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Abstract Faulty irrigation practices and industrial 
activities lead to the pollution of metals in agricultural 
soil, resulting in adverse effects on human health. 
The present study was conducted for the assessment 
of source identification, probabilistic health hazard 
assessments, and analysis of dietary risks associated 
with metals pollution in the calcareous soil of India. 
The mean content of total and bioavailable forms of 
metals (Cr, Ni, Cd, Pb, Cu) surpassed the permissi-
ble limits in sample areas Baruraj (zone 1) and Kanti 
(zone 2), with zone 1 showing higher level of pollu-
tion compared to zone 2. The free ion activity model 
(FIAM) was employed to detect metals in polluted 
soil and assess their potential transfer to rice grains. 
Hazard quotient values were notably higher than the 
safe threshold (FIAM-HQ < 0.5) for Cr (2.87E-01), Ni 
(1.08E-01), and Pb (1.88E-01), except for Cd (1.49E-
02) and Cu (1.27E-03), which remained within safe 
limits. Severity adjustment margin of exposure 
(SAMOE)-Risk thermometer indicates high and mod-
erate human health risk for Cr  (CrSAMOE = 0.006) and 
Ni  (NiSAMOE = 0.03), respectively. Self-organizing 
map (SOM) and positive matrix factorization (PMF) 

identify pollution sources in the calcareous region. 
Monte Carlo simulation (MCS) unveiled that chil-
dren were more vulnerable to total carcinogenic risk 
(TCR) compared to adults through the ingestion path-
way. A geostatistical approach was employed to pre-
dict the spatial distribution patterns of various metals 
across the area. This comprehensive evaluation, uti-
lizing appropriate and reasonable methods, serves as 
a valuable resource for environmental scientists and 
policymakers aiming to manage and mitigate metal 
pollution in agricultural soils near residential areas.

Keywords Calcareous soil · Metals · Soil and 
human health assessment · Source apportionment · 
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1 Introduction

Soil pollution by metals is currently acknowledged 
as a substantial environmental concern. This is pri-
marily because of their non-biodegradable nature 
and persistent presence in the environment (Gupta 
et al., 2021; Duffus, 2002; Pourret, 2018). Further-
more, they act as contaminants in agricultural soil, 
as elevated levels of metals can have detrimental 
effects on crop health and productivity (Pourret 
& Bollinger, 2018; Pourret & Hursthouse, 2019). 
Various anthropogenic activities (such as exces-
sive fertilizer and pesticide use, improper manure 
and compost application etc.) and natural sources 
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(soil erosion, lithogenesis, weathering, and geologi-
cal processes) contribute to pollution by metals in 
agricultural soil (Bolan et al., 2013; Borgese et al., 
2013; Cao et al., 2010). Hence, research on metals 
in agricultural soil is critically important primarily 
for pollution of the agricultural food chain and the 
accumulation of metals in soil can lead to ground-
water pollution, impacting the quality of drinking 
water and, consequently, human health (Adimalla, 
2018; Adimalla & Wang, 2018). In India, rice, a 
staple crop with high consumption rates, has a pro-
pensity to accumulate toxic metals like cadmium 
(Cd), chromium (Cr), nickel (Ni), copper (Cu) 
and lead (Pb) (Mandal et al., 2021; Zhao & Wang, 
2020). The state of Bihar, a prominent agricultural 
region in India, has been a focal point for studying 
metal pollution (Kumari et  al., 2019). Due to the 
use of poor irrigation method and industrial pol-
lution, large area of calcareous soils is affected by 
salinity and metals. These soils are calcareous by 
nature since their pH is higher than 8.5 and they 
contain more than 35% carbonate (Brady & Weil, 
1999). The presence of calcium carbonate effi-
ciently immobilizes metals by offering adsorption 
or nucleation surfaces and by stabilizing pH levels 
within the range where metal hydrolysis and pre-
cipitation occur (Fiorito et  al., 2022). Thus, pollu-
tion by metal due to natural or anthropogenic activi-
ties in the vicinity of agricultural land raises greater 
concern (Zhao & Wang, 2020).

A crucial aspect is the prediction of the solubility 
of toxic elements in soil and their transfer to plants, 
which is instrumental in assessing the risk of metal 
pollution in the soil. Simple approaches like the free 
ion activity model (FIAM) have been successfully 
utilized by several authors to estimate the hazard 
quotient (HQ) and evaluate the potential uptake of 
metals by plants (Kumari et al., 2021). The content 
of metals in soil pore water plays a significant role 
in determining the risk by influencing the bioavail-
ability of metals in crops (Golui et al., 2020). Given 
the continuous transfer of metals from soil to crops 
and their eventual ingestion by humans through 
food consumption, health risk analysis becomes 
an essential tool for assessing the level of inter-
ference. To evaluate health risks related to metal 
intake through dietary exposure, severity-adjusted 
margin of exposure (SAMOE), commonly known as 
the ’Risk Thermometer,’ and SAMOE-target cancer 

risk (SAMOE-TCR) was employed (Chowdhury 
et al., 2020).

The health hazards associated with metals, 
owing to their elevated biotoxicity and enduring 
presence in the environment, has been conducted 
via multiple exposure routes, encompassing inges-
tion, inhalation, and dermal contact (Nebab et  al., 
2021). Numerous indices, including the pollution 
load index (PLI), contamination factor (CF), eco-
logical risk factor (ERF), and geo-accumulation 
index  (Igeo), have been developed to evaluate soil 
pollution caused by metals (Proshad et  al., 2022). 
To effectively mitigate health risks associated with 
metals, it is crucial to pinpoint and quantify poten-
tial soil pollution sources (USEPA, 2021), the posi-
tive matrix factorization (PMF) model can assess 
the contributions of individual sources and allocate 
them to each element (Tian et al., 2018). This inte-
gration of PMF, along with self-organising map’s 
(SOM) proficiency in element recognition and 
classification, bolsters the findings by attributing 
contributions from various sources. Multi-model 
approaches employed for identifying risk manage-
ment against metals and assessing whether the risk 
surpasses predefined threshold values (Tong et  al., 
2019). It aids in the identification of priority pollu-
tion sources and the effective control and manage-
ment of these sources, all aimed at safeguarding 
ecosystems and the well-being of living organisms.

