widespread presence of MPs 
in aquatic habitats allows their absorption and subse-
quent accumulation in fish and other animals’ diges-
tive systems. MPs can interact with HMs, increasing 
the potential of hazardous chemicals such as persis-
tent organic pollutants (POPs), phthalates, bisphenol 
A, flame retardants and antimicrobial agents, migrat-
ing into the aquatic food cycle. Some studies have 
investigated how MPs bioaccumulate and biomagnify 

in aquatic environments at various trophic levels. For 
instance, Chen et  al. (2021) conducted a study on 
Caenorhabditis elegans and found transgenerational 
neurotoxicity induced by polystyrene MPs. Dimi-
triadi et  al. (2021) observed significant decreases in 
heart function and swimming competence, oxidative 
stress and metabolic changes in zebrafish exposed 
to food-enriched particles ranging from 3 to 12 μm. 
Carrasco-Navarro et al. (2021) investigated the influ-
ence of polystyrene MPs and tire rubber MPs on Chi-
ronomus riparius. Results observed alterations in the 
expression of heat shock proteins and Mn superoxide 
dismutase genes. Aljaibachi et  al. (2020) reported a 
significant decline in Daphnia magna, indicating 
stressful environmental conditions upon exposure 
to polystyrene MPs < 15  μm. Figure  1 illustrates 
the correlation in heavy metals and MPs in aquatic 
environments

4 � Interaction Mechanism Between Microplastics 
and Heavy Metals: Isotherm Model 
and Sorption Mechanism

The interaction between MPs and HMs involves 
three primary mechanisms. The first mechanism 
involves electrostatic interaction and surface compl-
exation, where HMs interact with polar or charged 
MPs by coulombic forces (Cao et  al., 2021). Van 
der Waals refers to weak attractive forces between 
all molecules, including non-polar molecules like 
microplastics and metal ions (Ikai, 2017). These 
forces may aid in the adsorption of metal ions onto 
the microplastic’s surfaces. The second process 
involves complex development by sorption and/or 
deposition by natural organic matter and biofilms, 
altering microplastic surface properties (He et  al., 
2022). The third mechanism includes precipitation 
and co-precipitation, where heavy metal ions or their 
complexes co-precipitate with hydrous oxides of Fe 
and Mn by adsorbing them onto them (Qasem et al., 
2021; Yang et  al., 2022). π-π interactions, which 
involve the overlapping of π-orbitals between aro-
matic or conjugated systems in plastic polymers and 
certain heavy metal ions, contribute to the binding 
and adsorption of HMs onto the microplastic’s sur-
face (Thakuria et al., 2019). The pore-filling mecha-
nisms entail the HMs adsorbing into the microplas-
tic pores, resulting in their subsequent retention and 
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accumulation. Figure  2 illustrates the interaction 
mechanism between MPs and HMs through various 
sorption mechanisms such as H-bonding, π-π interac-
tions, electrostatic interaction, hydrophobic interac-
tion, pore filling and Van der Waals forces.

External diffusion, intra-particle diffusion, and 
adsorption are the three phases that comprise metal 

adsorption on MPs (Xuan Guo & Wang, 2019). 
External diffusion occurs when heavy metal ions rap-
idly permeate the water film that envelops the micro-
plastic particles (Yu et al., 2020). Intraparticle diffu-
sion pertains to the process by which HMs permeate 
on the surface of MPs; as sorption rate and available 
adsorption sites decrease, the intraparticle diffusion 

Fig. 1   Interaction between 
microplastics and heavy 
metals in aquatic environ-
ments

Fig. 2   Influencing factors 
and interaction mechanisms 
between microplastics and 
heavy metals
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becomes apparent (Liu et  al., 2022c). Adsorption 
depicts the final stage, in which the rate of adsorption 
decreases in tandem with the concentration of HMs 
and the limited number of adsorption sites that are 
accessible (Bai et al., 2023). Kinetic models, includ-
ing the pseudo-second order model, are frequently 
employed to characterize the adsorption process. 
These models imply that the rate-limiting phase is the 
chemical adsorption step.

