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Abstract  This comprehensive study delves into the 
complex issue of air pollution in Delhi, with a spe-
cific focus on the levels of PM2.5, PM10, NO2, and 
O3 during 2019 and 2020 across all four seasons. By 
analyzing primary data and employing advanced GIS 
techniques, the research not only quantifies pollution 
levels before and during the COVID-19 pandemic 
but also identifies high-risk areas and establishes a 
clear link between pollution and public health. The 
study reveals that 2019 witnessed more severe pollu-
tion levels compared to 2020, with PM2.5 and PM10 
consistently exceeding WHO guidelines. Notably, 
PM10 levels breached Air Quality Index (AQI) stand-
ards, particularly during the winter season when it 
peaked at 67.99  µg/m3 and increased post-monsoon 
due to crop burning. Surprisingly, summer 2019 
exhibited PM2.5 levels surpassing those of winter, 

underscoring the impact of reduced vehicle emis-
sions during the summer months, while winter pollu-
tion levels remained relatively stable. The COVID-19 
lockdowns in 2020 led to a substantial reduction in 
summer AQI by up to 58.00%, emphasizing the role 
of human activities in air quality. However, the study 
also indicates that monsoon AQI varied across differ-
ent areas, with some experiencing higher emissions. 
Winter and post-monsoon AQI fluctuated by up to 
24%, reinforcing the importance of continuous moni-
toring and source control measures. This research 
highlights the crucial role of Geographic Information 
Systems (GIS) in data analysis and informed deci-
sion-making for mitigating air pollution in Delhi. Its 
findings provide valuable insights for policymakers, 
offering guidance on promoting sustainability, public 
health, and a cleaner environment. In summary, the 
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integration of GIS-driven pollution mapping aids in 
understanding and addressing the complex issue of 
air quality, ultimately contributing to a healthier and 
more environmentally friendly Delhi.

Keywords  Lockdowns · Air Quality · GIS · 
COVID-19 · Health · Temporal and Spatial 
Variability · Delhi

1  Introduction

Air pollution stands as a formidable global challenge 
with far-reaching repercussions for health, the envi-
ronment, and economies, as underscored by research-
ers (Kumar et al., 2013; Singh et al., 2020). Notably, 
certain Indian cities, like Delhi, grapple with soaring 
pollutant levels, accentuating the urgency of the issue 
(Kumar et  al.,  2015a, b). Among the diverse pollut-
ants, fine particulate matter and nitrogen dioxide 
(NO2) have emerged with well-defined health impacts 
Cobbold et al. (2022). Emissions into the atmosphere 
translate into human exposure via inhalation, inges-
tion, and skin contact, ultimately accumulating within 
the body (Ahmadipour et  al., 2019). Shockingly, 
World Health Organization (WHO) data reveal that 
air pollution led to 7 million deaths in 2012. WHO 
studies in 124 cities in 2014 exposed elevated levels 
of microscopic air pollutants. Both PM10 and PM2.5, 
fine particulate matter, consistently breached WHO 
air quality standards across these cities. Alarmingly, 
PM2.5 was linked to 4.2 million premature deaths 
globally in 2016 (Ghude et al., 2016; Lelieveld et al., 
2015; Selvadass et  al., 2022; WHO, 2016). Atmos-
pheric inhalable particulate matter amplifies health 
risks (Pagano et  al., 1996; Yin et  al., 2021, 2022). 
Meanwhile, models such as Land Use Regression 
(LUR) have unveiled connections between spatial 
distribution and temporal fluctuations, with LUR 
models explaining up to 60% of PM2.5 variation (Xu 
et al., 2022). Cobbold’s cross-sectional study in 2022 
gauged perceptions of air quality and long-term expo-
sure, revealing an improved perception of air quality 
in 2020 compared to 2019, albeit concerns surged in 
2020. Beyond particulates, pollutants like SOx, NOx, 
CO, Volatile organic compounds, and polycyclic aro-
matic hydrocarbons, collectively referred to as the 
global burden of disease, exact their toll (Blessy et al., 
2023; Clifford et al., 2016; Hansen et al., 2009; Sass 

et  al., 2017). WHO assessments underscore the con-
nection between air pollution and a host of ailments 
including cardiovascular diseases, heart disease, 
stroke, chronic obstructive pulmonary disease, and 
lung cancer. Global trends in industrialization, trans-
portation, and other anthropogenic activities have 
fueled air quality deterioration, disproportionately 
impacting vulnerable communities (Ban et  al., 2023; 
Chen et  al., 2023; Kumar et  al., 2022; Patz et  al., 
2007). With escalating vehicle numbers, metropoli-
tan areas are witnessing escalating air pollution, war-
ranting comprehensive exploration and intervention 
strategies (Zhou et al., 2022; Gautam & Hens, 2022; 
Gautam et al., 2021a, b, c). The dry season, marked by 
anthropogenic emissions, emerges as a critical pollu-
tion period (Zhou et al., 2022; Li et al., 2023).