To the best of our knowledge, no significant 
research has been identified regarding the effects of 
metals in calcareous soil on the agricultural ecosys-
tem, as well as the analysis of human health risks in 
the surrounding area. Therefore, this present study 
predicts the source of specific the main findings of 
this study were: i) to find the pollution levels of the 
agricultural soil with metals and their spatial dis-
tribution pattern in the study area using SOM and 
PMF model ii) to predict health risks from vari-
ous aspects of metals, including their sources, pat-
terns, content, and both carcinogenic and noncar-
cinogenic effects utilizing multi-model approaches 
iii) to evaluate the metal transfer from soil to rice 
plant parts using FIAM approach and to conduct 
a dietary exposure analysis using SAMOE. This 
study offered vital insights into enhancing soil envi-
ronment policies and assessing the prevalence of 
anthropogenic health risks, both carcinogenic and 
non-carcinogenic.
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2  Materials and Methods

2.1  Study Area

Bihar is one of the major agricultural states in India. 
Muzaffarpur is a district situated in northern Bihar 
known for its agricultural activity and it is geographi-
cally (3132 sq. km) bounded by 26.11°N / 85.39°E. 
Total 92 number of soil samples (Fig. S1) were col-
lected from two polluted (metal rich) blocks of 
Muzaffarpur, namely baruraj (zone 1) and kanti (zone 
2). Beside the agricultural importance, the land is 
also polluted with metals (Cd, Cr, Ni, Cu, Pb).

2.2  Collection, Preparation, and Characterization of 
Soil and Plant Samples

To assess the presence of metals in the agricultural 
soil within the calcareous soil zone, a total of 92 soil 
and rice plant samples were collected from two differ-
ent polluted sites following a zig-zag pattern. These 
soil and rice plant samples were gathered, dried, and 
properly labelled in sterilized plastic bags prior to 
analysis. The soil pH and electrical conductivity (EC) 
were measured in a soil–water suspension at ratios of 
1:2.5 and 1:5, respectively, employing a digital pH 
meter and an EC meter (Page et al., 1982). Addition-
ally, the organic carbon (OC) content was determined 
through the Walkley and Black method (Walkley & 
Black, 1934). Available nitrogen, phosphorous and 
potassium content were determined using standard 
procedure outlined by Page et al. (1982).

2.3  Determination of Different Forms of the Metals 
in Soil

The soil sample were placed into a platinum crucible, 
followed by the addition of adequate amounts of con-
centrated  HNO3,  H2SO4,  HClO4, and HF. The mix-
ture was then heated on a hot plate until white fumes 
were observed. Subsequently,  HClO4 and distilled 
water were added to the residue, followed by further 
heating. Finally, 3  M  H2SO4 and distilled water were 
added and heated until white fumes appeared. After 
cooling the solution was filtered through Whatman 
42 filter paper and the volume was adjusted to 100 ml 
(Page et al., 1982). The total metals in resulting solu-
tion were quantified using atomic absorption spectros-
copy (AAS) (Model no. 816, Systronics, India). Metal 

extraction from the soil adhered to the sequential pro-
cedure initially proposed by Tessier et al. (1979). The 
bioavailable form of metals was quantified using DTPA 
(diethylene triamine penta-acetic acid) solution, and the 
respective content were F via AAS (Lindsay & Norvell, 
1978). Quality control was rigorously maintained by 
incorporating certified reference material SRM 2710 
into the process, along with a blank extract to account 
for any potential pollution.

2.4  Contamination Factor (CF) and Pollution Load 
Index (PLI)

In this study, we introduce contamination factor (CF) 
and pollution load index (PLI) as methods for evaluat-
ing the level of metals pollution in the soil (Islam et al., 
2017). The calculations for CF and PLI are as follows:

Here, C
i
 is content of metals and C

b
 is the back-

ground value for individual metal, and n represent the 
number of metals.

2.5  Geo-Accumulation Index  (Igeo)

The geo-accumulation index was employed to deter-
mine amount of metal pollution in the soil system 
using the following formula:

In this context,  Cn signifies the measured content 
of metal while background content of the same metal 
denoted by ‘Bn’. The correction factor for the back-
ground matrix is set at 1.5.

2.6  Ecological Risk Factor (ERF)

The ecological risk factor (ERF) was employed to 
assess variations in toxic elements using following 
formula outlined Yang et al. (2009):

where,  Cn signifies the measured content of metal 
while background content of the same metal denoted 

(1)CF =
C
i

C
b

(2)PLI = n

√

CF
1
× CF

2
× CF

3
CF

n

(3)Igeo = log
2

(

Cn∕1.5Bn

)

(4)Ecological risk factor (ERF) =
∑

Ti × Bn∕Cn
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by ‘Bn’,  Ti represented response factor towards toxic-
ity for each specific metal, with values of  Ti for Cr, 
Ni, Cd, Pb, and Cu were 2, 2, 30, 5, and 5 mg  kg−1 
respectively (Ferreira et al., 2022).