As stated by Wang et  al., 2020a, 2020b, 2020c, 
2020d, the common processes between the interac-
tion of heavy metal and MPs include adsorption, des-
orption, and bioaccumulation. To comprehend, the 
adsorption process onto the surfaces of MPs has the 
potential to enhance the bioavailability and absorp-
tion of HMs (Yinghua Li et al., 2022). However, the 
efficiency of this adsorption process can be influ-
enced by several factors such as particle size, dimen-
sions, density, shape, and surface charge of the MPs’ 
characteristics. (Hodson et  al., 2017). Additionally, 
the desorption of HMs from MPs is influenced by 
salinity, temperature, and pH (Ji et al., 2021). During 
bioaccumulation, organisms tend to ingest MPs that 
have adsorbed HMs on their surface. Microplastic 
size, shape, content, and surface chemistry also affect 
heavy metal bioavailability.

Weathering and ageing processes, including long-
term physical abrasion, photo-oxidation, and biodeg-
radation are examples of how weathering and ageing 
can radically affect microplastic surface properties 
(Bai et al., 2023). However, numerous mechanisms are 
involved in the adsorption between MPs and HMs. The 
intermolecular interaction of the plastic polymer and 
the adsorbate is critical in determining the surface of 
heavy metal adsorption microplastic (Liu et al., 2022b). 
Despite MPs’ property of being inert to metal ions in 
water, the breakdown of plastic polymers may increase 
metal ion adsorption on their surface (Binda et  al., 
2021). Multiple interactions, including hydrogen bond-
ing, electrostatic interaction, liquid filling mechanisms, 
hydrophobic interaction, Van der Waals forces, and π-π 
interactions, could cause this interaction. Table 2 shows 
several studies on heavy metal adsorption on MPs

Small metal absorption by plastic resin pellets 
was investigated, with findings indicating that polar 
or charged plastic surfaces and non-specific interac-
tions with metal–organic complexes could influence 
metal ingestion efficiency (Holmes et  al., 2012). 
Another study, Ashton et al. (2010) reported that the 

co-precipitation of metallic HMs on hydrated Fe and 
Mn oxides is likely to be the reason for their accu-
mulation, which signifies that the conjugation of 
these two pollutant could possible increase the toxic-
ity level of water. In contrast, the absorption of HMs 
on the surface of MPs can decrease the contamina-
tion of HMs in aquatic ecosystems. An electrostatic 
interaction between divalent metal ions and car-
boxylate anions on the surface of MPs was shown 
in the study reported by Tang et  al. (2021). It indi-
cated that the strong electrostatic force found in car-
boxylate and divalent cations could bridge between 
microplastic, Pb to aggregate and are likely to bond 
together, potentially impacting the aquatic ecosystem 
by smothering benthic organisms. Prior research has 
investigated the adsorption of Fe by pure polyethyl-
ene, revealing that the highest level of adsorption was 
seen at a pH > 5. The increased electrostatic interac-
tion between Fe ions and polyethylene is the reason 
behind this adsorption reaction (Wang et  al., 2020a, 
b, c, d). A study on the effect of surfactants on Pb 
adsorption by different types of MPs revealed that the 
introduction of surfactants enhanced the MPs’ hydro-
philicity and negative charge, thereby enhancing their 
sorption capacity (Shen et al., 2021).

A recent study employed Fourier Transform 
Infrared Spectroscopy (FTIR) and X-ray photo-
electron spectroscopy (XPS) to assess the sorption 
of Cd onto various MPs. The process was found 
to involve cation-bonding interaction and oxygen 
functional groups, as indicated by the increased 
proportions of carbon–carbon and C-O bands in 
polyamide and acrylonitrile butadiene styrene 
(Zhou et  al., 2020). The alteration in the absorp-
tion peak of the C-O bond upon adsorption of Pb 
onto nylon microplastic was also observed by Tang 
et  al. (2020), suggesting the presence of a surface 
complex mechanism involving Pb and carboxylate 
anions (-COO-). Because the Pb ions interact with 
the amide carbonyl group upon absorption onto the 
surface of the nylon microplastic. For instance, the 
electron density distribution within the amide group 
can be altered when Pb2+ makes a coordinate bond 
with a lone pair of electrons localized on the O2 
atom (Ingham, 2022). Zou et al. (2020) investigate 
the chemical properties of polyvinyl chloride, chlo-
rinated polyethylene, and polyethylene after adsorp-
tion of Pb, Fe, and Cd. Results showed changes in 
carbon–oxygen bonds and carbon-chlorine bonds 
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(specifically, between chlorinated polyethylene and 
polyvinyl chloride). This demonstrated the correla-
tion between metals and oxygen-containing func-
tional groups on MPs, as well as electronegative 
chloride on chlorinated polyethylene and polyvinyl 
chloride. In another study, Xuetao Guo et al. (2020) 
identified that the adsorption process of polysty-
rene is significantly influenced by polar interactions 
arising from the benzene structure. Conversely, van 
der Waals forces originating from nonspecific func-
tional groups serve as the primary mechanism by 
which Cd adsorbs onto polyethylene and polypro-
pylene (Xuetao Guo et al., 2020).

