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(Cdeg), and Nemerow Pollution (PNI) showed that 
human activities such as automobile mechanics, 
dumping of solid waste, and agricultural activi-
ties are the major source of heavy metals pollu-
tionin soil within the study area. Findings obtained 
from Igeo are contrary to findings obtained from 
ERI which revealed soil samples were unpolluted, 
implying that the anthropogenic activities within 
the area had little influence on the ERI. Observa-
tion from Cdeg indicated a low contamination 
degree in the soil. Results from PNI showed that 
36.4 %, 27.3 %, and 13.6% of analyzed soil sam-
ples were classified to be clean, slightly clean, and 
moderately polluted respectively. Deduction from 
Principal Component Analysis PCA analysis and 
Pearson correlation matrix suggested that anthropo-
genic activities within the study area have led to the 
occurrence of heavy metals in soil.

Keywords  Heavy Metals · Soil · Multivariate 
Techniques · Risk Assessment · Nigeria

1  Introduction

In some parts of the world especially in developing 
nations, unregulated waste generation and indiscrim-
inate dumping and disposal constitute global chal-
lenges occasioned by increasing world population 
and rapid urbanization. The absence of strict adher-
ence to waste management legislation, poor urban 

Abstract  The study investigated the pollution 
indices and potential ecological risks of heavy met-
als (HM) occurrence in the soil affected by munici-
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(AAS). Heavy metals analyzed for this study are Zn, 
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design, and insufficient effort by government agen-
cies have all contributed to inappropriate waste dis-
posal across urban areas in Nigeria (Backsion et al., 
2006; Omene et  al., 2015; Eyankware et  al., 2016). 
Human activities generate waste and these undesir-
able materials that are disposed of as waste, with no 
further value to the original users. Obasi et al. (2015) 
and Igwe et  al. (2020, 2021) noted that widespread 
and indiscriminate dumping of these wastes remains 
a major source of heavy metal pollution and a seri-
ous concern confronting humans. The quantity and 
content of waste generated in any given location are 
determined by social traits, economic strength, popu-
lation size, consumption patterns, and the nature of 
services provided to the general public (Eyankware, 
2019). According to studies, the soil is the primary 
recipient of the heavy metals (HM) constituents of 
municipal wastes and significantly high heavy metal 
concentrations could lead to soil pollution (Benedicta 
et  al., 2017; Eyankware & Ephraim, 2021; Eyank-
ware & Obasi, 2021; Islam et al., 2015; Obasi et al., 
2015; Turhan et  al., 2020; Ulakpa & Eyankware, 
2021). Mine tailings and municipal wastes (waste 
from human activities, small industries, and com-
mercial activities) were identified as major sources 
of HMs in the soil (Ezemokwe et  al., 2016; Igwe 
et  al., 2020; Karim et  al., 2014; Singh et  al., 2011; 
Wei & Yan, 2010). Similarly, hazardous waste (paint, 
varnishes, batteries, expired medications, insecti-
cides), ashes from heating systems, and the organic 
fraction, which has a high accumulation capacity, are 
also common sources of heavy metals (Agidi et  al., 
2022; Akakuru et  al., 2021a, b; Onyeanwuna et  al., 
2024; Omoko et  al., 2023; Opara et  al. 2023a, b). 
HMs harm soil ecosystems for a long time and hinder 
soil enzymes (Akakuru et al., 2023a, b). Heavy met-
als are a big problem due to their toxicity and long-
term persistence in the soil (Islam et al., 2015; Yako-
vlev et al., 2020). HMs are not biodegradable, unlike 
organic pollutants (Eyankware & Obasi, 2021). They 
have the potential to accumulate in the soil and enter 
the food chain via vegetable consumption grow-
ing near contaminated soil (Abdusalam, 2009; Igwe 
et  al., 2020). HM contamination of soil can lead to 
the decomposition of soil biology, changes in soil 
physicochemical characteristics, possible dangers, 
and other negative consequences on the soil eco-
system. HM contamination of soil has indeed been 
found to have negative effects on human health, 

animals, soil productivity, and vegetation diver-
sity and abundance, according to Ogunbanjo et  al. 
(2016), Riyad et  al. (2015), Papa et  al. (2010), and 
Smith et al. (1996). Enrichment factor (EF), contami-
nation factor (Cf), degree of contamination, index of 
geoaccumulation (Igeo), pollution load index (PLI), 
and other traditional methods have been developed 
and used to assess the pollution status of HMs in soil 
over the last few decades (Islam et  al., 2014; Islam 
et al., 2015). Each method takes a unique approach to 
both the estimation and interpretation of outcomes. 
Risk assessment is a powerful instrument in envi-
ronmental health and is very significant in hazard 
evaluation, control, and management, hence ecologi-
cal risks assessment is a part of the current study in 
soil pollution investigations (Fairbrother et al., 2007; 
Igwe et  al., 2020; Kumar et  al., 2018; Sahito et  al., 
2016). It shows that heavy metals tend to have nega-
tive effects on the environment (Ogunbanjo et  al., 
2016). HMs around urban and rural wastes have the 
potential to harm ecosystems and human health, and 
they are a major source of worry for human and envi-
ronmental health, particularly in areas near dump-
sites. HMs can enter the food chain in significant 
amounts through plants (vegetable and other arable 
crops) and animal grazing since they are taken up by 
plants (vegetable and other arable crops) as stated 
by Zhao et al. (2010). As a result, eating vegetables 
produced on dumpsite soils with high metal concen-
trations could put people at risk for serious health 
impacts from heavy metals. To the best of our knowl-
edge, no previous research had examined the pollut-
ant features and potential ecological effects of HMs 
on soil within the study area. Hence this study was 
carried out to ascertain the impact of heavy metals 
on soil using various heavy metals indexes such as 
geoaccumulation (Igeo), contamination factor (Cf), 
degree of contamination (Cdeg), and Nemerow pol-
lution (NP)

1.1 � Location and Physiography

The study area is located in the western portion of the 
Niger Delta. It covers an area of more than 15,000 km2 
and is one of the top oil-producing states in Nigeria 
(Olobaniyi et al., 2007). The research region, which has a 
high average annual precipitation of about 1900 mm and 
an elevation of 280 m, is roughly located between Lati-
tude 5°18’N-5°3-0’N and Longitude 5°45’E- 5o59’E, as 
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shown in Fig. 1. With mean annual temperatures varying 
between 220C and 340C, rainfall varying from 1,501 mm 
to 1850 mm, and mean evapotranspiration of 1117 mm 
(FME, 2001; Chizoba et al., 2023; Asuquo et al., 2024; 
Eyankware & Akakuru, 2022; Oli et  al., 2022; Urom 
et  al., 2021), the climate is generally warm. Olobaniyi 
et al. (2007) point out that the study region ranges in ele-
vation from heights of less than 6 meters above sea level 
(mSL) in the lowlands that border the water to more than 
280 m above mSL in the plateau that marks the state’s 
northern border (Fig. 1). The vegetation in the research 
area ranges from rain forest in the northernmost parts of 
the state to a saline water marsh in the coastal area next 
to the sea (Olobaniyi et al., 2007).