2.7  Health Risk

2.7.1  Hazard Quotient and Hazard Index

The hazard quotient (HQ) and hazard index (HI) are 
ssessed by computing exposures through ingestion, 
inhalation, and dermal routes, employing established 
equations (Chabukdhara & Nema, 2013) as follows:

Intake was calculated using the formula depicted 
in supplementary table (Table  S1) (De Miguel et  al., 
2007). The reference dose  (RfD) is the safe limit (for 
Cr: 0.3, Ni: 0.02, Cd: 0.001, Pb: 0.0035, and Cu: 0.5) 
towards metals exposure for humans throughout their 
lifespan. The term "exPs" refers to the three different 
pathways considered in the assessment.

2.7.2  Cancer Risk Assessment

The assessment of cancer risk (CR) involves evaluating 
the likelihood of developing cancer following exposure 
to a carcinogen. On the other hand, the total carcino-
genic risk (TCR) quantifies overall risk of developing 
cancer over the lifetime. Carcinogenic risk (CR) and 
total carcinogenic risk (TCR) can be determined using 
the following equations (Weissmannová & Pavlovský, 
2017):

where, ADD is defined as the average daily dose (mg 
kg body weight −1 day −1) of a specific metal.

(5)
HQ = Intake(inhalation or ingestion or dermal)∕Reference dose

(

RfD
)

(6)
HI =

∑

HQexP = HQinhalation + HQingestion + HQdermal

(7)CR =
∑

ADD × SF

(8)TCR =
∑

CR

2.8  Monte Carlo Simulation Model and Sobol 
Sensitivity Analysis

Monte Carlo simulation (MCS) technique is used to 
determine sensitivity as well as uncertainty analysis 
using crystal ball software. To pinpoint critical input 
parameters and gauge their influence on the variabil-
ity of exposure outcomes, we employed sobol sensi-
tivity analysis (SSA), as introduced by Sobol (2001). 
Sobol sensitivity indices (SSIs) provide a measure of 
the relative contributions of individual variables to 
the overall variance in model results. The initial part 
of the SSI is called the first order sensitivity index 
(FOSI) and second order sensitivity index (SOSI), 
characterizes the influence of interactions between 
variables with variance. Lastly, the overall order sen-
sitivity index (TOSI) is employed to determination 
of the combined influence of a variable on the final 
variance. This methodology facilitates the identifica-
tion of input variables that wield significant, note-
worthy, or negligible influence in the research context 
(Mukherjee & Singh, 2022).

2.9  Estimation of Total Metals from Rice Plant Parts

The determination of total metal content in the root, 
shoot, and grain of rice plants, samples were digested 
on a hot plate using a 4:1 (v/v) ratio of concentrated 
 HNO3 and  HClO4, until color changed (Li et  al., 
2018). The estimation of metal content in these 
digested samples was consistent with the procedure 
outlined in the preceding Sect. (2.3).

2.9.1  Risk Assessment through FIAM Model

To predict the uptake of metals by rice grains in culti-
vated agricultural soil, an integrated solubility model 
called the free ion activity model (FIAM) was imple-
mented using the following equation by combining 
the transfer factor (TF) and free ion activity  (Mn+) 
detailed by Golui et al., (2020):

Here, C is derived from  k1/nF-logTF, β1 is calcu-
lated as 1/nF, and β2 is determined as  k2/nF.  k1 and 
 k2 are empirical constants that are specific to the 
respective metals. These coefficients, C, β1, and β2, 

(9)p
[

MPlant

]

= C + �
1
P[Mc] + �

2

[

pH
]
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are specific to the metal(loid) and plant in question. 
Through non-linear error minimization, equation 
was parameterized using the "SOLVER" function in 
Microsoft Excel 2019.

To assess the potential health risks associated with 
the consumption of rice grains grown in polluted soil 
with metals, the FIAM-HQ (FIAM- hazard quotient) 
was implemented following the guidelines provided 
by the USEPA (2021) as outlined in IRIS (2020)

Here, ADD (average daily dose) denoted as mg 
kg body  weight−1 day −1 (Banerjee et al., 2022). The 
reference dose  (RfD) is different for different met-
als, each having specific  RfD values for specific met-
als with reference to IRIS (2020) and WHO (1996) 
guidelines.

If the hazard quotient (HQ) exceeds 1, indicates 
consumption rice grain leads to potential health risks 
(Kumar et al., 2021).

2.9.2  Evaluating Cancer Risk using the Severity 
Adjustment Margin of Exposure (SAMOE)

In accordance with the guidance provided by the 
Swedish national food agency, an effective tool for 
determination of risk characterization by risk ther-
mometer were developed, as detailed by Sengupta 
et al. (2021). These risk thermometers, based on the 
methodology outlined by Chowdhury et  al. (2020), 
enable us to anticipate metals exposure in food, con-
sidering health-based tolerable daily intake (TDI) as 
their basis, while also factoring in the critical target 
cancer risk (TCR) calculated using the formula by 
Bhattacharyya et al. (2021) in dietary risk assessment.

2.9.3  Statistical and Geostatistical Analysis

Statistical analysis, including the creation of vio-
lin plots, correlation plots, and self-organizing maps 
(SOM), was conducted using R-Studio. The spa-
tial distribution plots of metals and the factor scores 
obtained from the PMF analysis were generated 
using the inverse distance weighted (IDW) inter-
polation method in ArcGIS software. Additionally, 
this study employed seven commonly used machine 
learning (ML) algorithms: linear regression, deci-
sion tree regressor, random forest regressor, k-nearest 

(10)FIAM − HQ = ADD∕RfD

neighbors regressor, support vector regressor, extreme 
gradient boost regressor, and multivariate adaptive 
regression splines. These algorithms, along with per-
formance metrics, were implemented using a python 
distribution.