Organic materials that are adhered to the surface 
of MPs can also impact the adsorption of metal ions 
onto them. Although biological communities also 
contribute significantly, heavy metal adsorption onto 
MPs is primarily influenced by their chemical and 
physical properties (Liu et  al., 2022a). For instance, 
the microbial consortiums present in the water sys-
tems form biofilms that influence the surface prop-
erties and functional insights of MPs (Yuan et  al., 
2020). In 2020, University of Washington research-
ers investigated the mechanisms by which HMs 
adsorb onto MPs coated in biofilm within a reservoir. 
The biofilms’ capacity to enhance the adsorption of 
HMs was governed by complexation with functional 
groups (phenyl-OH, amino, and carboxyl), cation 

exchange, and electrostatic interactions (Guan et  al., 
2020). The authors reported that the adsorption of 
HMs onto MPs covered by biofilms is the result of a 
complex combination of physical and chemical mech-
anisms, as illustrated in Fig. 3.

In a research study, Ahamed et  al. (2020) illus-
trated that biofilms enhanced the adsorption of heavy 
metal ions through two mechanisms: (i) reducing 
the hydrophobicity of polyethylene and (ii) supply-
ing functional groups that can interact with easily 
accessible metal ions. The kinetics of Pb, Cd, and 
Zn adsorption were studied on virgin polypropylene 
and polyethylene terephthalate coated with biofilm. 
The results of this study indicated that biofilm-coated 
polymeric materials exhibit improved metal-binding 
characteristics. Increased electrostatic interactions, 
oxide production, and a change in surface charge may 
all contribute to efficient metal removal as biofilms 
develop on MPs surfaces (Wang et al., 2020b); never-
theless, the rate of heavy metal adsorption on micro-
plastic surfaces is accelerated by biofilm growth and 
maturation (Kalčíková et al., 2020).

5 � Role of Environmental Factors

Adsorption of HMs to MPs is likely to be substan-
tially influenced by salinity, pH, dissolved organic 

Table 2   Adsorption mechanisms of heavy metals by microplastics

Microplastics type Heavy metals type Best fit isotherm Sorption mechanism References

Polystyrene Fe Langmuir - (Chen et al., 2022)
Polyethene Pb Langmuir Electrostatic force and compl-

exation
(Fu et al., 2021)

Polypropylene Cd Henry model Physical adsorption (Shen et al., 2021)
Low-density Polyethylene Fe, Fe, Pb, Mn, Zn Freundlich - (Huang et al., 2020)
Polyethene Fe Langmuir Intra-particle diffusion and 

electrostatic forces
(Wang et al., 2020a, c)

High degree Polyethylene Cd Langmuir - (Wang et al., 2020a, c)
Chlorinated Polyethylene Fe, Pb, Cd Freundlich (Fe, 

Pb), Langmuir 
(Cd)

Surface complexation and 
electrostatic interaction

(Zou et al., 2020)

Polystyrene Cd Henry model π-π Interaction (Xuetao Guo et al., 2020)
Polystyrene Cd Freundlich Non-covalent interactions and 

electrostatic force
(Dong et al., 2020)

Polystyrene Cd Henry model Electrostatic and π-π Interac-
tion

(Zhou et al., 2019)

Polyethene Strontium Freundlich Internal and external diffusion (Xuan Guo & Wang, 2019)



Water Air Soil Pollut (2024) 235:567	 Page 11 of 26  567

Vol.: (0123456789)

matter (DOM), temperature, and particulate matter 
(Jardak et al., 2016).