1.2 � Geologic Setting

The study area is located in the Niger Delta Basin. 
Previous authors (eg., Burke et  al., 1971; Evamy 

et  al., 1978; Hoque & Nwajide, 1984; Murat, 1972; 
Nwajide, 2013) have given a summary of the geo-
logic setting of the Niger Delta Basin. The previous 
studies documented three major tectonic phases for 
the southeastern Nigerian sedimentary basins. The 
origin of the basins commenced with the break-up of 
the African and South American continents during 
the Early Cretaceous (Murat, 1972). The pre-Santo-
nian sediments of the Benue Trough and the upper 
Cretaceous Anambra Basin, respectively, evolved and 
were deposited as a result of the first and second tec-
tonic phases, whereas the Paleocene to Recent sedi-
ments of the Niger Delta Basin were created by the 
third tectonic event. The Niger Delta Basin covered 
the eastern flank of the Abakaliki Anticlinorium, 
where the Afikpo Sub-basin unconformably over-
lies the pre-Santonian strata (Igwe et al., 2013; Igwe, 
2015; Obasi et  al., 2022; Usman et  al., 2022; Igwe 
& Okoro, 2021).The Niger Delta Basin developed a 

Fig. 1   Topographic Map of the study area showing sampling points
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continuous variety of formations from the Cretaceous 
to the Quaternary upwards, and developed three dia-
chronous lithological formations namely Akata For-
mation, Agbada Formation, and Benin Formation, 
respectively since the Eocene time (Corredor et  al., 
2005; Lonergan et al., 2013).

The Agbada Formation is overlain by the Akata 
Formation, which is made up of continuous shale 
and roughly 10% sandstone (Orji & Egboka, 2015).
In the subsurface, the Agbada Formation lies on top 
of the Akata Formation. It is made up of a paral-
lel alternating succession of shale and sandstone 
varying in age from the Eocene in the north to the 
Pliocene/ Pleistocene in the south, and recently in 
the delta surface. The Ogwashi-Asaba Formation 
and the Ameki Formation, both of Eocene-Oligo-
cene age, are its lateral analogs at the surface. The 

primary rock outcrops in the Asaba Capital Terri-
tory are part of the Ogwashi-Asaba Formation. The 
Benin Formation, which is Miocene to Recent in 
age and conformably overlies the Agbada Forma-
tion, is a continental Miocene-Recent formation. 
The formation is mostly sand, with a small amount 
of shale/clay. They’re also badly sorted, with lignite 
streaks and wood fragments, and are sub-angular to 
well-rounded. The Benin Formation is found just 
west and northwest of Asaba town and extends into 
Agbor town (Akpoborie et  al., 2011). The Benin 
Formation is obscured by the newer Holocene 
deposits of the Sombreiro-Warri Deltaic Plain, the 
Mangrove Swamp, and Freshwater Swamp wetlands 
to the west and south of Abraka, as well as Sapele, 
Warri, and Ughelli (Eyankware & Ephraim, 2021) 
Fig. 2.

Fig. 2   Geology Map of the study area
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2 � Materials and Method

A total of twenty-two (22) soil samples were col-
lected at 20 km intervals in Delta State, Nigeria. 
Control samples were specifically gathered from 
towns including Ughelli, Okpare, Ujevwu, and 
Okwagbes. Each sampling point yielded a minimum 
of three composite soil samples. A steel Auger was 
used to collect soil samples from a depth of 0–15 
cm into transparent plastic bags. In the laboratory, 
samples were air-dried for several days by spread-
ing them out on transparent plastic on a bench. 
They were then sieved at 2 mm and repackaged in 
clear plastic bags until they could be analyzed. 20 
g sieved air-dried soil samples were placed in 250 
cm3 conical flasks that had been thoroughly cleaned, 
and 100 cm3 of 0.5 M nitric acid was added. A 
mechanical shaker was used to mechanically shake 
the flasks for at least 30 minutes. The materials 
were then filtered through ashlessWhatman filter 
paper 40 into 100 cm3 plastic bottles. Some control 
samples were tested for background target analytes 
before being spiked with known levels of Arsenic 
(As), Cobalt (Co), chromium (Cr), cadmium (Cd), 
copper (Cu), lead (Pb), Nickel (Ni), and zinc (Zn) 
and going through the entire process to assess the 
extraction procedure’s recovery rates. The per-
cent recoveries were determined by the differences 
between the baseline concentrations and the con-
centrations of the spiked samples. In the preparation 
of solutions used to spike the samples for cadmium, 
general-purpose reagent cadmium nitrate with a 
minimum purity of 99 percent was utilized. In the 
production of solutions used in the spiking of sam-
ples for lead, copper, and zinc, an analytical grade 
of lead nitrate salt and analytical grade granules of 
copper and zinc were utilized. A reagent blank for 
each metal was likewise created and run through 
the whole process before being used in the sample 
determination. Analysis-grade metals and metal 
salts were used to create calibration curves. Using 
a Varian Techtron AA6 atomic absorption spectro-
photometer and associated metallic hollow cathode 
lamps, the concentrations of cadmium, copper, lead, 
and zinc were determined. The fuel was acetylene 
gas, and the support was air. In every case, an oxi-
dizing flame was used. The concentrations of four 
metals were calculated using calibration curves. To 
zero the instrument, a reagent blank was employed. 

The aspiration of standard solutions was then per-
formed, followed by the aspiration of soil sample 
extracts.

2.1 � Soil Pollution Indexes Calculation

The occurrence of heavy metal in soil was computed 
using the following: potential ecological risk index, 
geoaccumulation index (Igeo), contamination factor, 
and Nemerow pollution.

2.2 � Data Analysis

To obtained Pearson correlation analysis, Princi-
pal Component Analysis (PCA), data were analyzed 
using the SPSS statistical package.