3  Results and Discussion

3.1  Characterization of Soil Properties

The physicochemical properties of agriculturally pol-
luted soil (two zone: zone 1 and zone 2) is represented 
in Table 1. The pH in these zones was measured as 
8.74 ± 0.32 (zone 1) and 8.20 ± 0.39 (zone 2), respec-
tively. These higher pH levels led to a decrease in the 
mobility of metals (Acosta et  al., 2011). The zones 
(zone 1 and zone 2) displayed statistically significant 
variations (p < 0.05) in electrical conductivity (EC) 
and organic carbon (OC). Zone 1 exhibited higher EC 
compared to zone 2. Organic carbon plays a crucial 

Table 1  Mean values of soil samples physicochemical attrib-
utes, total and bioavailable form of metals

Parameters Zone 1 Zone 2
Mean ± SD Mean ± SD

pH 8.74 ± 0.32 8.20 ± 0.39
EC (mS/cm) 0.67 ± 0.062 0.31 ± 0.015
OC (%) 0.98 ± 0.023 1.33 ± 0.045
Available N (mg  kg−1) 0.0078 ± 0.0005 0.0076 ± 0.0003
Available P (mg  kg−1) 11.47 ± 1.07 12.73 ± 1.17
Available K (mg  kg−1) 108.36 ± 9.28 111.35 ± 10.13
Total metal (mg  kg−1)
Total Cr 211.56 ± 9.63 199.51 ± 7.25
Total Cd 14.93 ± 2.45 13.78 ± 1.83
Total Ni 168.09 ± 48.75 161.79 ± 63.68
Total Cu 113.50 ± 54.22 77.82 ± 39.49
Total Pb 136.32 ± 80.46 130.12 ± 58.25
DTPA extraction (mg 

 kg−1)
Cr 11.52 ± 1.46 11.07 ± 1.50
Cd 0.04 ± 0.01 0.05 ± 0.04
Ni 9.62 ± 1.70 9.53 ± 1.65
Cu 4.38 ± 0.233 3.82 ± 0.180
Pb 3.47 ± 1.46 2.92 ± 1.54
Zn 0.54 ± 0.047 0.56 ± 0.031
Fe 4.21 ± 0.39 4.40 ± 0.36
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role in enhancing soil structure, promoting drainage 
capacity, facilitating aeration, and reducing nutrient 
leaching (Zeng et al., 2011). Moreover, when metals 
bind to organic carbon, they become less accessible 
to plants (Dey et  al., 2021). Additionally, the lower 
levels of available macronutrients (nitrogen, phospho-
rous and potassium) were found in both zones mak-
ing them nutrient deficient (Kizildag et al., 2013 and 
Wandruszka, 2006) (Table 1). The mean total content 
of various metals in the two zones (zone 1 and zone 
2) were represented in Table  1 and Fig.  S2. Due to 
the occurrence of toxic metals, elevated pH levels, 
and low organic carbon content in the agricultural 
soil, there is a significant risk of Cr and Ni pollution 
in the calcareous soil zone of India. This situation is a 
growing concern for the health of animals, plants, and 
humans alike (WHO, 1996) (Table S2).

3.2  Spatial Distribution, Pattern and Source-Oriented 
Assessment of Metals

The distribution of the total content of metals across 
the two zones was mapped (Fig. S3) using the inverse 
distance weighting (IDW) interpolation method. 
Using the inverse distance weighting (IDW) method, 
we categorized the raster patterns of metals content 
for five metals (Cr, Cd, Ni, Pb, Cu). These catego-
ries reveal the spatial distribution of metals in rela-
tion to various factors, including anthropogenic (fer-
tilizer, pesticide use, rapid industrialization etc.) and 
environmental factors (soil erosion, lithogenesis, 
weathering, and geological processes), which might 
influence the distribution of metals. For Cu, map sug-
gest that north eastern region in zone 1 have highest 
Cu pollution whereas for northern and western part 
of in zone 2 is affected more. For Pb, southern part 
showed highest Pb content in zone 1 and northern and 
southern part of zone 2 showed highest Pb content. 
Similarly, Cr pollution is high in north western part 
of zone 1 whereas southern as well as eastern part of 
zone 2 showed highest Cr content. Spatial distribution 
map showed Cd content is high throughout all the 
areas in zone 1 and zone 2. On the other hand, north-
ern and south western part of zone 1 have highest Ni 
content while central part of zone 2 showed highest 
Ni content. Therefore, our findings suggest that zone 
1 is more by metals than zone 2.

Self-organizing map (SOM) can be used to inter-
pret substantial information to determine zone wise 

distribution pattern of metals and classify the sources 
of pollution. In SOM, colour ranked plots has been 
constructed for each variable in each hexagon to ana-
lyse partial similarity between samples on the basis 
of spaces of each hexagon. Unified distance matrix 
(U-matrix) is the combination each neuron’s weight 
vectors and its adjacent. In component planes, com-
parable gradients signify a positive correlation, while 
opposing gradients indicate a negative correlation. 
Samples displaying shorter hexagonal distances 
share more akin characteristics. Figure  1a illustrates 
the component planes of each SOM unit, Fig.  1b 
describes unit variables in zone wise manner. Pb, 
Ni, Cd content are high in upper left corner neurons, 
whereas Cu is high in lower left and Cr is moderately 
high in lower right corner neuron (Fig.  1a-e). Metal 
content in two different zones showed that neurons 
in lower left corner to middle corner to lower right 
corner possess high content for zone 1 whereas for 
zone 2 middle corner to upper right corner showed 
high metal content (Fig. 1b). Additionally, zone-wise 
U-matrix clustered was prepared by SOM algorithm 
(Fig. 1c).