5.1 � pH Condition

pH plays an important role in the adsorption of HMs 
on MPs. The capacity of MPs to adsorb HMs can be 
enhanced by a rise in pH (Zou et al., 2020). As the pH 
decreases, cationic contaminant adsorption increases 
due to precipitation, stronger electrostatic forces, and 
reduced competition from H+ in the solution, among 
other factors. Conversely, the sorption capacity for 
anionic pollutants reduces with increasing pH of the 
solution (Demiraj et  al., 2018). According to Zou 
et al. (2020), the adsorption of Fe, Pb, and Cd by MPs 
increases as the pH (6.13) of the solution rises. How-
ever, Dong et al. (2019) observed the inverse pattern 
in the case of Arsenic (III) adsorption. Due to their 
comparatively lower zeta potential and consequently 
stronger electrostatic attraction towards metal cati-
ons, MPs exhibit this effect as the pH (3–7) of the 
surrounding environment rises. On the contrary, the 
adsorption of heavy metal ions may be impeded by 
passivation or precipitation occurring at elevated pH 
levels. Lin et al. (2021) noted that Pb exists in a cati-
onic state at low pH values (2), whereas at high pH 

values (6), it can produce species such as Pb(OH)+, 
Pb(OH)2, and Pb(OH)3-.

5.2 � Temperature

Temperature significantly impacts the adsorption of 
HMs onto MPs in numerous ways. For instance, the 
adsorption of HMs is endothermic, whereby the capac-
ity for adsorption escalates in tandem with elevated 
temperatures (Ahmad et  al., 2014). In a study con-
ducted by Wang et  al. (2022), it was found that posi-
tive adsorption of Pb onto nylon MPs was endothermic 
and spontaneous across a wide temperature range, as 
evidenced by positive enthalpy change (ΔH) and nega-
tive Gibbs free energy (ΔG) values. Tang et al. (2021) 
observed findings regarding the adsorption of Zn, Fe, 
and Zn onto nylon MPs. This effect is accounted for 
by the chemisorption of cationic ions with nylon MPs. 
Higher temperatures facilitate the transfer of pollutants 
to the surface of MPs because of the increased energy 
accessibility (Inyang et  al., 2016). However, elevated 
temperatures might have an adverse impact on the sorp-
tion of As (III). The research conducted by Dong et al. 
(2020) demonstrated that the sorption of As (III) onto 
polytetrafluoroethylene and polystyrene resulted in 
negative ΔH values. These values suggest that the pro-
cesses involved are exothermic and advantageous when 

Fig. 3   The potential inter-
action between MPs, HMs 
and bacterial taxa in the 
environment describe the 
absorption mechanism, as 
the bacteria play a key role 
in the degradation of plas-
tic. This mechanism could 
be an ecofriendly approach 
towards the degradation of 
MPs in the environment
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conducted at lower temperatures. Overall, it is appar-
ent that the impact of temperature on the adsorption of 
HMs by MPs is contingent upon the microplastic poly-
mer and the contaminants in consideration.

5.3 � Salinity

The adsorption behavior of HMs by MPs in aqueous 
media is significantly influenced by salinity (Zou et al., 
2020). A study conducted by Wang et al. (2019) discov-
ered that Cd adsorption onto high-density polyethylene 
could be inhibited by the addition of sodium chloride 
(NaCl) at varying concentrations. Cd exchange and coex-
isting ions with salinity were identified to limit sorption 
capacity. The species distribution of HMs in solution 
exhibited a shift as the concentration of Cl increased. 
Additionally, as the concentration of Cl rose, bivalent 
ion adsorption onto MPs was observed to decrease (Tang 
et al., 2021). The impact of co-occurring saline ions on 
Fe adsorption was found to be property-dependent. Spe-
cifically, magnesium ions exhibited a substantial inhibi-
tory effect on Fe sorption, as reported by Ivanets et al. 
(2016). Another study conducted by Tang et al. (2020) 
provided evidence that the sorption of Cd, Fe, and Pb 
by MPs is influenced by the concentration of NaCl (0% 
NaCl, Pb 1.07 qe(mg/g)). During the sorption process, 
sodium, magnesium, and calcium ions engage in com-
petition with HMs. Conversely, anions like chlorine 
facilitate the formation of complexes, which results in 
a reduction of sorption capacity (Gao et al., 2020). The 
aggregation of microplastic particles can be influenced 
by salinity, leading to a decrease in both surface area and 
sorption capacity (Tang et al., 2021).