2.2.1 � Potential Ecological Risk Index

The Potential Ecological Risk Index (PERI) is a tool 
used to assess the potential risk posed by heavy met-
als in the environment, particularly in soil and sedi-
ment. It evaluates the toxicity and concentration of 
various contaminants to determine their likely impact 
on ecological systems. By integrating factors such as 
contamination levels and ecological sensitivity, PERI 
helps in identifying areas at high risk and prioritiz-
ing remediation efforts. The potential ecological risk 
index was first proposed by Hakanson (1980) as pre-
sented in equation 1:

where Ei
r
 denotes the potential ecological risk 

index of metal ith; Ti
r
 is the toxic response factor of 

the ith metal. In this study, the Ti
r
 of Zn, Cr, Pb, Cu, 

Ni, and Cd are 1, 2, 5, 5, 5 and 30, respectively 
(Islam et  al., 2015; Weihua et  al., 2010). The Ci

f
 

values of each heavy metal are obtained from 
(Eq.  1).To quantitatively express Ei

r
 , five criteria 

grades were employed: Ei
r
< 40, 40 ≤ Ei

r
< 80, 80 ≤ 

Ei
r
< 160, 160 ≤ Ei

r
< 320 and ≥ 320 signifying low, 

moderate, considerable, high and very high risk, 
respectively (Hakanson, 1980; Ogunkunle & 
Fatoba, 2013; Riyad et  al., 2015). The potential 
ecological risk index for various heavy metals in 
the soil is determined as the sum of the single 
potential ecological risks factor. It represents the 
sensitivity of various biological communities and 

(1)Ei
r
= Ci

f
∗ Ti

r
= Ti

r
∗ Ci

/

Cb
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possible risks caused by heavy metals. The poten-
tial ecological risk index of all the measured heavy 
metals was computed using (Equation 2)

2.2.2 � The Geoaccumulationindex (Igeo)

The Geoaccumulation Index (Igeo) is a quantitative 
measure used to assess the degree of heavy metal 
pollution in soils and sediments. It compares current 
concentrations of metals to pre-industrial levels to 
determine the extent of anthropogenic influence. By 
categorizing pollution into various classes, ranging 
from unpolluted to extremely polluted, Igeo helps in 
identifying the severity of contamination and guiding 
environmental management practices. The formula 
for the Igeo calculation is presented in Equation 3:

As proposed by Muller (1979)
Where Cn is the measured concentration (μgg-1) 

of element n, and Bn is the geochemical background 
concentration (mg/kg) see equation 3.

2.2.3 � Contamination factor (Cdeg)

The Contamination Factor (C_deg) is a metric used 
to evaluate the extent of contamination by compar-
ing the concentration of a particular pollutant in 
the environment to a baseline or reference value. 
It quantifies the degree of contamination for indi-
vidual elements, indicating how much a pollutant 
exceeds its natural or pre-industrial concentration. 
By assessing C_deg, environmental scientists can 
identify hotspots of contamination and assess the 
potential ecological and health risks associated 
with specific pollutants. Equation  4 is the C_deg 
formula:

As proposed by Devanesan et al. (2017); Ogundele 
et al. (2020)

(2)RI =

n
∑

i

Ei
r

(3)Igeo = log2
(

cn
/

kBn

)

(4)Cdeg =

n
∑

i=1

Ci
f

2.2.4 � Nemerow Pollution

The Nemerow Pollution Index is an integrated 
measure used to assess the overall pollution level 
of an environment by combining multiple pollution 
indices. It takes into account both the average pol-
lution level and the maximum pollsution level of 
various contaminants, providing a comprehensive 
assessment of environmental quality. This index is 
particularly useful for identifying areas with sig-
nificant pollution issues and prioritizing them for 
remediation efforts. NP can be calculated using 
Equation 5:

As proposed by Ogundele et al. (2020)
Pave and Pmax are the average and maximum val-

ues of single pollution index (SPI) for all heavy met-
alssee equation 5. The NP indices of each metal was 
calculated and classified into 5 grades: NPs < .7, 0.7 
≤ NP ≤ 1.0, 1.0 ≤ NPs ≤ 2.0, 2.0 ≤ NPs ≤ 3.0 and 
NPs > 3.0 indicating safety, precaution, slightly pol-
luted, moderate polluted and serious polluted domain, 
respectively (Cheng & Zhu, 2007; Ogunkunle & 
Fatoba, 2013).

2.2.5 � Principal Component Analysis

In the PCA, component loading entailed reducing a 
large dataset of many variables into a smaller num-
ber of linear combinations in the component that 
accounted for an appropriate fraction of the total data 
variance and easily associated the variables to the 
sources or processes via equation 6.

3 � Result and Discussion

The concentrations of heavy metals such as zinc, 
chromium, copper, lead, cadmium, nickel, and arse-
nic in mg/kg., there minium, maximum, and aver-
age values are presented in Table  1. Table  2, was 

(5)NP =

√

(p1ave+p2max)∕2

(6)�

2

=
1

N

N
∑

i=1

(

XN−N
)2
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used as control site at Ughelli, Okpare, Ujevwu, and 
Okwagbe.

3.1 � Potential Ecological Risks Assessment

The potential ecological risk index was developed 
by Hakanson (1980) a Swedish scientist. It had 
been employed to evaluate the adverse effects of the 

contaminants on the environment and human and 
reflects the toxicity and ecological sensitivity of the 
concentration of contaminants (Hakanson, 1980; 
Suresh et al., 2012; Weihua et al., 2010). Originally, 
it was used as an evaluation tool for sediment pol-
lution in aquatic environments. It had been success-
fully used for risk assessment of soils, dust, and air 
(Qingjie et al., 2008; Eyankware et al., 2023; Suresh 

Table 1   Concentration (mg/kg) of heavy metals in soil samples within the study area

Sample site Latitude Longitude Znmg/kg Crmg/kg Cumg/kg Pbmg/kg Cdmg/kg Comg/kg Nimg/kg Asmg/kg