The PMF model was employed for identification 
of metal sources in this area. The PMF model exten-
sively determines ‘Q’ value by using six factors and 
based on the least four factors were optimised for 
stabilisation (Chai et  al., 2021). The strong correla-
tion coefficient value among metals makes this model 
reliable with appropriate demonstration. Figure  2a-c 
showed metals contribution to PMF model along with 
factors profiling and correlation matrix. The spatial 
distribution plots of metal content using GIS, based 
on factor scores, are depicted in Fig.  3a–d, illustrat-
ing the distribution of sources. In our study, the PMF 
model indicated that factor 1 made a contribution 
more for Ni (59.6%) and Cd (53.5%); factor 2 mainly 
contributed on Cr (62.2%); factor 3 mainly accounted 
for Cu (65.2%) and factor 4 was accounted for Pb 
(46.7%) (Fig. 3a). Factor 1 contributed 32.93% varia-
tion which is dominated by Ni, Cd and Pb. Numerous 
earlier research works have indicated that Ni present 
in soils might be influenced by the underlying geo-
logical material from which the soil originates i.e., 
natural source (Li et al., 2018). Moreover, it has been 
widely held that metals associated with the compo-
sition of the parent soil material tend to be elements 
with minimal pollution impact (Fei et  al., 2022). 
Consequently, it is apparent that factor 1 is primarily 
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Fig. 1  (a) Distribution pattern of each metal in polluted soils through self-organizing map (SOM); (b) zone wise metal concentra-
tion distribution maps; (c) Clustering of U-matrix denotes two sampling zones

Fig. 2  Source allocation of metals in polluted soils of the 
study location (a) the contribution percentage of each factor 
by PMF; (b) PMF model factor profiles of metals in polluted 

soils; (c) PMF model integrated with Pearson correlation anal-
ysis to detect the correlation between metals
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influenced by natural sources rather than human 
activities. Thus, it is reasonable to deduce that factor 
1 signifies the inherent geological composition of the 
soil, which stems from a natural origin.

Factor 2 accounted for 25.1% of source contribu-
tion (Fig. 2a). The spatial distribution map indicated 
that the high-value areas of Cr were located in north-
ern and southern part of sampling areas where agri-
cultural land was polluted with metals (Fig. 3b). The 
high content Cr is mainly due to the vigorous appli-
cation of fertilizers, herbicide, insecticides and pesti-
cides (Chai et al., 2021; Men et al., 2019). Phosphate 
fertilizers are commonly used in the local agriculture 
and long-term use led to increased accumulation 
Cr. Thus, factor 2 can be attributed for agricultural 
sources.

Further, factor 3 contributed for 65.2% of Cu fol-
lowed by Cd (23.7%) with 24.56% of total source 
contribution (Fig.  2a). In addition, the high-value 
areas of Cu and Cd were located in northern part of 
sampling area (Fig. 3c) where effect of intense indus-
trial activity dominates. Typically, Cu and Cd tend 
to exhibit strong connections with human activities, 

particularly those of an anthropogenic nature. These 
activities encompass sectors such as petrochemicals, 
cement manufacturing, and various other industrial 
processes (Jin et al., 2019; Xiao et al., 2019). These 
industrial operations have the potential to discharge 
substantial quantities of waste residues, wastewater, 
and gases, which subsequently introduce Cu, Cd and 
Ni into the soil through direct or indirect means (Cai 
et al., 2019). Given the aforementioned analysis, fac-
tor 3 may be interpreted as indicative of industrial 
origins.

The fourth and final factor accounted for 17.46% 
of the overall influence, contributing to 46.7% of the 
lead (Pb) content, trailed by copper (Cu) at 16.2%, 
and chromium (Cr) at 13.3% (Fig.  2a). Numerous 
research studies have consistently indicated that lead 
(Pb) is often linked to transportation, with vehicle 
exhaust emissions being the primary pathway for Pb 
to infiltrate the soil (Adamiec et al., 2016; Men et al., 
2018). When considering the spatial distribution plots 
of Pb, regions with heightened values tend to coincide 
with major highways such as national and provincial 
routes within the study area. Consequently, factor 4 

Fig. 3  An illustration of the spatial distribution of factors (a–d) derived from the PMF model
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can be reasonably attributed to sources related to traf-
fic emission. This outcome demonstrates the capabil-
ity of the PMF model to assess the specific origins of 
metals within cultivated soil in a quantitative man-
ner, yielding results that are notably more logical. 
For zone 1 and zone 2, the prevailing concerns have 
revolved around the pivotal roles played by natural 
and industrial pollution as the primary sources of pol-
lution by metals, exerting a substantial influence on 
potential health risks for humans.

3.3  Evaluation of Different Indices for the 
Determination of Soil Pollution

In response to elevated levels of metals in the agricul-
tural soils, the study focuses its efforts on assessing 
a range of indices and the potential risks to human 
health. Notably, the pollution load index (PLI) serves 
as a valuable tool for evaluating the extent of metal 
pollution in the soil. Table  S3 represents the pollu-
tion load index (PLI), with zone 1 showing higher 
PLI values (1.28) compared to zone 2 (1.16), indicat-
ing significantly higher pollution levels in both zones 
(above the permissible limit PLI > 1) (Tomlinson 
et  al., 1980). The predominant soil pollution in the 
sampling zones is from Cr, followed by Ni, Pb, Cu, 
and Cd.

Furthermore, the contamination factor (CF) is uti-
lized to quantify the total pollution level in each zone. 
Table S3 illustrates the CF values for Cr, Ni, Pb, Cu, 
and Cd in zone 1 and zone 2, with average CF val-
ues of 5.76, 4.58, 2.79, 0.97, 0.29, and 5.43, 4.40, 
2.66, 0.67, 0.27, respectively. Therefore, Cr, Ni, and 
Pb content in both zone 1 and 2 were high indicates 
high degree of pollution. Statistical analysis indicates 
significant variations (p < 0.05) among the two zones 
due to the presence of different metals in the soil, with 
zone 1 showing higher content compared to zone 2. 
The decreasing order of CF is Cr > Ni > Pb > Cu > Cd.

