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Abstract The toxic effect of microplastics (MPs) on 
living organisms is caused by the plastics and other 
pollutants attached to their surface. The interaction of 
MPs with hazardous toxic pollutants such as lead (Pb) 
is possible due to the large surface area of MPs and 
the high adsorption capacity of heavy metals such 
as Pb. When combined with toxic heavy metals, the 
interaction of MPs with aquatic environments and liv-
ing organisms leads to environmental and biological 
problems. When MPs enter water, they form a biofilm 
under the influence of organic and inorganic sub-
stances, significantly altering the adsorption–desorp-
tion properties of the heavy metal. The current study 
aims to understand the effect of Pb-MP interaction 
on MPs by investigating biofilm formation in MPs. 
By reviewing the studies in the existing literature, 
the study analyses how biofilm formation affects the 
adsorption behavior of Pb heavy metal on the surface 
of MPs. Furthermore, future perspectives highlight 
potential research directions aiming to fill the knowl-
edge gaps in this field. Addressing the challenges, 
it also highlights the need for a multidisciplinary 
approach to understanding microplastic and heavy 
metal interactions in aquatic ecosystems and to assess 
the long-term effects of these interactions on ecology 
and health.
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1 Introduction

Environmental pollution, especially the spread of 
microplastics (MPs) in natural ecosystems and their 
capacity to adsorb various pollutants, is becoming 
an increasing threat to global environmental health 
and natural ecosystems (Jiang et  al., 2020; Prokić 
et al., 2019; Wu et al., 2019). In this context, under-
standing the environmental impacts and propagation 
dynamics of Pb carried on microplastic (MP) surfaces 
has become a crucial research area for sustainable 
environmental management. MPs are prevalent in 
the environment, spreading through the atmosphere 
(Adebiyi & Kok, 2020), water (Alvim et  al., 2020), 
sediment (Brandon et  al., 2019), and soil (Alenge-
bawy et al., 2021), negatively impacting the health of 
organisms in ecosystems (Cao et al., 2021). MPs can 
adsorb various harmful substances such as organo-
chlorine pesticides, persistent organic pollutants, 
endocrine disruptors, toxic organic chemicals, and 
heavy metals onto their surfaces (Sajid et al., 2016), 
leading to the potential transfer of these substances 
to living organisms, resulting in bioaccumulation 
and biomagnification (Akhbarizadeh et  al., 2019), 
which can cause disruptions in metabolic (Wang 
et al., 2023), neurological (Viana et al., 2020), repro-
ductive (Afreen et  al., 2023), and immune systems. 

E. Özgenç (*) 
Vocational School of Health Services, Environmental 
Health Program, Trakya University, 22030 Edirne, Turkey
e-mail: enesozgenc@trakya.edu.tr

http://orcid.org/0000-0003-0878-6418
http://crossmark.crossref.org/dialog/?doi=10.1007/s11270-024-07090-9&domain=pdf


 Water Air Soil Pollut (2024) 235:281

1 3

281 Page 2 of 18

Vol:. (1234567890)

(Sharifinia et  al., 2020). MPs, vectors for toxic ele-
ments, can keep heavy metals such as Cd, Co, Cr, Cu, 
Ni, Pb and Zn on their surfaces (Godoy et al., 2019).