DO/01 5029’ 5048.5’ 32.48 12.43 10.31 4.07 0.74 9.01 2.47 0.000
DO/02 5030’ 5050.9’ 16.47 17.09 7.82 1.97 0.38 11.07 1.03 0.0020
DO/03 5029’ 5049’ 13.11 8.37 9.07 4.28 3.40 6.78 1.18 0.000
D0/04 5029’ 5058’ 19.47 11.03 4.38 4.02 0.38 13.96 3.11 0.0001
DO/05 5029’ 5052’ 22.36 4.93 6.39 3.48 0.94 10.15 3.04 0.000
DO/06 5028’ 5051’ 17.61 10.01 13.40 5.28 1.53 8.07 0.99 0.003
DO/07 5028’ 5049’ 11.38 8.48 9.29 1.77 0.27 6.11 1.82 0.000
DO/08 5026 5048’ 30.88 15.09 5.38 6.31 1.61 4.38 2.71 0.000
DO/09 5028’ 5054’ 23.47 21.49 4.51 4.20 2.47 7.27 1.36 0.003
DO/10 5028’ 5052’ 17.34 9.13 7.37 2.54 0.62 9.39 2.29 0.020
DO/11 5028’ 5058’ 14.28 10.77 6.31 2.99 0.47 7.86 1.11 0.000
D0/12 5025’ 5058’ 12.93 4.26 19.29 1.38 1.03 6.69 4.09 0.0001
DO/13 5025’ 5056’ 9.47 7.33 8.37 3.44 1.28 9.04 4.27 0.0003
DO/14 5025’ 5052’ 14.62 9.15 7.21 1.93 4.01 9.35 4.01 0.0000
DO/15 5023’ 5055’ 28.38 12.48 11.37 3.34 1.13 5.86 2.38 0.0002
DO/16 5024’ 5057’ 15.04 10.11 9.01 2.07 0.93 7.97 3.03 0.0010
D0/17 5023’ 5055’ 9.37 5.23 5.52 4.88 0.37 11.08 1.19 0.0000
DO/18 5022’ 5049’ 11.38 4.99 6.27 2.17 1.39 13.97 2.37 0.0001
DO/19 5020’ 5048’ 16.93 11.12 14.37 2.05 0.33 6.86 3.01 0.0002
DO/20 5020’ 5046’ 20.17 8.21 18.11 4.13 3.91 8.11 2.99 0.0001
DO/21 5019’ 5046’ 10.93 6.37 26.36 1.94 1.92 10.63 4.18 0.0000
DO/22 5019’ 5048’ 16.34 11.18 9.31 3.22 0.38 11.37 3.25 0.0001
Min 9.37 4.26 4.38 1.38 0.27 4.38 0.99 0.00
Max 32.48 21.49 26.38 6.31 4.01 13.97 4.27 0.02
Aver 17.76 10.20 10.42 3.29 1.40 8.88 2.54 0.0020

Table 2   The value of 
control site

Control sites Zn Cr Cu Pb Cd Co Ni As

Ughelli 9.11 12.07 4.86 1.05 0.95 6.88 2.47 0.0001
Okpare 12.37 9.54 9.65 3.64 2.58 5.91 1.03 0.0000
Ujevwu 8.28 16.77 6.01 4.22 2.42 9.36 1.59 0.0010
Okwagbe 9.37 10.02 4.53 1.74 1.55 4.20 3.09 0.0002
Min 8.28 9.54 4.53 1.05 0.95 4.2 1.03 0.001
Max 12.37 16.77 9.65 4.22 2.58 9.36 3.09 0.001
Aver 9.96 12.45 6.53 2.65 1.88 6.65 2.05 0.00



	 Water Air Soil Pollut (2024) 235:452

1 3

452  Page 8 of 20

Vol:. (1234567890)

et  al., 2012; Ogunkunle & Fatoba, 2013; Iqbal & 
Shah, 2014; Riyad et al., 2015; Osipova et al., 2016). 
The results from Table 3 revealed that the entire sam-
ples within the study area are above 600, this implies 
that the soils have very high ecological risk. Soil pol-
lution by heavy metals represents a threat to the envi-
ronment and food security due to the fast growth of 
industry and agriculture, and the disruption of natural 
ecosystems by anthropogenic pressure linked to the 
growth of human populations (Sarwar et  al., 2017). 
Environmental pollution and human exposure asso-
ciated with heavy metals are attributed to different 
anthropogenic activities that include mining, indus-
trial production, and the use of metal-containing com-
pounds in domestic and agricultural settings (Tchoun-
wou et al., 2012).

3.2 � Index of Geoaccumulation

The index of geoaccumulation (Igeo) was pro-
posed by Muller (1979) to verify the degree of 

the contamination of elemental concentrations in 
the sediment, water, dust and soil and it had been 
widely employed in assessing their pollution status 
worldwide (Hazzeman et al., 2017). The classifica-
tions of (Igeo) and their respective interpretations 
are Igeo ≤ 0 (practically unpolluted), 0 <Igeo ≤ 1 
(unpolluted to moderately polluted), 1 <Igeo ≤ 2 
(moderately polluted), 2 <Igeo ≤ 3 (moderately to 
strongly polluted), 3 <Igeo ≤ 4 (strongly polluted),4 
<Igeo ≤ 5 (strongly to extremely polluted), and 
Igeo ≥ 5 (extremely polluted) see Table 2, (Olujimi 
et  al., 2014; Qing et  al., 2015; Wei & Yan, 2010). 
From the results of the geoaccumulation index 
(Table  4), it revealed that the entire sample vales 
are within 0 to 2, which indicates that they samples 
are unpolluted. This is contrary to the result of the 
potential ecological risk index, which revealed that 
the soils are greatly polluted. Generally, the Igeo 
demonstrated that the greater part of the heavy met-
als have not unequivocally affected the soils within 
the study area.