5.4 � Dissolved Organic Matter and Particulate Matter

The sorption behavior of HMs on MPs can be influ-
enced by the presence of dissolved organic matter (Xu 
et al., 2018). Cd sorption by various MPs varied as the 
concentration of humic acid increased and decreased 
(Guo et  al., 2022). In a study on competing sorption 
with MPs, Zhou et  al. (2019) found that the affinity 
of negatively charged fulvic acid and humic acid with 
π-electrons and functional groups for these contami-
nants led to a reduction in the overall sorption capac-
ity. On the contrary, certain MPs might absorb further 
humic or fulvic acids to enhance the electrostatic inter-
actions with cationic contaminants (Guo et al., 2022). 
It has been demonstrated that DOM influences the 

sorption capabilities of bivalent metal ions in numerous 
ways (Tang et al., 2020). The complicated interactions 
between DOM, microplastic properties, and pollutant 
targets make assumptions about the effects of DOM 
on HMs/microplastic sorption challenging. The hydro-
philic nature of MPs was observed to be enhanced by 
surfactants, thereby increasing their capacity to adsorb 
Pb from wastewater (Tang et al., 2020). Free chlorine 
and corrosion inhibitors in water distribution systems 
may minimize the amounts of HMs adsorbed by MPs 
due to oxidation and competition effects (Huang et al., 
2021a, 2021b). However, the influence of co-occurring 
particulate matter on microplastic sorption behaviors in 
the natural environment remains unclear and requires 
further investigation (Wang et al., 2020d).

6 � Toxic Effects

Combining MPs with pollutants can lead to changes in 
toxicity towards organisms (Sun et  al., 2022). Khalid 
et al. (2020) developed considerable evidence that HMs 
and MPs are hazardous to numerous organisms. Jinhui 
et  al. (2019) studied MPs and HMs for their harmful 
impact on organisms in aquatic environments. Direct 
intake of MPs and associated HMs by living bodies 
from their environment can result in metal accumulation 
in the organism’s body (Zhu et al., 2018), possibly lead-
ing to reactive oxygen species (ROS) generation. HMs 
can indirectly enter organisms through the digestive sys-
tem once MPs are consumed. Micro- and macro-algae 
are critical in marine environments because they act as 
a feed source from zooplankton to fish, turtles, crusta-
ceans, mollusks, and larger species (Huang et al., 2020).

Bhattacharya et  al. (2010) reported the accumula-
tion of MPs in Chlorella sp. The findings of this study 
revealed the depletion in the algal photosynthesis pro-
cess and enhancement of algal ROS, which could proba-
bly have implications on the sustainability of the aquatic 
food chain. In a lab-based experiment, Kalčíková et al. 
(2020) observed that MPs have significantly impacted 
duckweed’s root growth. Similarly, Abbasi et al. (2020) 
examined interactions in the rhizosphere zone of wheat 
and found that polyethylene terephthalate MPs acted as 
carriers of HMs such as Pb, Zn, and Cd. A multitude 
of additional studies have examined the uptake of MPs 
by various organisms inhabiting aquatic ecosystems, 
including zooplankton, bivalve mollusks, and mussels. 
These investigations have also investigated the potential 
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transfer of MPs to multicellular organisms, specifically 
fish (Karami et al., 2018; Santillo et  al., 2017). Phyto-
plankton, fish, invertebrates, and algae are extensively 
studied organisms for the assessment of combined 
impacts of HMs and MPs, as these organisms are ulti-
mately ingested by organisms at higher levels in the 
food chain (Huang et  al., 2021a, 2021b). The effects 
of 100  μg/L polyethylene MPs on mosquito fish were 
examined in a recent study spanning a period of 14 days. 
According to the findings obtained from this study, MPs 
were found to be substantially accumulated in the liver, 
which increased the malondialdehyde (p < 0.05) level to 
200 µg/L (Banaee et al., 2023).