The adsorption of organic pollutants onto the 
MPs’ surface is a multifaceted and complex process 
that depends on the characteristics of both the pol-
lutants and the MPs, as well as the conditions of the 
solution and the environment (Wang et al., 2020). In 
this process, numerous factors, such as hydrophobic 
interactions, chemical interactions, surface properties, 
time and temperature, play crucial roles in specify-
ing the type and degree of adsorption mechanisms 
(Munoz et al., 2021). Among the adsorption mecha-
nisms are physical adsorption, chemical adsorption, 
ion exchange, complex formation, surface reaction, 
and pore filling (Abbas et al., 2018), which influence 
the attachment strength and pollutants’ reversibility 
to the MP surface (Tourinho et al., 2019). Addition-
ally, inorganic contaminants like metal ions can be 
adsorbed on MPs’ surface (Fu et al., 2021a, 2021b). 
In such cases, different mechanisms can come into 
play, including surface oxidation, surface complexa-
tion, co-precipitation, and electrostatic interactions 
(Nagoya et  al., 2019). Tang et  al., (2021) conducted 
a study examining the adsorption capacities of nylon-
MPs for Cu, Ni, and Zn. The study finding revealed 
that the sequence of ions adsorbed by MPs was Cu, 
Zn, and Ni. The results indicated that the primary 
mechanism governing adsorption is surface complex-
ation. Environmental factors such as air humidity, pH, 
salinity, organic matter abundance, attached biofilms, 
and redox potential influence pollutants adsorbed on 
the MP surface (Tang et al., 2021). Lin et al., (2021) 
explored the sorption kinetics and mechanisms of Pb 
on polyvinyl chloride (PVC), polyethylene (PE), and 
polystyrene (PS)-MPs, which brought to light that the 
sorption capacities of MPs were subject to factors like 
pH, ionic strength, and MP type. The predominant 
factors influencing this phenomenon were primarily 
intraparticle diffusion and the ultimate equilibrium 
process. The highest sorption capacities recorded 
were 483.1  μg/g for PVC, 416.7  μg/g for PE, and 
128.5  μg/g for PS, respectively. Advanced analyses 
using Fourier transform infrared spectroscopy (FTIR) 
and X-ray photoelectron spectroscopy (XPS) revealed 
no formation of new bonds Pb-MP, emphasizing phy-
sisorption as the primary force driving Pb sorption 
(Lin et al., 2021). According to Gu et al., (2018), Pb 
exhibits significant biotoxicity and proves resistant to 

biodegradation, exerting adverse effects on organisms 
even at lower concentrations (Gu et al., 2018).

Pb-MP interaction adversely affects soil, plants, 
water, and human health (Kumar et al., 2022). Pb can 
be disseminated from various sources that pose harm 
to the environment and human health (Karbalaei 
et  al., 2018). Sources contributing to the accumula-
tion of Pb on the surface of MPs include industrial 
activities releasing Pb into the environment, wastewa-
ter, agricultural pesticides, waste batteries, lead-based 
paints, toys, Pb pellets from ammunition, leaded-gas-
oline, cosmetic products (Hettiarachchi et al., 2024). 
Also, its sources are associated with landfills, lea-
chates, mines, petrochemical industry and agricultural 
runoff (Obeng-Gyasi, 2019). These sources release 
Pb into water, soil, and air, allowing it to adsorb onto 
or penetrate the surface of MPs (Adji et  al., 2022; 
Sharma et al., 2021). By carrying Pb along the food 
chain, MPs adversely affect living organisms’ health 
(Kumar et al., 2020). Pb exposure is associated with 
severe health problems (Obasi & Akudinobi, 2020; 
Tong et al., 2000; Wang et al., 2009). Pb can access 
the body through inhaling, swallowing, or contact 
with the skin, amassing in the bloodstream, skeletal 
structure, cerebral region, renal system, hepatic tis-
sue, neural system, and additional bodily structures 
(Collin et al., 2022; Pandey & Madhuri, 2014). This 
accumulation can result in damage to brain functions, 
DNA, and chromosomes, leading to allergic reac-
tions, fatigue, headaches, and adverse reproductive 
effects (Bhargava et  al., 2017; Engwa et  al., 2019; 
Jaishankar et al., 2014; Singh et al., 2018).

Several investigations have highlighted the preva-
lent association of MPs with Pb in freshwater envi-
ronments. Investigating the adsorption of Pb on MPs 
and their synergistic impacts is crucial for compre-
hending the coexistence of MPs with various pollut-
ants. Therefore, this study focuses on Pb as a repre-
sentative contaminant. This study aims to evaluate 
Pb-MP interactions deposited on the surface of MPs 
to understand the propagation dynamics and environ-
mental exposure of these interactions. This study also 
helps to grasp the current limitations of Pb-MP inter-
actions and highlights important perspectives and 
challenges for future studies.
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2  Influence of Biofilm Formation 
on the Adsorption of Heavy Metals in MPs

The biofilm can readily establish its presence on the 
surface of MPs (He et  al., 2022). Following immer-
sion in aqueous settings, a layer composed of organic 
and inorganic substances termed the conditioning 
membrane (Rummel et al., 2017) occurs on the MPs’ 
surface, playing an important role in contributing to 
the subsequent development of the biofilm (Guan 
et al., 2020) (Fig. 1).