Table S3 displays the ecological risk factor (ERF) 
for all metals in the soil, with values of metals ERF 
for Cr, Ni, Pb, Cu, and Cd being 28.82, 22.90, 13.97, 
4.89, 1.47 for zone 1, and 27.18, 22.04, 13.33, 3.35, 
1.35 for zone 2, respectively. The average ERF of Cr 
and Ni indicates low to moderate ecological risk. The 
ERF for zone 1 (72.06) is higher compared to zone 
2 (67.27). However, the calculated ERF values sug-
gest a moderate ecological risk from Cr, Ni, and Pb 

pollution in the soil, posing an increased threat to the 
surrounding ecosystem of the agricultural land.

The geo-accumulation index  (Igeo) proves to be a 
valuable indicator for evaluating the potential accu-
mulation pattern of metals in the ecosystem. In the 
study area, the  Igeo values (Table  S3) indicate vary-
ing levels of pollution, ranging from low to extreme 
(0 ≥  Igeo ≤ 5) (Alves et al., 2018), in both zones due to 
the presence of (Cr, Ni, Pb, Cu, and Cd). The aver-
age  Igeo for Cr and Ni indicates moderate to high pol-
lution, Pb shows low to moderate pollution, and Cu 
and Cd show low pollution in the soils. The findings 
are consistent with previous research by Wang et al. 
(2022).

3.4  Assessment of Health Risk

3.4.1  Non‑Carcinogenic Risk

The hazard quotient (HQ) and hazard index (HI) are 
used to determine the potential for non-carcinogenic 
health hazards, and values for both zones are provided 
in Table 2. The Table 2 illustrates that both adults and 
children exhibit similar trends in HQ and HI. The 
combined HQ values for metal exposure pathways in 
both subpopulations within this study area exhibit a 
decrease in the following sequence: ingestion > inha-
lation > dermal contact. This suggests that ingestion 
is the primary pathway for metal exposure, which 
has the greatest impact on human health, followed by 
inhalation, while skin contact has the least impact. 
These findings are consistent with a previous study 
(Jiang et  al., 2021) that reported similar results. All 
HQ and HI values for the metals examined in the two 
zone were found to be below the safe limit (set at 1) 
for both adults and children.

The ranking of HI values for zone 1 and zone 
2 was found to be Pb > Cu > Ni > Cr > Cd for both 
adults and children. However, the total HI values for 
both groups were significantly lower than the safe 
limit of 1. Therefore, we can dismiss the potential 
non-carcinogenic health risks for these groups. Chil-
dren exhibited a higher health risk as compared to 
adults due to their habitual hand-to-mouth behavior, 
higher food and beverage consumption, and greater 
inhalation of air relative to their body weight. Addi-
tionally, children’s bodies are still developing, and 
they have limited abilities to metabolize, detoxify, 
and eliminate toxins compared to adults. This finding 
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has been supported by previous studies conducted by 
researchers (Jiang et al., 2021). However, it’s impor-
tant to note that the health risk associated with only 
five metals was assessed in this study, and there are 
many other metals known to be harmful to human 
health. Therefore, further research is recommended.

3.4.2  Carcinogenic Risk

In this study, we estimated cancer risks associated 
with Pb, Cr, Cd, and Ni in agricultural soil for two 
zones, taking into account ingestion, inhalation, and 
skin contact pathways for both children and adults 
(Table  S4). The findings of this study suggest that 
there are no significant carcinogenic health hazards 
for adults and children through ingestion, skin con-
tact, and inhalation exposure routes in both zones. 
Nevertheless, cadmium (in zone 1) and nickel (in 
zone 2) present a relatively higher potential carcino-
genic health risk compared to other metals for both 
adults and children. The TCR values of adults and 
children for zone 1 and zone 2 were 6.53E-05, 6.2E-
05, and 7.63E-05, 7.27E-05 respectively, indicating 
the overall cancer risk (Table  S4). Children, due to 
their physiological characteristics such as higher res-
piration rates per unit body weight and behavior, are 
more susceptible to carcinogenic risks from metal 
exposure in soil compared to adults. This result is 

consistent with previous studies (Wang et al., 2021). 
Hence, it is imperative to enact essential measures to 
alleviate the cancer risk linked to metal exposure.

3.5  Predictable Health Risk Assessment through 
Content of Metals

Moreover, the monte carlo simulation (MCS) method 
was employed to enhance the accuracy of health risk 
assessment, avoiding potential errors stemming from 
overestimation or underestimation of deterministic 
parameters (Fig. 4). In agricultural soil areas, the car-
cinogenic and non-carcinogenic effects of metals were 
assessed through three different pathways (ingestion, 
inhalation, and dermal exposure) for both adults and 
children (Table S3, S4). Non-carcinogenic risks were 
found to be negligible for both adults and children, 
registering values below 1. In contrast, the average 
hazard index (HI) values for adults and children were 
determined as 4.70E-02 and 4.31E-01 for zone 1, 
and 4.41E-02 and 4.03E-01 for zone 2, respectively 
(Table 2). These HI values remained below the guide-
line limits set by USEPA (2021). However, the target 
cancer risk (TCR) values for both adults and chil-
dren surpassed the acceptable threshold of  10−6, sig-
nifying a moderate to high potential for cancer risk. 
Significantly, soil ingestion was identified as the pri-
mary pathway for carcinogenic risk in both adults and 