Table 3   Results of Ecological Risk Index

Ti*PI ∑ Ti*PI

Zn Cr Cu Pb Cd Co Ni As

0 20.18632 1971.589 839.234 125491.7 6536.667 227.0888 0 135086.4
5.88E-05 14.07362 2056.058 308.108 31191.67 4124.118 116.348 0.058857 37810.43
0 5.486535 1167.937 776.392 606333.3 22600 81.63673 0 630964.8
3.48E-06 10.73771 743.2523 352.152 63650 5200.784 443.0163 0.008886 70399.95
0 5.51174 484.6569 444.744 136300 9353.922 314.8571 0 146903.7
9.43E-05 8.813805 2063.6 1415.04 336600 12105 81.52347 0.084857 352274.1
0 4.82512 1211.988 328.866 19912.5 1617.353 113.4714 0 23189
0 23.29896 1248.988 678.956 423295.8 6913.529 121.1204 0 432281.7
0.000126 25.21852 1491.075 378.84 432250 17604.8 100.8898 0.116571 451850.9
0.000619 7.91571 1035.202 374.396 65616.67 5707.647 219.4194 1.308571 72962.56
0 7.68978 1045.518 377.338 58554.17 3621.765 89.02653 0 63695.5
2.31E-06 2.75409 1264.237 532.404 59225 6755.588 279.2051 0.011686 68059.2
5.07E-06 3.470755 943.8785 575.856 183466.7 11344.31 393.8857 0.0366 196728.1
0 6.68865 1014.946 278.306 322470.8 36758.33 382.5867 0 360911.7
1.01E-05 17.70912 2183.04 759.516 157258.3 6491.961 142.3143 0.0136 166852.9
2.69E-05 7.60272 1401.402 373.014 80212.5 7266.765 246.4194 0.086571 89507.79
0 2.450255 444.1477 538.752 75233.33 4019.216 134.5429 0 80372.44
2.03E-06 2.83931 481.3431 272.118 125679.2 19037.55 337.8459 0.006771 145810.9
6.05E-06 9.41308 2458.375 589.17 28187.5 2219.412 210.7 0.0172 33674.59
3.6E-06 8.279785 2287.432 1495.886 672845.8 31088.33 247.4378 0.008543 707973.2
0 3.481205 2583.28 1022.768 155200 20009.41 453.402 0 179272.3
2.92E-06 9.13406 1601.32 599.564 50983.33 4235.882 377.0663 0.009286 57806.31
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3.3 � Degree of Contamination (Cdeg)

The contamination factor reflects the pollution char-
acteristics of the studied area. It indicates a single 
pollution index of a given metal in an environmen-
tal media. The contamination factor was quantified 
as the ratio of the heavy metal concentration to the 
background concentration of the corresponding 
metal (Ogundele et al., 2017). The Cdegof contami-
nation may be classified based the scale ranging 
from <8 to >32: < 8, 8–16, 16–32 and > 32 indi-
cates low degree, moderate, considerate and very 
high degree of contamination, respectively (Oli 
et al., 2022; Ogundele et al., 2017; Devanesan et al., 
2017). The results of the degree of contamination 
as presented in Table 5 reveals that the entire sam-
ples were less than 8, indicating that they have low 
contamination degree. This results are in conform-
ity with the results of thegeoaccumulation index 
of the samples within the area but dissimilar with 
the potential ecological risk index assessment done 
within the locality.

3.4 � Nemerowpollution( PNI)

PNI (Nemerow 1974) is another numerical index 
that incorporates multiple factors into single fac-
tor. The NPI value, on the other hand, represents the 
combined water quality level of various pollution 
parameters. In terms of empirical validity, using an 
integrated water quality index to evaluate an intrinsic 
groundwater risk assessment is preferable to merely 
examining the concentrations of one or two specific 
contaminants (Eyankware et  al., 2022a, b; Akakuru 
et al., 2023a, b, c, d). The PNI calculates the relative 
pollution contribution of each parameter in a water 
sample. The parameter(s) responsible for the quality 
status will be identified this manner.

PNI value of ≤ 0.7 indicates that the water is 
clean, PNI value of 0.7< PNI ≤ 1.0 implies slightly 
clean, PNI value of 1.0< PNI≤ 2.0 implies slightly 
polluted, PNI value of 2.0< PNI≤ 3.0 implies mod-
erately polluted, while PNI value of > 3.0 implies 
heavy pollution (Table  5). From the results in 
Table  5, it shows that 36.4% of the entire sample 

Table 4   Results of Geoaccumulation Index

Zn Cr Cu Pb Cd Co Ni As Geoaccumulation

0.069839 0.037418 0.11937 0.012252 0.278453 0.079773 0.005311 0 0.602416
0.035414 0.051446 0.090541 0.00593 0.142989 0.098012 0.002215 1.2E-05 0.426559
0.028189 0.025196 0.105013 0.012884 1.279377 0.060029 0.002537 0 1.513226
0.041865 0.033204 0.050712 0.012101 0.142989 0.123599 0.006687 6.02E-07 0.411158
0.048079 0.014841 0.073984 0.010476 0.35371 0.089866 0.006537 0 0.597493
0.037865 0.030133 0.155146 0.015894 0.57572 0.07145 0.002129 1.81E-05 0.888356
0.024469 0.025527 0.10756 0.005328 0.101598 0.054097 0.003913 0 0.322493
0.066399 0.045425 0.06229 0.018995 0.605823 0.03878 0.005827 0 0.843539
0.050466 0.064691 0.052217 0.012643 0.92943 0.064367 0.002924 1.81E-05 1.176757
0.037285 0.027484 0.08533 0.007646 0.233298 0.083137 0.004924 0.00012 0.479225
0.030705 0.032421 0.073058 0.009001 0.176855 0.069591 0.002387 0 0.394017
0.027802 0.012824 0.223341 0.004154 0.387576 0.059232 0.008794 6.02E-07 0.723725
0.020363 0.022065 0.096909 0.010355 0.481648 0.080039 0.009181 1.81E-06 0.720562
0.031436 0.027544 0.083478 0.00581 1.508913 0.082783 0.008622 0 1.748587
0.061023 0.037569 0.131643 0.010054 0.425205 0.051883 0.005118 1.2E-06 0.722496
0.032339 0.030434 0.104318 0.006231 0.349947 0.070565 0.006515 6.02E-06 0.600357
0.020148 0.015744 0.063911 0.01469 0.139226 0.0981 0.002559 0 0.354378
0.024469 0.015021 0.072595 0.006532 0.52304 0.123688 0.005096 6.02E-07 0.770442
0.036403 0.033475 0.166377 0.006171 0.124175 0.060737 0.006472 1.2E-06 0.433811
0.04337 0.024715 0.209679 0.012433 1.471284 0.071805 0.006429 6.02E-07 1.839714
0.023502 0.019176 0.305198 0.00584 0.722472 0.094116 0.008988 0 1.179292
0.035135 0.033655 0.107792 0.009693 0.142989 0.100668 0.006988 6.02E-07 0.436921
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are had a value <0.7, indicating that the samples are 
clean, 18.2% of the entire sample have had a value 
<1, indicating that the sample is slightly clean, 
27.3% of the entire samples had values <3, imply-
ing that the samples are moderately polluted, while 
13.6% of the samples are >3, implying that the sam-
ples are heavily polluted. Anthropogenic factors 
could be to responsible for the high levels of pol-
lution seen in this study. This finding contradicts a 
study conducted in Nigeria by Egbueri and Mgbenu 
(2020), Eyankware et al., (2022a) Tables 6 and 7.