6.1 � Potential Effects on Aquatic Biota

Exposure to HMs and MPs is most likely to have 
detrimental effects on aquatic organisms, including 
stunted growth and development, decreased reproduc-
tion, elevated stress levels, altered behavior, and addi-
tional health issues (Cormier et  al., 2022; Singh & 
Kalamdhad, 2011). Multiple laboratory investigations 
have yielded findings that support the notion that 
combined MPs and HMs may have harmful effects on 
organisms inhabiting freshwater and marine environ-
ments as shown in Fig. 4, (Arif et al., 2022; Cao et al., 
2021). In a study conducted by Dercia Santos et  al. 
(2021), Danio rerio was exposed to MPs (2  mg/L) 
and two non-lethal concentrations of Fe (60 and 

125  μg/L) for a period of 14  days post fertilization. 
The findings indicated that Danio rerio larvae that 
were subjected to these conditions exhibited increased 
vulnerability to mortality and oxidative stress. Fur-
thermore, it was observed that the larvae experienced 
neurotoxicity, confirmed by the inhibition of acetyl-
cholinesterase activity and antioxidant enzyme activ-
ity. Another study attempted to assess the impact 
of Fe (25 μg/L) and MPs (2 mg/L) on zebrafish, for 
30 days. According to the results obtained, the antiox-
idant system of the brain in zebrafish was modulated 
by the synergistic exposure of Fe HMs and MPs; 
glutathione peroxidase, however, was also inhibited 
by Fe and MPs (Yuan et  al., 2023). Furthermore, 
the research findings of Dércia Santos et  al. (2022) 
demonstrated that the concurrent application of Fe 
and microplastic resulted in the suppression of pro-
liferating cell nuclear antigens in zebrafish. A similar 
study reported that zebrafish exposed to polystyrene 
MPs (6:2 chlorinated polyfluorinated ether sulfonate) 
exhibited an increase in oxidative stress and an inten-
sified inflammatory response to Danio rerio larvae 
(Yuan et al., 2023).

The toxicity of HMs (Cd 10 μg/L, Pb 50 μg/L, 
and Zn 100 μg/L) and polystyrene MPs (100 μg/L, 
about 1 × 103  particles/mL 2.5 μm) was evaluated 
in marine medaka (Oryzias melastigma) for a dura-
tion of 30  days. Empty follicles, follicular atre-
sia, and changes in gene expression involving the 

Fig. 4   The potential intoxi-
cation of aquatic organisms 
caused by heavy metals and 
microplastics
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hypothalamic-pituitary–gonadal axis were among 
the adverse effects observed in the study (Yan et al., 
2020). Additionally, a 45-day investigation was 
conducted to determine the effects of high-density 
polyethylene, Fe (0.05 mg/L), Cd (0.01 mg/L), and 
Pb (0.05 mg/L) on the yellow seahorse (Hippocam-
pus kuda). The results found that growth and sur-
vival rates of seahorses decreased readily (Jinhui 
et al., 2019). The same authors also observed simi-
lar impacts in various species, including Shrimp 
scad (Alepes djedaba), Orange-spotted grouper 
(Epinephelus coioides), Pickhandle barracuda 
(Sphyraena jello), and Bartail flathead (Platycepha-
lus indicus) collected in natural environments. These 
species were found to contain MPs and HMs such as 
Hg, Cr, Zn, Mn, As, Fe, Se, Fe (Cu), Zn (Ni), vana-
dium (V), and Pb, which resulted in similar negative 
effects due to their accumulation inside their bodies 
(Jinhui et  al., 2019). Fish can be considered model 
organisms for studying developmental toxicity in 
humans (Qiu et al., 2019). Despite limited research 
on higher organisms like fish in aquatic environ-
ments, they hold significant importance due to their 
position in the food chain and their edibility, making 
them a valuable model for studying combined toxic-
ity and contaminant transformation through the food 
chain. Toxicity of HMs and MPs is given in Table 3.