Table 2  Carcinogenic and non-carcinogenic risk parameters (hazard quotients and hazard indexes) for adults and children

HQ: Hazard quotients, HI: Hazard indexes, Ing: Ingestion, Inh: Inhalation, Der: Dermal

Metals Adult Children HI-adult HI-child

HQ-ing HQ-inh HQ-der HQ-ing HQ-inh HQ-der

Zone 1
Pb 2.70E-02 4.04E-06 2.72E-04 2.56E-01 7.16E-06 1.95E-04 ΣHI 2.77E-02 2.56E-01
Cr 2.00E-03 2.61E-07 3.00E-06 1.87E-02 4.63E-07 2.18E-06 2.00E-03 1.87E-02
Cu 1.05E-02 2.71E-05 1.58E-05 9.82E-02 4.81E-05 1.13E-05 1.06E-02 9.83E-02
Cd 9.94E-05 7.31E-04 7.46E-05 9.27E-04 1.30E-03 5.33E-05 8.30E-04 2.28E-03
Ni 5.92E-03 6.97E-07 8.89E-06 5.53E-02 1.24E-06 6.36E-06 5.92E-03 5.53E-02
ΣHQ 4.55E-02 7.63E-04 3.74E-04 4.29E-01 1.35E-03 2.68E-04 4.70E-02 4.31E-01
Zone 2
Pb 2.62E-02 3.85E-06 2.60E-04 2.44E-01 6.83E-06 1.86E-04 ΣHI 2.65E-02 2.45E-01
Cr 1.37E-03 1.79E-07 2.06E-06 1.28E-02 3.18E-07 1.44E-06 1.37E-03 1.28E-02
Cu 9.71E-03 2.50E-05 1.46E-05 9.06E-02 4.44E-05 1.04E-05 9.75E-03 9.07E-02
Cd 9.37E-05 6.89E-04 7.04E-05 8.75E-04 1.22E-03 5.03E-05 7.83E-04 2.15E-03
Ni 5.70E-03 6.70E-07 8.56E-06 5.32E-02 1.19E-06 6.12E-06 5.70E-03 5.32E-02
ΣHQ 4.31E-02 7.19E-04 3.55E-04 4.02E-01 1.27E-03 2.54E-04 4.41E-02 4.03E-01
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children, with children displaying heightened vulner-
ability. The predominant metals responsible for car-
cinogenic risk (CR) in both age groups were Cd and 
Ni (Wang et al., 2022). This underscores the necessity 
for heightened attention to metal exposure, particu-
larly among children, in the agricultural land areas of 
the calcareous zone in India.

3.6  Metal Content in Rice Plant Parts

The total content of metals in various parts of the rice 
plant, including roots, shoots, and grains, is depicted 
in Fig. S4 and Fig. S5 for zone 1 and zone 2 respec-
tively. In contrast, zone 1 demonstrated a higher level 
of metal content in the various components of rice 
plants as compared to zone 2. Furthermore, the find-
ings indicate that the content of metals in all plant 
components surpassed the acceptable threshold in 
both regions (WHO, 1996) (Table  S2). A notable 
positive correlation was observed between the total 

metal content, water-soluble, exchangeable, and 
oxide-bound metal fractions, and the uptake of metals 
by rice plants (roots, shoots, and grains) as depicted 
in Fig.  S6. A comparable finding was reported in a 
prior study conducted by Nawab et  al. (2021) and 
Khan et al. (2018). The findings indicated that Zone 
1 exhibits higher pollution compared to Zone 2, mak-
ing agricultural land in Zone 1 more affected and less 
suitable for crop cultivation, particularly rice.

3.7  Assessing Risk through FIAM-HQ

The absorption of metals by rice grains in the calcare-
ous soil zone of India was estimated using the solu-
bility-free ion activity model (FIAM). This involved 
incorporating crop-specific model parameters (C, β1, 
and β2) and the predictive coefficient of FIAM, as 
illustrated in Fig. S7 and Table S5. The results dem-
onstrated that the variability of metals in rice grains 
could be effectively explained using the FIAM model, 

Fig. 4  Monte Carlo sensitivity analysis showed total carcinogenic risk (TCR) assessment in (a) adults and (b) children
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taking into account soil pH, OC, and DTPA-extracta-
ble metals. This finding aligns with previous research 
by Meena et al. (2016), emphasizing the significance 
of soil pH and OC in governing metals solubility in 
polluted areas. In the FIAM model, the values of β1 
and β2 were positive for Cr and Cd but negative for 
Ni (β2), Pb (β1, β2), and Cu (β1) (Table  S5). These 
model parameters, indicated by their positive values, 
revealed that the metals transfer from the soil to rice 
grains is adversely affected by increasing pH or low-
ering OC levels. The research also assessed the poten-
tial human health risk linked to the absorption of met-
als in rice grains through the utilization of the hazard 
quotient (HQ) derived from the FIAM model. Given 
that rice is a staple food in the Indian diet, a safe 
threshold for FIAM-HQ in staple foods (rice) was set 
at 0.5. Table S5 showed that the average FIAM-HQ 
values for Cr, Ni, Pb, Cu, and Cd were all below this 
safe threshold (FIAM-HQ < 0.5) (Raj et  al., 2022). 
Therefore, it is recommended for human consumption 
to include rice grown in the agricultural soils of the 
calcareous soil zone studied.