As seen in Fig. 1, biofilm is a cluster of microor-
ganisms where cells adhere to each other or to the 
surface they are on (Qiang et al., 2021), which arises 
from the conditioning membrane formed on the 
surface of MPs after they enter the aquatic environ-
ment, composed of inorganic and organic substances 
(Feng et  al., 2020). This layer facilitates microor-
ganisms’ attachment to MPs and biofilm formation 
(Tu et  al., 2020a, 2020b). Weak bonds are formed 
between microorganisms and MPs through physi-
cal forces (van der Waals force, electrostatic forces, 
and hydrophobic interactions), which can be fragile 

or strengthened depending on environmental condi-
tions (Fu et al., 2021a, 2021b; Prajapati et al., 2022). 
However, strong bonds can also form between micro-
organisms and MPs through chemical forces (hydro-
gen bond, ionic bond, and covalent bond), which are 
independent of environmental conditions and allow 
microorganisms to adhere permanently to the surface 
of MPs (Moyal et al., 2023).

The secretion of extracellular polymeric substance 
(EPS) is a crucial step in the process of microorgan-
isms adhering to MPs’ surface (Deng et  al., 2021). 
This process begins with the initial attachment of pio-
neer microorganisms to the surface of MPs (Debroy 
et  al., 2022). Attachment to MPs typically occurs 
in reversible and irreversible stages (Dennehy & 
Abedon, 2021). On the surface they adhere to, micro-
organisms release extracellular polysaccharides, 
referred to as EPS (Liu et  al., 2021a, 2021b), con-
taining polysaccharides, proteins, nucleic acids, and 
lipids (Izadi et  al., 2021), which facilitates a tighter 
binding of microorganisms to the surface of MPs 
(Stabnikova et al., 2022). The role of EPS is to cre-
ate an adhesive matrix covering the surface of MPs, 

Fig. 1  Interaction of MPs with biofilm 
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thereby enhancing the resilience of microorganisms 
and facilitating the formation of a biofilm (Tu et al., 
2020a, 2020b). This process is a significant ecologi-
cal phenomenon, influencing the interaction of micro-
organisms with MPs and enhancing the resistance of 
MPs to environmental conditions (Deng et al., 2021).

Microbial proliferation represents the final stage 
of biofilm formation, a process that encompasses the 
development of a dynamic microbial community on 
the surface of MPs (Sooriyakumar et  al., 2022). In 
the concluding phase of biofilm formation, additional 
microorganisms continuously settle on the surface of 
MPs. This occurs through the proliferation of previ-
ously attached microorganisms in earlier stages and 
the arrival of new microorganisms (Battulga et  al., 
2022). Alongside the proliferation of microorgan-
isms, organic substances, cell residues, and other 
biological remnants generated during biofilm forma-
tion accumulate on the surface of MPs (Hale et  al., 
2020). Simultaneously, depending on environmen-
tal conditions, inorganic residues may also become 
part of this biofilm matrix (Flemming et  al., 2023), 
initiating a process of accumulation and diversifica-
tion within the biofilm. The biofilm on the surface 
of MPs becomes increasingly enriched and diversi-
fied through the proliferation of microorganisms and 
the combination of organic/inorganic residues, sup-
porting intricate interactions among microorganisms 
(Arias-Andres et al., 2019). Factors such as relation-
ships between different species, competition, and 
cooperation play an important role in this phase of the 
microbial community (Ghoul & Mitri, 2016; Gralka 
et al., 2020). In the final stage of microbial prolifera-
tion and biofilm formation, a complex and dynamic 
microbial ecosystem emerges on the surface of MPs, 
which shape biological interactions in the MP envi-
ronment, influencing resistance against environmental 
factors (Sooriyakumar et al., 2022). Li et al., (2022a, 
2022b) examined how Pb behaves in terms of adsorp-
tion on biodegradable poly(butylene succinate) (PBS) 
MPs during the process of biodegradation. The study 
findings suggest that the amount of Pb adsorbed by 
biofilm-colonized, biodegraded PBS-MPs is approx-
imately 10 times greater than that observed with 
pristine PBS (647.09 μg/g compared to 64.13 μg/g). 
This notable increase is attributed to both the pres-
ence of biofilm colonization and the degradation of 
PBS (Li et al., 2022a, 2022b). Ahamed et al., (2020) 
noted a significant increase in the adsorption of Pb 