In light of heightened awareness post-
COVID-19, it’s evident that air quality was a 
neglected concern. However, individuals residing 
in areas with elevated pollution face heightened 
COVID-19 risks, magnifying the urgency of air 
quality improvements. Delhi’s rapid degradation 
reflects the pressing nature of the issue, driven by 
factors like industrialization, domestic combus-
tion, and agricultural burning (Gurjar et al., 2016; 
Tiwari & Colls, 2010; Li et  al., 2020; Gautam, 
2020a, b). Notable pollutants such as PM, NOx, 
CO, SO2, and O3 often surpass National Ambient 
Air Quality Standards (Sharma et  al., 2013). A 
recent study found that the brief COVID-19 lock-
down in India led to notable air quality improve-
ments, with PM10 and NO2 decreasing by 40–45% 
and 27–35%, respectively. However, O3 levels 
increased by 12–25% (Dubey & Rasool, 2023). 
The study of AQI is very important for under-
standing the dynamics, emission and forecast of 
pollutant, Pradhan and Panigrahi (2023) evalu-
ates the effectiveness of four statistical and twelve 
machine learning models for Delhi’s AQI forecast-
ing. Results show that MLP and ARIMA models 
outperform others.

Impressively, geoinformation systems play a piv-
otal role in monitoring temporal variations and spatial 
distribution of air pollutants, forming the foundation 
for informed interventions (Nagpure et al., 2015). In 
this context, this paper aims to unravel the temporal 
nuances of pollutants and underscore their impacts, 
all through the lens of Geographic Information Sys-
tem (GIS) technology.
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2 � Methodology

2.1 � Sampling Sites (Study Area)

Our study centers on Delhi, a bustling metropolis 
inhabited by over 17 million residents. Encompassing 
an area of approximately 42.7 square kilometers (16.5 
square miles) and is situated at an elevation of 216 m 
(Chattopadhay et al., 2014). Delhi’s climate oscillates 
between a scorching hot semi-arid climate (Köppen 
BSh) transitioning into a crisp dry-winter humid sub-
tropical climate (Köppen Cwa). This climatic oscilla-
tion entails significant fluctuations between summer 
and winter, characterized by varying temperatures 
and precipitation patterns. The mercury scales up 
to a scorching 46  °C (115°F) during summer and 
plunges to approximately 0  °C (32°F) in the winter 
months (Hari et  al., 2021). Following the classifica-
tion by the Indian Meteorological Department (IMD), 
New Delhi experiences four distinct seasons: winter 
(January to March), pre-monsoon or summer (April 

to June), monsoon (July to September), and post-
monsoon (October to December). The study area, 
vividly delineated in Fig. 1, falls within this intricate 
seasonal rhythm. For meticulous geo-referencing of 
maps, administrative boundary maps of Delhi were 
employed. Coordinates were scrupulously collected 
from Google Earth, ensuring precise alignment and 
representation within the study framework. More 
details of the topographical and hydrological features 
of Delhi and the surrounding area have been studied 
by Joshi et al. (2021).

2.2 � Data

The analysis hinges on publicly accessible data sourced 
from the official online portal of the Central Pollution 
Control Board (CPCB), specifically the Central Con-
trol Room for air quality management across India 
(https://​app.​cpcbc​cr.​com/). In this pursuit, we system-
atically examined the temporal shifts in the average air 
quality levels during the summer, winter, monsoon, 

Fig. 1   Population density maps of the study area to facilitate GIS-based assessment of air pollution risks in proximity to industrial 
areas and the identification of relevant environmental factors

https://app.cpcbccr.com/
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and post-monsoon seasons of both year 2019 and 2020. 
This investigation involved aggregating daily data from 
11 air quality stations within the city to derive monthly 
average concentrations for each of the mentioned peri-
ods. The process is exemplified in Fig. 1 for clarity.

2.3 � Methodology for Spatial Interpolation

This study employed both spatial and non-spatial data 
sources, including satellite imagery from platforms 
such as Google Earth and Google Maps, alongside 
the open-source GIS software QGIS. The integration 
of survey data with GIS layers was a crucial step in 
the analytical process, which further involved utiliz-
ing geoprocessing tools and conducting geostatistical 
analyses. Particularly, the Inverse Distance Weighted 
(IDW) tools played a pivotal role, as illustrated in 
Fig. 2, facilitating the interpolation of spatial data for 
accurate representation and analysis.