6.2 � Potential Effects on Human Beings

Digestive diseases, oxidative stress, DNA damage, 
immunological dysfunction, inflammation, neurologi-
cal damage, cancer, cardiovascular disease, respira-
tory issues, dermatitis, and infertility are examples of 
HMs and MPs toxicity (Chang et al., 2020; Ijomone 
et al., 2020) as given in Fig. 5. These harmful com-
pounds may enter the body through direct skin con-
tact, ingesting contaminated food or water, and inhal-
ing airborne particles (Engwa et  al., 2019; Ijomone 
et  al., 2020; Zheng et  al., 2022). Additionally, MPs 
were found in various human consumption resources, 
including water, air, food, drink, and plastic (Jin 
et al., 2021). A study by Hwang et al. (2019) demon-
strated the accumulation, which led to stimulation in 
the immune system and increased hypersensitivity to 
polypropylene MPs by the increasing cytokines and 
histamine levels in human HMC-1 cells. Therefore, 

the abundance of MPs and HMs in the environment 
raises concerns about the potential hazards of their 
co-exposure.

A study focusing on microplastic ingestion into 
human body was conducted by Liao et  al. (2020) 
wherein it was concluded that microplastic con-
sumption through a variety of dietary items, includ-
ing sugar, salt, bottled water, alcohol, vegetables, 
fruits, and fish, has been identified as the primary 
route of microplastic penetration into the human 
body. These MPs have the potential to transport haz-
ardous metals to human beings (Liao et  al., 2020). 
The bio-accessibility and hazard quotients of MPs 
loaded with Cr(VI) and Cr(III) were investigated 
at several stages of digestion, including the mouth, 
stomach, small intestine, and large intestine. The 
Cr (VI) bio-accessibilities for polylactic acid were 
highest in the gastrointestinal, 15.6% in the small 
intestinal, and 3.9% in the large intestinal. The study 
also estimated that humans different age groups 
could absorb 0.50 to 1.18 g of Cr daily from micro-
plastic use. Metal nanoparticles and MPs have also 
been shown to have cell-toxic effects on the human’s 
brain, epithelial cells, and colon-rectal differenti-
ated cells (Rahman et  al., 2021). More research on 
the toxicity and impact of MPs and metals on human 
health is critical, even if the exact risks of human 
exposure remain poorly understood (Noventa et al., 
2021).

Microplastics have been reported by several 
researchers and revealed that the MPs can have signif-
icant effects including oxidative stress, DNA damage, 
organs dysfunction, metabolic disorders, and immune 
response (Yue Li et al., 2023). It is generally believed 
that after entering the human body, the MPs would be 
extracted via gastrointestinal tract and biliary tract. 
However, scientists detected the MPs in human blood 
(Leslie et al., 2022). A recent study reported that MPs 
are transported to the whole body by blood circula-
tion and effects spleen, liver, colon, lungs, placenta, 
and breastmilk (Kutralam-Muniasamy et al., 2023). In 
addition, the MPs act as carriers for the other contam-
ination by adsorption processes which have adverse 
effects on the human body (Lee et al., 2023). Such as, 
the absorption of MPs and HMs in the human gut can 
have significant effects on good microbiota and cause 
dysbiosis (Fournier et al., 2023).
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7 � Future Recommendations and Perspectives

To tackle the intricate matter of interactions between 
MPs and HMs, it is crucial to explore numerous sig-
nificant future avenues. Firstly, it is necessary to 
expand research efforts to encompass a broader range 
of environments, particularly terrestrial ecosystems, 
to better understand the extent and impact of these 
interactions beyond aquatic systems. This would 
probably help identify contamination hotspots and 
sources of exposure in different ecological settings. 
Additionally, long-term studies are worth assessing 
the influence of MPs and HMs on food chains and 
human health, including potential risks associated 
with consuming contaminated food. More research is 
required to understand the complex mechanism and 
correlation between MPs and HMs. This includes 
investigating the variables that influence interactions, 
such as environmental conditions and the types, sizes, 
and concentrations of MPs involved. Conduction of 
comprehensive toxicity assessments to investigate the 
interactions between MPs, HMs, and organisms at 
different stages of the food chain is equally essential. 
Evaluation of hazardous effects of HMs and MPs on 
ecosystems requires critical evaluation of both short-
term and long-term exposures, likely affecting differ-
ent trophic levels.