on low-density polyethylene (LDPE) surfaces in the 
presence of biofilm. This led to a 13-fold rise in the 
equilibrium adsorption capacity, reaching 1602  g/
m2, compared to the absence of biofilm, which was 
only 124 g/m2 (Ahamed et al., 2020). The investiga-
tion conducted by Fan et al., (2021) revealed notable 
differences in the adsorption capacities of polypro-
pylene (PP)-MPs for various heavy metals. Notably, 
the adsorption capacities for Pb and Cu were notably 
higher when compared to those for Cd and Zn (Fan 
et al., 2021). This suggests that Pb exhibits the high-
est adsorption capability across diverse MP particles, 
with physisorption onto the MPs identified as the pri-
mary sorption mechanism (Lin et al., 2021).

3  Selecting the Impact of Pb on the MPs

Heavy metals may be of natural origin or occur due 
to human activities (Vareda et  al., 2019). Numerous 
compounds containing heavy metals exhibit high 
solubility in aqueous environments (Cánovas et  al., 
2023; Mariana et al., 2021). Heavy metal concentra-
tions can vary due to the impact of human activities, 
and their discharge into the receiving environment 
is rapidly increasing (Hembrom et al., 2020). Heavy 
metal substances, which originate from the wastewa-
ter of different industries, may mix with the receiv-
ing environment due to human influence and natural 
factors (Vardhan et  al., 2019). If heavy metals are 
discharged into the aquatic environment without 
adequate treatment, it can lead to severe problems for 
both the environment and living organisms (Mishra 
et  al., 2019) (Fig.  2). Heavy metals are transported 
through complex processes such as dissolution, pre-
cipitation, complex formation, adsorption, and bio-
accumulation in aquatic environments (Liu et  al., 
2022a, 2022b, 2022c), altering the physicochemi-
cal properties of water (Qiu et al., 2021), which dis-
rupt vital functions in living organisms (Fu & Xi, 
2020), including growth (Witkowska et  al., 2021), 
development (Bharti & Sharma, 2022), reproduction 
(Massányi et al., 2020), respiration (Nowicka, 2022), 
photosynthesis (Souri et  al., 2019), enzyme activity 
(Witkowska et  al., 2021), protein synthesis (Engwa 
et  al., 2019), and the structure of DNA and RNA 
(Bharti & Sharma, 2022), which can adversely affect 
human health.
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Heavy metals cause long-term environmental pol-
lution, and recent research has revealed the interac-
tion between MP and heavy metals (Cao et al., 2021; 
Liu et al., 2022a, 2022b, 2022c; Zhang et al., 2022). 
Pb can be incorporated into the polymer matrix as a 
heavy metal, increasing the toxicity of the polymer. 
Pb might exist in the polymer matrix of MPs as func-
tional additives or residues from recycling or reac-
tions (Nguyen et al., 2023). Functional additives are 
substances used to modify polymers’ processing and 
performance properties (Campanale et  al., 2020). 
Recycling or reaction residues, on the other hand, are 
waste or leftover materials generated during the pro-
duction, processing, or use of polymers (Khoo et al., 
2021; Moumakwa, 2023). These materials can mix 
with the polymer matrix in unwanted or unknown 
ways, affecting the polymer’s physical, chemical, or 
biological properties (Inamdar, 2022). The primary 
source of Pb is the smoke from vehicle exhaust (Heal 
et al., 2005; Negahban & Mokarram, 2021; Sassykova 
et al., 2019). Soils along roadsides are places where 
Pb accumulates heavily. MPs in the environment can 

adsorb Pb onto their surfaces, increasing their toxic-
ity. MPs, widespread in aquatic and terrestrial eco-
systems, can lead to the biological accumulation of 
Pb on their surfaces (Elgarahy et al., 2021), allowing 
Pb to be transported through atmospheric processes 
such as wind, rain, hail, and snow, facilitating the 
biological breakdown of MPs and their entry into the 
food chain (Özgenç et al., 2023). This can negatively 
impact organisms’ growth, reproduction, behavior, 
and health (Padha et  al., 2022). The tendency of Pb 
to bioaccumulate in the body and be stored in bone 
tissue is also concerning, leading to toxic effects in 
cases of long-term exposure (Collin et  al., 2022). It 
can induce genetic disorders and developmental prob-
lems by affecting genetic material. Biomedical inter-
actions can occur due to various toxicity mechanisms 
inside and outside cells (Paz-Sabillón et al., 2023). In 
contrast to other environmental materials, MP parti-
cles display heavy metal concentrations 10–100 times 
higher, primarily attributable to their smaller particle 
size and an increased surface area-to-volume ratio 
(Acosta-Coley et al., 2019).