2.3.1 � Inverse Distance Weighted (IDW)

The process of IDW interpolation involves deter-
mining cell values by blending a set of sample 
points using linear weighting. The weighting factor 
is inversely proportional to the distance, essentially 
reflecting the surface being interpolated from a vari-
able dependent on location. In this study, we incor-
porate conditional factors, including distance and 
population density. The IDW tool, as implemented 
in ArcGIS, adheres to the principle that proxim-
ity plays a significant role, with closer points exert-
ing a more substantial influence on the interpolated 
value compared to distant ones. This technique cal-
culates weighted averages based on the reciprocal of 
the distance between the sample points and the loca-
tion under consideration. IDW proves particularly 
valuable in scenarios involving point data, as often 

Fig. 2   Geo-referencing of monitoring stations, distances, and zone boundaries of monitoring stations over Delhi
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encountered in measurements collected from air qual-
ity monitoring stations (Fig. 3).

IDW remains widely acknowledged as one of 
the most prevalent and suitable interpolation tech-
niques for deciphering the spatial distribution 
of pollutants (Peng & Zou, 2012). This method 
facilitates the prediction of values at unmeas-
ured locations by referencing the values of the 
surrounding predicted location (Childs, 2004). It 
operates on two fundamental premises: firstly, the 
impact of an unknown value at a particular point 
increases in proportion to the proximity of control 
points, with closer points wielding greater influ-
ence than distant ones. Secondly, the extent of 
influence is inversely proportional to the distance 
between points. Leveraging interpolated maps, 
we embarked on the depiction of spatial patterns 
for all pollutants, incorporating the IDW meth-
odology. This approach serves as a cornerstone 
for unveiling the intricate spatial distribution of 

pollutants and contributes significantly to the 
overall methodology. The representation of the 
air quality GIS map in different color patterns is 
shown as per its air quality index according to 
Table 1, given below.

3 � Results and Discussion

Utilizing the IDW tool, interpolated maps were 
generated by amalgamating PM10, PM2.5, NO2, O3, 
and Meteorological data from the years 2019 and 
2020. These maps elucidated the spatial distribu-
tion and concentrations of pollutants across the 
study area, offering a visual depiction of regions 
with varying degrees of pollution levels. This visu-
alization effectively pinpointed potential hotspots 
and areas warranting heightened attention. The 
impact stemming from these interpolated maps was 
multifaceted. Primarily, they served as invaluable 

Fig. 3   Illustration of 
Inverse Distance Weighted 
(IDW) interpolation process

Table 1   Classification of Air Quality Index (AQI) (Akolkar. (2016)

Color coding AQI range index O3 avg (8 h) CO (8 h avg) NO2
 (ppm)

PM10 (µg/m3 PM2.5 (µg/mg

Good 0–100 0–50 0–1.7 0–42 0–100 0–60
Moderate 101–200 51–98 1.8–10.3 43–94 101–150 61–90
Poor 201–300 99–118 10.4–14.7 95–295 151–350 91–210
Very poor 301–400 119–392 14.8–30.2 296–667 351–420 211–252
Hazardous 401-Above 393-Above 30.3-Above 668-Above 421- Above

253-Above
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resources for environmental agencies, policymak-
ers, and researchers, facilitating the identification 
of zones characterized by heightened pollutant 
levels. This, in turn, assisted in prioritizing pol-
lution control measures and strategic interven-
tions tailored to the specific areas in need. The 
insights derived from these maps were instrumen-
tal in devising targeted strategies aimed at curbing 
emissions of PM10, PM2.5, NOx, and O3, thereby 
mitigating their adverse health and environmental 
consequences. Secondarily, the interpolated maps 
played a pivotal role in augmenting public aware-
ness about the pollution issue. The visual repre-
sentations presented in these maps were compre-
hensible and impactful, making the problem more 
accessible to the general populace. By providing a 
tangible and easy-to-grasp illustration of the pollu-
tion scenario, the maps played a crucial role in fos-
tering informed discussions and public discourse 
on pollution-related matters.