Table 5   Results of Contamination Factor, Pollution Load Index and Nemerow pollution

Zn Cr Cu Pb Cd Co Ni As Cdeg PNI PNI

0.232 0.1243 0.396538 0.0407 0.925 0.265 0.017643 0 2.001181 0 0.700276
0.117643 0.1709 0.300769 0.0197 0.475 0.325588 0.007357 0.00004 1.416997 2.33E-06 0.379718
0.093643 0.0837 0.348846 0.0428 4.25 0.199412 0.008429 0 5.02683 0 3.070192
0.139071 0.1103 0.168462 0.0402 0.475 0.410588 0.022214 0.000002 1.365837 9.49E-07 0.376777
0.159714 0.0493 0.245769 0.0348 1.175 0.298529 0.021714 0 1.984826 0 0.867103
0.125786 0.1001 0.515385 0.0528 1.9125 0.237353 0.007071 0.00006 2.951055 8.12E-06 1.40175
0.081286 0.0848 0.357308 0.0177 0.3375 0.179706 0.013 0 1.0713 0 0.273652
0.220571 0.1509 0.206923 0.0631 2.0125 0.128824 0.019357 0 2.802175 0 1.465527
0.167643 0.2149 0.173462 0.042 3.0875 0.213824 0.009714 0.00006 3.909103 1.00E-05 2.237207
0.123857 0.0913 0.283462 0.0254 0.775 0.276176 0.016357 0.0004 1.591952 1.07E-05 0.583019
0.102 0.1077 0.242692 0.0299 0.5875 0.231176 0.007929 0 1.308897 0 0.446483
0.092357 0.0426 0.741923 0.0138 1.2875 0.196765 0.029214 0.000002 2.404161 7.72E-07 0.958718
0.067643 0.0733 0.321923 0.0344 1.6 0.265882 0.0305 0.000006 2.393654 2.07E-06 1.170267
0.104429 0.0915 0.277308 0.0193 5.0125 0.275 0.028643 0 5.80868 0 3.61798
0.202714 0.1248 0.437308 0.0334 1.4125 0.172353 0.017 0.000004 2.400079 2.47E-06 1.042873
0.107429 0.1011 0.346538 0.0207 1.1625 0.234412 0.021643 0.00002 1.994342 3.03E-06 0.858982
0.066929 0.0523 0.212308 0.0488 0.4625 0.325882 0.0085 0 1.177219 0 0.358618
0.081286 0.0499 0.241154 0.0217 1.7375 0.410882 0.016929 0.000002 2.559353 7.16E-07 1.269567
0.120929 0.1112 0.552692 0.0205 0.4125 0.201765 0.0215 0.000004 1.44109 1.04E-06 0.342822
0.144071 0.0821 0.696538 0.0413 4.8875 0.238529 0.021357 0.000002 6.111397 4.12E-06 3.539408
0.078071 0.0637 1.013846 0.0194 2.4 0.312647 0.029857 0 3.917521 0 1.766295
0.116714 0.1118 0.358077 0.0322 0.475 0.334412 0.023214 0.000002 1.451419 1.05E-06 0.381744

Table 6   Ecological Risk 
Index set limit in Soil 
(Hakanson, 1980)

S/No Range Remarks

1 R
i
or E

i

r
Ecological Pollution Degree

2 E
i

r
< 40 orR

i
< 150 Low Ecological Risk

3 40 ⪯ E
i

r
< 80 or150 ⪯ R

i
< 300 Moderate Ecological Risk

4 80 ⪯ E
i

r
< 600 or300 ⪯ R

i
< 600 Considerable Ecological Risk

5 160 ⪯ E
i

r
< 320 or 600 ⪯ R

i
Very high Ecological Risk

Table 7   Geoaccumulation Index scale (Igwe et al., 2020; Igwe 
et al., 2022; Hazzeman et al., 2017)

Igeovalues IgeoClass Designation of sediment quality

>5 6 Very highly polluted
4-5 5 Highly populated
>3-4 4 Moderate to highly polluted
2-3 3 Moderately polluted
>1-2 2 Moderated to unpolluted
0-2 1 Unpolluted
0< 0 Background concentration
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3.5 � Pearson Correlation Matrix

The correlation matrix is a useful tool for assessing 
the correlations between two variables. In most cases, 
the correlation coefficient is between -1 and +1. The 
relationship is considered to have a negative slope 
or be anti-correlated if the r-value is close to -1. The 
relationship is said to have a positive slope or be cor-
related when the value of r is near +1. The points 
are considered to be uncorrelated if the value is zero 
(Omoko et al., 2023; Onyeanwuna et al., 2024; Akak-
uru et al., 2023a, b). The correlation matrix (Table 8) 
showed that there was a positive correlation between 
Zn and Cr (0.560), and Zn and Pb (0.491). From 
Table 8, there exists a weak correlation amongst ele-
ments and the majority of the elements are not cor-
related implying that there is no relationship between 
the two variables. In other words, as one variable 
moves one way, the other moves in another unre-
lated direction. This also suggests that anthropogenic 
sources are the major source of heavy metals in soils 
(Anegbe et al., 2018; Ugbome et al., 2018).

3.6 � Principal Component Analysis (PCA)

PCA is a based classification method that seeks to 
explain the variation of a large number of intercon-
nected variables (Eyankware & Akakuru, 2022; 
Akakuru et  al., 2021a, 2021b). It demonstrates how 
variables are linked, which reduces the dataset’s com-
plexity. PCA extracts eigenvalues and eigenvectors 
from the original data’s covariance matrix. Principal 
components (PCs) are the uncorrelated (orthogonal) 
variables obtained by multiplying the original cor-
related variables with the eigenvectors (loadings). 
The eigenvalues of the PCs assess their associated 

variance, the loadings indicate the original vari-
ables’ participation in the PCs, and the transformed 
observations are referred to as scores. In PC1, 62.5% 
of the variables in the components have loadings, 
they include Zn (0.718), Cr (0.777), Cu (0.570), Pb 
(0.697), and Ni (0.620). PC2 has a loading of 37.5% 
among variables Cu (0.579), Cd (0.697) and Co 
(0.615). For PC3. 12.5% of the variables have loading 
As (0.671). The result of this PCA confirms previous 
results and it further reveals that the continued anthro-
pogenic activities within the locality have greatly 
affected the soil in the area (Akpoveta et  al., 2010; 
Osakwe, 2014; Osakwe et al., 2012). Soil contamina-
tion with heavy metals draws a genuine concern given 
their negative consequences for the living biota. The 
diligent and non-biodegradable nature of weighty 
metals facilitates their collection in the climate. Soil 
is getting the gigantic measure of toxins from dif-
ferent sources. Past basic cutoff points, HMs give a 
perilous effect on human well-being as they ruin the 
ordinary working of the living frameworks. The huge 
amount of waste created should be dealt with appro-
priately keeping in thought the natural estimates asso-
ciated with land treatment. The raised heavy metal 
levels in the horticultural soils rely upon the attributes 
of the dirt and the pace of use by the provider with 
its essential fixation (Eyankware & Ephraim, 2021; 
Agidi et al. 2022; Akakuru et al. 2022b) Table 9.