Fig. 2  Schematic representation of the interactions between MP and heavy metals
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In this context, Pb-MP interaction enhances bioac-
cumulation, which is important in transferring envi-
ronmental pollutants to organisms. The adsorption of 
Pb on MP surfaces contributes to the accumulation 
of these tiny particles in organisms in both aquatic 
and terrestrial environments. This creates a scenario 
where environmental toxins can ascend the food 
chain, presenting a potential threat and causing harm 
to ecosystems. Therefore, the Pb-MP interaction rep-
resents a significant research area for comprehending 
and managing environmental impacts.

4  Pb‑MP Interactions in the Receiving 
Environment

The contamination of aquatic environments with 
heavy metals is a substantial global concern, given its 
persistence and enduring impact on ecosystems (Lin 
et  al., 2016). When ingested from the environment, 
MPs can also bind to heavy metals, accumulating in 
organisms’ bodies and potentially causing biological 
issues. Digestion of MPs allows heavy metals to be 
transported into organisms (Zhu et al., 2018). Heavy 
metals endanger human health when they enter the 
food chain. MPs bind heavy metals to their surfaces, 
harming living organisms in the sea, freshwater and 
land (Wen et  al., 2018). As seen in Table  1, some 
laboratory experiments have proved how MPs affect 
heavy metals, which factors influence adsorption 
or desorption and how MPs transport heavy metals 
(Table  1). Similarly, recent investigations have indi-
cated that MPs may be crucial carriers of toxic heavy 
metals (Godoy et  al., 2019). A study conducted by 
Massos and Turner (2017) revealed that the analy-
sis of the MP sample (n = 924) from two beaches 
showed the presence of Cd in 6.9% and Pb in 7.5% 
of all MPs, respectively. The concentration of both 
metals exceeded 1 mg/g. Maršić-Lučić et al., (2018) 
detected the presence of some metal ions in MP sam-
ples from beach sediments on the Croatian island of 
Vis. Compared to samples from the nearby ocean, 
the study showed that MPs had higher levels of trace 
metals such as Fe, Cr, Mn, Cu, Ni, Zn, Pb and Cd, 
confirming that MPs enrich the marine ecosystem in 
metals. In the study conducted by Lin et al., (2021), 
the adsorption characteristics of Pb ions were exam-
ined using PVC, PE, and PS. It was found that PVC 
exhibited the highest maximum adsorption capacity, 

reaching 483.1  μg/g for Pb ions. Davranche et  al., 
(2019) revealed that 97% of lead Pb was detected on 
nanoparticles isolated from MPs gathered from the 
North Atlantic region. The research illustrates the 
ability of nanoparticles to bind with both organic pol-
lutants and heavy metals, affirming that organic and 
inorganic origin pollutants exhibit an affinity for plas-
tic. Similarly, the study by Fu et al., (2021a, 2021b) 
confirmed that naturally aged MPs exhibit a height-
ened adsorption capacity for Pb, with the primary 
mechanism of this process likely determined by the 
electrostatic force between the oxygen-containing 
functional groups present in MPs and Pb. The diffu-
sivity of MPs allows Pb to diffuse into MPs over a 
larger area, leading to environmental contamination 
affecting a larger area, which means that Pb con-
tamination in water sources can be widespread. This 
process affects the environmental behavior, bioavaila-
bility and toxicity of both MPs and Pb. Thus, Pb con-
tamination in water bodies can affect a specific region 
where MPs are present and a large area where MPs 
are transported or dispersed.