The mitigation strategies majorly focus on mini-
mizing and inhibiting the MPs and HMs in the aquatic 

ecosystems, especially the marine environment. The 
promotion of sustainable alternatives to plastic prod-
ucts and the implementation of restrictions on indus-
trial wastes is imperative. Physical, chemical, and 
biological remediation techniques are being used for 
solving the problem of heavy metals and microplas-
tics. However, the physical methods like sedimenta-
tion, magnetic separation, centrifugation, and flota-
tion are not very effective. Chemical methods like 
adsorption, advanced oxidation processes, and oxi-
dation/ reduction reactions used in mitigating MPs 
and HMs are effective, but are a matter of concern 
and pose a significant environmental threat. Moreo-
ver, attention should be given to biological techniques 
such as bioremediation, microbial degradation and 
enzymatic treatment, as they are comparatively safer. 
Biological filtration, biofilms, biological aggregation 
and phytoremediation are significant eco-friendly 
techniques used to degrade or break down MPs and 
eliminate the HMs from water bodies. In addition, 
many plants like water hyacinth (Eichhornia cras-
sipes), duckweed (Lemna minor), and watercress 
(Nasturtium officinale) can absorb HMs using roots 
and bioaccumulation, which microorganisms further 
degrade. The beneficial microorganisms can also be 
used as a synergistic biofiltration system with chemi-
cals to filter MPs and HMs from water bodies. Hence, 
attention should be given to biological sources to uti-
lize them in mitigating HMs and MPs from the water.

Fig. 5   Potential effects of 
microplastics and heavy 
metals on human beings
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Understanding the mechanisms of heavy metal 
adsorption onto MPs and their subsequent toxicity to 
aquatic organisms is an essential area of future research 
on the fate and toxic effects of HMs and MPs in aquatic 
environments. It is important to create procedures for 
monitoring and conducting research on these detrimen-
tal compounds. Additional safeguards against HMs 
and MPs should be enforced by legislation and regu-
latory frameworks. Beside all these, there are several 
limitations for the study “Interactions between micro-
plastic and heavy metals in the aquatic environment” 
which could be the research bias, for instance, there 
may be differences in laboratory conditions and field 
studies. Secondly, the interactions of HMs and MPs 
may generate byproducts whose entities might not be 
known. Thirdly, the combined effects of both the pol-
lutants (HMs and MPs) especially when human bod-
ies and animal species are considered remains unclear. 
Fourthly, concentration of pollutants being very less 
in the environment, does not give uniformly gener-
ated data. Lastly, the units considered for the measure-
ment of microplastics in water are very confusing like 
items/L, mg/L and items per unit area etc. Thus, it is 
important to study in depth interactions between MPs 
and HMs in-vitro and in-vivo conditions so as to assess 
the multiple levels at which the damage is being done.

8 � Conclusions

This compiled literature study emphasizes the signifi-
cance of HMs and microplastic interactions in aquatic 
ecosystems while focussing on the serious hazards 
they pose to the well-being of humans and the eco-
system. MPs will likely  influence HMs absorption, 
toxicity, accumulation, and transport. Several factors 
influence sorption capabilities, including solution 
pH, temperature, salinity, surface properties, poly-
mer type, exposure duration, size, concentration and 
other environmental conditions in the water. Higher 
temperatures favored high adsorption rates  in maxi-
mum number of studies. Also, pH conditions are 
still a complex subject in terms of HM adsorption on 
MPs as it is dependent on surface charge, chemical 
speciation, competing reactions and hydrophobic-
ity. Furthermore, altered surface morphology, crys-
tallinity, and oxygen-containing functional groups 
of MPs due to degradation or ageing processes led 
to greater adsorption of HMs. Little is known about 

the variables influencing these interactions, even 
though the processes by which various HMs interact 
with certain MPs can be varied and complex. When 
MPs and/or HMs co-exist, the negative effects on 
organisms may be synergistically increased dose- or 
size-dependent. Aquatic animals are likely to suffer 
negative effects from HMs and microplastic expo-
sure, including stunted growth, decreased reproduc-
tion, higher stress levels, altered behavior, and other 
health problems. However, further research studies 
are needed to develop effective remediation strate-
gies for removing these pollutants. A novel approach, 
for instance, nanotechnology, including nanotubes 
and metallic nanomaterials, is likely to hold and has 
considerable potential for removing toxic materials 
from the ecosystem. It is important to fill the missing 
knowledge gaps between laboratory-scale studies and 
real-world water environments.
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