3.7 � Spatial Distribution of Heavy Metals in Soil 
Within the Study Area

3.7.1 � Zinc (Zn)

Zn concentrations in soil range from 9.37 to 32.48 
mg/kg in the research area, with an average value of 

Table 8   Pearson 
correlation matrix

*Moderate Correlation

Zn Cr Cu Pb Cd Co Ni As

Zn 1
Fe 0.025488
Cr 0.560* 1
Cu -0.16975 -0.33752 1
Pb 0.491* 0.272765 -0.3171 1
Cd 0.026617 -0.00129 0.202242 0.167255 1
Co -0.3282 -0.26215 -0.16555 -0.17461 -0.1986 1
Ni -0.08498 -0.38656 0.421162 -0.35799 0.153029 0.105209 1
As 0.017426 0.084328 -0.1274 -0.07929 -0.12653 0.031307 -0.15348 1
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17.76 mg/kg. The highest concentration of Zn was 
observed in NW, and NE parts of the study area as 
shown in Fig. 3a. About the WHO standard based on 
their standard for soil (Table 10), the Maximum Per-
missible Addition (MPA), of Zinc in the study area is 
relatively low, though low hazardous. The relatively 
high concentrations of Zn in the aforementioned 
area are linked to disposed of refused coupled with 
the geochemical content of the riverine region in the 
study area (Oli et al., 2022; Obasi et al., 2022; Usman 
et al., 2022; Omoko et al., 2023)

3.7.2 � Chromium (Cr)

Cr concentrations in soil range from 4.26 to 21.49 mg/
kg in the study area, with a mean of 10.20 mg/kg (see 
Table 1). Findings from Fig. 3c, it was observed that a 
highest concentration of Cr in soil was in the SW and 
SE axis of the study area. Jankiewicz and Ptaszynski 

Table 9   Table PCA

Communalities Component

1 2 3

Zn .639 .718 .314 .158
Cr .618 .777 .014 .120
Cu .669 -.570 .579 -.092
Pb .523 .697 .193 .022
Cd .501 -.018 .697 -.123
Co .510 -.358 -.615 .056
Ni .605 -.620 .330 .334
As .557 .118 -.305 -.671

Eigenvalues .743 1.206 -.196
Variance (%) 34.11195 19.35694 8.905483
Cumulative var. (%) 29.885 48.468 64.617

Fig. 3   Spatial distribution of Zn, Cr, Cu, Pb, Ni, As, Co, Cd, Geo accumulation index, PLI, PN, and ERI (Ti*Pi) respectively
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(2005) found that the concentration of Cr in the soil 
varies greatly and is dependent on the nature of the 
parent geological materials from which the soil was 
generated. Furthermore, anthropogenic activities such 
as mining, especially near active mines, may consid-
erably increase Cr concentrations in soil. When plants 
take HMs from the soil and ingest them, they can 
cause kidney and liver damage in humans (Harendra 
et  al., 2017) .In comparison with RGTS, chromium 
element which is moderately hazardous has all its 
concentration in the soil above MPA.

3.7.3 � Copper (Cu)

Cu concentrations in soil vary from 4.38 to 26.36 
mg/kg in the study area, with a mean value of 
10.42 mg/kg (see Table  1). From Table  1 and 
Fig.  3c, it was observed that a high concentration 
of Cu was observed at sample locations DO/06, 
12, 19, 20, and 21. SW, and SE respectively. This 

could be attributed to geological parent material 
which is the most important natural source of Cu 
in soil. Similarly, Cu is one of the few metals that 
can be found in nature as an uncombined mineral. 
On the other hand, Cu is introduced into the soil, 
it can get tightly linked to organic and geological 
components, making it difficult to spread. Cu’s 
excess effect could be felt in nearby places where 
there is a high concentration of Cu or in plant prod-
ucts that have absorbed a high concentration of Cu 
and are carried to other locations. Cu in the soil 
can be linked to copper ores mining and process-
ing, according to Igwe et al. (2021); Zhuang et al. 
(2009). Cu is a major contributor to pollution in the 
environment, affecting environmental quality and 
ecosystem resources. Some metal pollutants, such 
as Cu, may escape during ore mining or process-
ing and be distributed over considerably longer dis-
tances, harming soil sediment quality (Eyankware 
et  al., 2022a). By comparing the concentration 

Fig. 3   (continued)
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of Cu in the study area with the RGTS, it was 
observed that all the soil sample collected have 
their concentration above the MPA. Although Cu 
is rated moderately hazardous by Akakuru et  al 
(2022a) yet caution is still highly demanded.

3.7.4 � Lead (Pb)

Pb is a non-essential element that is hazardous, and 
its effects have been studied more thoroughly than 
those of other trace metals (Egbueri & Mgbenu, 
2020; Eyankware et  al., 2022a; Igwe et  al., 2021; 
Raikwar et  al., 2008; SON, 2015). To understand 
the ease of accessibility of Pb in soil, the pH of 
all the soil samples whose Pb contents were stud-
ied was measured. With a pH of 6–8 (near-neutral 
soils), Pb is tightly bonded to soil particles and 
may not be available for plant uptake. The con-
centration of Pb for this study ranges from ranges 
between 1.38 to 6.31 mk/kg with an average value 
of 3.29mk/kg as shown in Table  1. From Fig.  3d, 
it was observed that NW, NS, and a selected part 
of SW, could be attributed to refuse disposal in the 
environment which is often used as a landfill or lit-
tered on the ground. The concentration of Pb in the 
study area is observed to be below the MPA when 
compared with the WHO.