3.8  Assessment of Risk Thermometer and Dietary 
Exposure

The assessment of potential human health risks 
related to food consumption; a ’Risk Thermom-
eter’ has been applied. Figure 5 illustrates the ’Risk 
Thermometer’ for metals in rice grains, alongside 
the SAMOE value, and concern level. The scale of 
’Risk Thermometer’ quantifies the toxicity of metals 
concerning the intake of rice grains, revealing that 
Cr poses an elevated health risk  [CrSAMOE = 0.006] to 
humans (Class 5). Ni content in rice grains presents a 
moderate to high health risk  (NiSAMOE = 0.03), while 

Cd and Pb pose low health risks  (CdSAMOE = 0.82; 
 PbSAMOE = 0.24) (Table  S5). In contrast, Cu shows 
no health risk  (CuSAMOE = 45.09) for humans. This 
study underscores that the consumption of rice grains 
may not be safe for humans due to the elevated lev-
els of Cr and Ni in both the grain and soil system 
(Kumar & Maiti, 2015). Additionally, the evaluation 
of SAMOE-target cancer risk (SAMOE-TCR) asso-
ciated with the ingestion of metal rich rice grains is 
presented in Table S5. For rice grains, SAMOE-TCR 
values were significantly higher for Cr (5.90E − 03) 
and Ni (7.58E − 03), exceeding the tolerable limit 
of  10−4 except Cd (1.16E-05) and Pb (1.15E-05) (Li 
et  al., 2020). This study reveals that the cancer risk 
associated with rice grains from the calcareous soil 
zone falls within the moderate to high range, corrobo-
rating previous research findings (Kormoker et  al., 
2022).

3.9  Sensitivity Analysis in Rice Plant Parts 
Employing Sobol Model

The sobol sensitivity analysis (SSA) was employed to 
analyse impact of different metals on soil for reduc-
tion of risk (Fig.  6). The risk assessors can identify 
critical and influential parameters that contribute to 
the overall risk through sensitivity analysis. The TOSI 
values of each metal in the model considered as input 
variables. SSA analysis revealed that TOSI values of 
Cr, Cu, Ni and Cd (except Pb) were higher in roots 
and shoot rather than grains. On the other hand, TOSI 
of Pb in grain was high than root and shoot (Fig. 6e). 
It indicates that roots are more sensitive to accumu-
lation of metals. Similarly, the pairwise sensitivity 
analysis of input variables for the assessment of FOSI 
with SOSI by the interaction of root with shoot, shoot 

Fig. 5  Risk thermometer 
scale shows the risk of met-
als (Cr, Ni, Cd. Pb, and Cu) 
through consumption of 
rice grown on contaminated 
agricultural soil
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Fig. 6  Sensitivity analysis 
using SOBOL based on the 
total metal(s) in the soil 
health considering the first-
order effect, total effect, and 
pair-wise interactions
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with grain and root with grain were also investigated. 
The results suggest that these interaction studies are 
very important to observe the transportation of met-
als from root to shoot to grain and intern sensitivity. 
The input pairs (root-shoot, root-grain, shoot-grain) 
are very much sensitive and SOSI values indicated 
that significant interaction observed between root and 
shoot for all the above metals. These findings suggest 
that the root and shoot components are highly sensi-
tive to metals, indicating a significant level of soil 
pollution in this area after the decomposition of root 
and shoot material. Thus, necessary action must be 
taken to reduce the pollution risk.

3.9.1  Performance of Model

Taylor diagram is a visual representation that assesses 
the performance of various regression models (seven 
in total) in predicting metal content using machine 
learning techniques (Fig.  S8). This analysis deter-
mines the most suitable regression model by com-
paring its predictions to observed values, primarily 
relying on two metrics: the correlation coefficient (r) 
and the root mean square error (RMSE). The ideal 
model exhibits a high r value and the lowest RMSE. 
When considering each metal individually for the two 
zones, the highest correlation coefficients (r) were 
as follows: for Cr, Cd, Ni, Cu, and Pb, LR (0.53), 
DT (0.52), MARS (0.63), RF (0.60), and LR (0.69), 
respectively. Additionally, the average RMSE val-
ues for the best-fitted models of Cr, Cd, Ni, Cu, and 
Pb were 5.11 (LR), 0.86 (DT), 4.65 (MARS), 1.78 
(RF), and 5.48 (LR). In contrast, XGB, SVR, and 
KNN demonstrated inferior performance compared 
to other models. Taylor diagram provides a compre-
hensive assessment of the best-fit model’s reliability 
on and validation, emphasizing the significance of 
achieving a high r value and a lower RMSE, ideally 
aligning closely with the observed line. This suggests 
that metal content throughout the two zones exhibit 
fluctuations.

4  Conclusions

This study aimed to assess the sources, accumu-
lation, and human health risks associated with 

metals in the soil of India’s calcareous soil zone. 
The results revealed that content of metals, espe-
cially Cr and Ni, significantly exceeded WHO limits 
in both zone 1 and zone 2, in soil and rice plants 
(roots, shoots, and grains). The spatial distribution 
pattern using PMF model revealed natural sources 
(32.92%) and agricultural sources (65.2%) are the 
important contributing factor for pollution in this 
study area. Various indices (PI, CF,  Igeo, ERF) con-
sistently showed higher pollution in zone 1 com-
pared to zone 2. Furthermore, the research deter-
mined that the presence of toxic metals, mostly 
through ingestion, posed substantial health hazards, 
especially for children. The combination of MCS 
and SSA assessed potential health risks, indicating 
acceptable non-carcinogenic risks but high carci-
nogenic risks. The use of SOM maps facilitated 
the classification of pollution levels, distinguishing 
highly polluted from less polluted areas. Similarly, 
the assessment using FIAM-HQ and SAMOE-TCR 
emphasized the potential human health risk, par-
ticularly cancer, due to elevated Cr and Ni levels 
in rice grains. Based on these findings, it is recom-
mended that relevant authorities continue monitor-
ing polluted areas, implement effective strategies, 
and raise awareness in the community about the 
risks associated with toxic metal pollution in the 
food chain.
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