As seen in Table 1, research on the Pb-MP interac-
tion covers an important area for an in-depth under-
standing of the role of MPs in environmental systems 
(Cao et al., 2021). The Pb-MP interaction has many 
consequences in the aquatic environment, highlight-
ing significant effects on microbial communities and 
biofilm formation. The diversity of MP species is an 
important factor in determining the absorption of Pb 
ions (Wang et  al., 2022). Studies reveal that differ-
ent MP types have different absorption properties and 
that Pb ions exhibit a high affinity for MP surfaces 
(Liu et  al., 2021a, 2021b). High Pb concentrations 
in water systems and oxygen-containing functional 
groups increase Pb adsorption to the surface of MPs, 
contributing to a more efficient transfer of the heavy 
metal through MPs into water systems (Shen et  al., 
2021). It was also observed that the degree of oxida-
tion, MP type and environmental conditions (pH, ion 
strength, dissolved organic matter (DOM)) affect Pb 
adsorption, and various factors regulate the Pb-MP 
interaction. In particular, the degree of oxidation 
determines the surface properties of MPs (Liu et al., 
2022a, 2022b, 2022c). This reveals that Pb adsorption 
is enhanced with the increase of oxygen-containing 
groups on the MP surface (Zhou et  al., 2020). The 
Pb-MP interaction is mostly characterized by physical 
adsorption, which is characterized by a direct process 
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and weak binding (Li et  al., 2022a, 2022b). In this 
context, Pb ions are physically adsorbed on the MP 
surface, meaning weak bonds bind them and can be 
released (Fu et al., 2021a, 2021b).

Overall, Pb-MP interaction is a complex process 
that can increase the environmental impacts of MPs 
and extend the pollution spread of the heavy metal in 
aquatic systems, which means that it can lead to long-
term environmental contamination of Pb. Based on 
this information, it is clear that Pb-MP interaction is 
a severe problem in the aquatic environment. To solve 
this problem, taking measures such as reducing the 
sources of MPs and Pb, removing MPs and Pb from 
the aquatic environment, and monitoring the toxic 
effects of Pb-MP interaction can be an effective factor 
in the success of long-term solutions to environmen-
tal problems.

5  Future Perspectives and Challenges

Future research on heavy metal adsorption–des-
orption properties of biofilm-affected MPs should 
cover both fundamental and applied aspects. Fun-
damental aspects should aim to understand better 
biofilm’s effects on heavy metal adsorption–desorp-
tion capacity, kinetics, isotherms, thermodynam-
ics, and mechanisms of MPs. It should also system-
atically investigate the factors affecting the heavy 
metal adsorption–desorption properties of biofilm 
on MPs, such as biofilm thickness, structure, com-
position, age, type, shape, size, surface area, degree 
of contamination, concentration of heavy metal ions, 
pH, temperature, salinity, redox potential, etc. Study-
ing them under long-term and realistic conditions to 
improve fundamental knowledge and applied solu-
tions is important to better understand how heavy 
metal adsorption–desorption properties change with 
time. The applied aspects should aim to develop new 
methods and materials to modify biofilm-affected 
MPs’ heavy metal adsorption–desorption properties 
and design new technologies and strategies to remove 
or recover them from the environment.

The current studies focusing on metal ions are 
generally concentrated on Pb and Cu. However, 
other metal ions should also be considered to under-
stand biofilms’ impact on the heavy metal adsorption 
mechanism by plastic residues. Particularly, as plastic 
pollution is increasing in aquatic environments, there Ta
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is a need for further research in this area. Although 
the studies are mostly carried out in the laboratory, 
they should be simultaneously combined with in situ 
experiments to reveal the biofilm-enhanced adsorp-
tion mechanisms of metals. This biofilm may reflect 
realistic environmental factors that affect MPs’ heavy 
metal adsorption–desorption properties. Addition-
ally, while studies have mainly focused on adsorp-
tion isotherms and spectroscopic methods, there is a 
highlighted necessity for more work on mathematical 
modeling and dynamic analysis confirming the con-
tribution of environmental conditions and biofilms 
to metal adsorption. Nevertheless, there still exists a 
knowledge gap in the current research literature:

(1) The hydraulic parameters influencing the move-
ment, accumulation, and resuspension of dif-
ferent MP particles in freshwater environments 
have not yet been sufficiently investigated. These 
parameters are important in transporting, settling, 
and remixing MPs in receiving environments. 
Therefore, it is important to examine the hydro-
dynamic behaviors of MPs and the factors influ-
encing them to understand their fate and transport 
in freshwater environments.

(2) Data on the age, degradation levels, and biofilm 
accumulation of MPs detected in the studied 
aquatic environment is limited. The age of MPs 
can help determine their sources and pathways 
of entry. The degradation levels of MPs vary 
depending on plastic types, environmental condi-
tions, and microbial activity. The biofilm accu-
mulation on MPs influences their density, hydro-
phobicity, toxicity, and biological interactions. 
Therefore, determining the age, degradation lev-
els, and biofilm accumulations of MPs is neces-
sary to understand the characteristics and impacts 
of MPs in freshwater environments.