Fig. 3   (continued)

Table 10   WHO heavy metal standard for soil

Heavy metal Target Value 
of soil (mg/
kg)

Zn 50
Cr 100
Cu 36
Pb 85
Ni 35
As 4.5
Co 24
Cd 0.8
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3.7.5 � Nickel (Ni)

Ni concentrations in soil range from 0.99 to 4.27 
mg/kg in the study area, with a mean value of 2.54 
mg/kg (Table  1). The highest concentration of Ni 
was observed in SE, SW, and selected parts of NE 
see Fig.  3e. Ni can also be found in soils in a vari-
ety of forms, including adsorption of complex forma-
tion on organic cation surfaces or inorganic cation 
exchange surfaces, inorganic crystalline minerals or 
precipitates, water-soluble, free-ion, or chelated metal 
complexes in soil solution, and inorganic crystalline 
minerals or precipitates. The concentration of Nickel 
in the study area is about 50% above the MPA limit. 
However, Ni is rated moderately hazardous.

3.7.6 � Arsenic (As)

As is a naturally occurring substance that can be 
found throughout the earth’s crust. As is a highly toxic 
metalloid that is widely distributed on the Earth’s sur-
face and in its hydrosphere (Emilie et al., 2017; Igwe 
et  al., 2022). It is a well-known poison, and even a 
small amount of arsenic trioxides, such as 0.1 g, can 
be extremely harmful to the environment. Although 
persistent arsenic poisoning as a result of occupa-
tional exposure is well-known, high arsenic toxic-
ity is now rare (WHO, 1981). As has been known 
to be a human carcinogen at high doses for over a 
century, and it is now widely established that inges-
tion of inorganic arsenic can induce skin, lung, and 
leukemia cancer, while inhalation can cause respira-
tory tract cancer (Jarup, 1992; Kotoky et  al., 2008). 
Long-term exposure can result in skin illnesses such 
as blackening and swelling of the palms and torso 
(Opara et al., 2022, 2023a). Because of the potential 
for harmful human effects, excessive arsenic concen-
trations in the natural geochemical environment have 
been a serious concern in recent years (Thornton, 
2016). Concentrations in soil range from 0.00 to 0.02 
mg/kg in the study area, with a mean value of 0.002 
mg/kg (Table 1). It was observed that sample location 
DO/10 had the highest As concentration in the soil 
(see Table 1), This could be attributed to biochemical 
activities that lead to the ingestion of detrital organic 
carbon (Eyankware et  al., 2020; 2022b). The values 
of As in the study area are very low and are all less 
than the MPA limit of RGTS.

3.7.7 � Cobalt (Co)

Cobalt is a naturally occurring element that resem-
bles iron and nickel in characteristics. Small levels 
of cobalt occur naturally in soil (Igwe et  al., 2021). 
Within the study area, Co concentrations vary from 
4.38 to 13.97 mg/kg, with a mean of 8.88 mg/kg (see 
Table 1). HMs such as Co, which are emitted by lead-
zinc mining under particular conditions, can stimu-
late, transfer, and build up in various target media 
such as soil, impacting plants, animals, and humans 
directly or indirectly, according to Igwe et al. (2021).

3.7.8 � Cadmium (Cd)

Cadmium is an element found in mineral soils that 
occurs naturally (Igwe et  al., 2022; Segura et  al., 
2006). The concentration of Cd in soil ranges from 
0.27 to 4.01 mk/kg with an average value of 1.40 mk/
kg. The highest concentration of Cd was observed 
in SW, SE, and selected parts of NE, this could be 
attributed to geogenic sources. According to Agidi 
et  al. (2022) and Li et  al. (2015), Cd concentration 
depends on geologic parent materials, however, soil 
cadmium concentrations are normally less than 1 mg/
kg, which is in line with the WHO’s 0.8 mg/kg per-
mitted limit. Cd has about 59% of its concentration 
above the MPA limit of RGTS. Moreso, it is rated to 
be highly hazardous.

4 � Conclusion

This study carried out assessment of soils impacted 
by municipal wastes within some parts of Delta 
State in Nigeria for heavy metals concentration, pol-
lution indices including potential ecological risk 
(ERI).Geochemical analysis revealed concentra-
tion of heavy metals in soil Zn, Cr, Cu, Pb, Cd, Co, 
Ni, and As with value ranges of 9.37 to 32.48, 4.26 
to 21.49, 4.38 to 26.38, 1.38 to 6.31, 0.27 to 4.01, 
4.38 to 13.97, 0.99 to 4.37, and 0.00 to 0.02 respec-
tively. The estimated value obtained from the heavy 
metal index suggested that ERI, Igeo, Cdeg, and PNI 
range from 23189 to 707973.2, 0.322493 to 1.83971, 
1.0713 to 6.11397, and 0 to 1.7 x 10-5 respectively. 
Findings from heavy metals index such as ERI sug-
gested that estimated values obtained from ERI were 
above 600, this implies that analyzed soil is of very 
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high ecological risk. Estimated results from Igeo 
revealed that analyzed soil samples fell within the 
category of unpolluted (Igeo class 1), deduction from 
Cdeg revealed that analyzed soil samples fell within 
<8>32 which implies that soil samples can be clas-
sified to be low contamination. This is in line with 
the results obtained from Igeo. Finally, results from 
PNI suggested that analyzed soil samples fell within 
clean, slightly clean, and moderately polluted, with 
a percentage value of 36.4, 27.3, and 13.6 % respec-
tively. Results obtained from PCA and Pearson corre-
lation revealed that the occurrence of heavy metals in 
soil is attributed to human activities.HM pollutants, 
as well as their degradation in soil ecosystems are 
known to be typically linked to human activities such 
as the industrial revolution, the use of agrochemicals 
on farmland, energy generation, and fuel processing, 
mining, and steel production, and waste disposal, all 
of which pose a threat to all forms of life.The out-
come of this study is an indication of the influence of 
anthropogenic activities on the study area which has 
heavily impacted on the quality of soil. It is important 
to note that the polluted soil has interference with the 
water resources and if not checked could pose serious 
threat on humans and other living plants and animals 
within the ecosystem. The presence of these metals in 
soil could endanger human and aquatic life, and they 
could contaminate surface water, groundwater, and 
the food chain. As a result, measures should be made 
to prevent its accumulation in certain locations, as the 
harmful effects of heavy metal fallout pose a serious 
threat to human life.
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