(3) The clear impact of biofilm accumulation on dif-
ferent MP density changes has not yet been fully 
understood. Biofilm accumulation can either 
decrease or increase the density of MPs, thereby 
affecting the probability of floating, which can 
influence MPs’ transport, accumulation, and 
resuspension. Additionally, biofilm accumula-
tion can alter the chemical composition, surface 
properties, and the release or absorption of toxic 
substances in MPs, affecting MPs’ environmental 
risk and toxicology. Therefore, investigating the 

open effect of biofilm accumulation on different 
MP density changes is important to understand 
the behavior and outcomes of MPs in freshwater 
environments.

(4) Quantitatively determining the dominant process, 
such as release or absorption, for MPs with dif-
ferent characteristics is challenging. MPs exhibit 
diversity in terms of plastic types, shapes, sizes, 
surface properties, and biofilm accumulations, 
affecting MPs’ release or absorption capacity and 
rate. MPs can release or absorb toxic substances 
in their environment, determining their and other 
organisms’ toxic effects. Therefore, quantita-
tively determining the dominant process for MPs 
with different characteristics, such as release or 
absorption, is necessary to understand the toxi-
cology of MPs in freshwater environments.

Challenges related to heavy metal adsorption–des-
orption properties of MPs exist at both experimen-
tal and theoretical levels. At the experimental level, 
there is a lack of standardized, sensitive, and reliable 
methods to measure heavy metal adsorption–des-
orption properties of biofilm-affected MPs. At the 
theoretical level, there is the complexity and diver-
sity of numerous factors influencing the heavy metal 
adsorption–desorption properties of MPs. Further-
more, the lack of sufficient data and models to assess 
the environmental impacts and health risks of heavy 
metal adsorption–desorption properties of MPs is 
also a challenge. There are also technical challenges 
to improving or utilizing MPs’ heavy metal adsorp-
tion–desorption properties, such as high cost, low 
efficiency, and low selectivity. Combating these chal-
lenges requires experimental and theoretical method 
development, data, model and technical improve-
ments, and multidisciplinary collaboration, which 
can help better understand MP’s heavy metal adsorp-
tion–desorption properties and is important for envi-
ronmental risk assessment and waste management.

6  Conclusion

This study provides valuable insights into the com-
plex relationships between the dynamic interactions 
of biofilm formation on MPs and Pb adsorption. 
Biofilm formation was found to be an important 
influence on the adsorption of heavy metals on 
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MPs. Biofilms act as dynamic interfaces, altering 
MPs’ surface properties and significantly chang-
ing heavy metals’ adsorption–desorption capacity, 
adding a new dimension to MP pollution’s environ-
mental and biological problems. Selected effects on 
Pb-MP interactions have also been studied, reveal-
ing that these interactions are physical coupling and 
involve specific mechanisms based on factors such 
as surface chemistry, particle size and environmen-
tal conditions. The study of Pb-MP interactions 
in receiving environments has revealed a complex 
interaction influenced by various environmental 
factors. Therefore, dynamic interactions between 
environmental compartments play a critical role in 
understanding the interactions of MPs with poten-
tially toxic elements, allowing for more effective 
environmental policies and, management strategies 
and interventions to minimize environmental risks.

Specific regulations, standards, and protocols are 
required to understand and effectively manage MPs’ 
environmental impacts fully. These regulations 
should include a comprehensive approach across 
the various stages of MP production, transportation, 
use, disposal, and biotoxicity. At this point, future 
research and regulations are expected to contribute 
to environmental sustainability goals by establish-
ing an effective framework to combat MP pollu-
tion. Scientific research can shed light on a better 
understanding of environmental impacts and the 
development of more effective strategies to address 
this problem. At the same time, establishing regu-
lations on MPs at national and international levels 
can encourage various sectors and societies to take 
responsibility for this issue. By understanding these 
dynamics, researchers and policymakers can make 
informed decisions to reduce the environmental 
impacts of MPs and heavy metals in aquatic eco-
systems. Future studies can further investigate the 
long-term effects of these interactions and develop 
targeted interventions and strategies to minimize 
ecological consequences.
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