3.1 � Interpretation of Interpolated Maps of PM10 in 
2019 and its Impact

The comprehensive examination carried out on PM10 
levels across 11 designated study stations unveiled a 
series of significant insights (Refer to Fig. 4). Nota-
bly, PM10 exhibited a more pronounced influence 
during the winter season compared to other periods. 
The annual average of PM10 concentrations exceeded 
the prescribed standard at all 11 study stations, which 
encompassed Mundka, Wazirpur, Dwarka Sector-8, 
Narela, Bawana, Rohini, Netaji Subhas Institute of 
Technology (NSIT) Dwarka, Mandir Marg, R K 
Puram, Vivek Vihar, and East Delhi-Anand Vihar. 
Specifically, the air quality at Mundka, Wazirpur, 
Anand Vihar, and Dwarka Sector-8 was deemed very 
poor, indicative of a pressing concern. This study 
identified biomass burning as a pivotal factor influ-
encing air pollution during the spring and winter sea-
sons, while coal combustion emerged as a dominant 

Fig. 4   Spatial variation of PM10 over Delhi during the year 2019



Water Air Soil Pollut (2023) 234:756	

1 3

Page 7 of 21  756

Vol.: (0123456789)

contributor during the winter months. The concentra-
tion of PM10 showcased seasonal fluctuations, span-
ning from 39–351  µg/m3 during winter, 35–322  µg/
m3 in summer, 24–218  µg/m3 in the monsoon, and 
42–383  µg/m3 in the post-monsoon period. Notably, 
the most alarming pollution levels were recorded dur-
ing winter and post-monsoon seasons, aggravated 
by the burning of crop stubble in Punjab and Hary-
ana. Significantly, Anand Vihar, Mundka, Wazirpur, 
and Dwarka Sector-8 emerged as stations harboring 
the most hazardous pollution category, surpassing 
hazardous levels by reaching up to 383 µg/m3 in the 
post-monsoon season. Collectively, this study casts 
a spotlight on the severity of PM10 pollution levels, 
particularly during the winter and post-monsoon sea-
sons. The crucial roles of biomass burning and coal 
combustion as substantial contributors underscore 
the urgency of implementing stringent pollution con-
trol measures, particularly within the regions grap-
pling with the highest pollution levels. This proactive 

approach is paramount in safeguarding public health 
and enhancing the overall air quality scenario.

3.2 � Interpretation of Interpolated Maps of PM10 in 
2020 and its Impact

In the year 2020, an in-depth examination was con-
ducted to assess the dispersion of PM10 (particu-
late matter with a diameter of 10 µm or less) (Refer 
to Fig.  5). The findings underscored elevated PM10 
concentrations during the post-monsoon and win-
ter seasons. Particularly noteworthy were the hot-
spots of Bawana, Rohini, and Mundka during the 
summer, whereas Dwarka Sector 8 emerged as a 
hotspot during the winter period. The study further 
unveiled the range of seasonal minimum and maxi-
mum average PM10 values. In the winter season, 
the range was 35–322  µg/m3, in summer it spanned 
from 18–165 µg/m3, in monsoon it hovered between 
20–128 µg/m3, and post-monsoon levels escalated to 

Fig. 5   Spatial variation of PM10 over Delhi during the year 2020
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as high as 400 µg/m3. Concentrations surpassing the 
normal range underscore an escalated risk of health 
conditions, including lung cancer and cardiovascu-
lar mortality. Additionally, PM10 exacerbates asthma 
and triggers respiratory ailments due to its capacity 
to lodge within the upper respiratory tract and even 
reach the lung alveoli. The composition of PM10 
is diverse, as it can assimilate and transmit various 
pollutants. While pinpointing a singular component 
as the primary catalyst for PM effects remains chal-
lenging, factors such as particle size, surface area, 
quantity, and composition collectively contribute to 
determining their health implications. In essence, this 
comprehensive study casts a spotlight on the discon-
certing distribution patterns and concentration levels 
of PM10 in 2020. The findings accentuate the poten-
tial health hazards linked with exposure to heightened 
levels of particulate matter, reinforcing the criticality 
of addressing this issue for public well-being.

3.3 � Interpretation and Interpolation Map of PM2.5 in 
2019 and its Effect

The interpolation maps focusing on PM2.5 pollu-
tion during the summer of 2019 unveiled heightened 
PM2.5 levels in comparison to the winter months, 
illustrated in Fig.  6. Notably, the most pronounced 
zones of concern in terms of PM2.5 pollution were 
identified in southwest Delhi and west Delhi. These 
regions showcased elevated PM2.5 concentrations, 
signifying an impending threat to both human health 
and the environment. This discovery strongly under-
scores the urgency of deploying focused pollution 
control strategies and timely interventions within 
these areas. Such measures are essential to counteract 
the detrimental effects of PM2.5 pollution during the 
summer season, safeguarding the well-being of both 
the populace and the ecological balance.

Fig. 6   Spatial variation of PM2.5 over Delhi during the year 2019
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3.4 � Interpretation and Interpolation Analysis of 
PM2.5 in 2020 and Its Implications

A comparative analysis of PM2.5 concentrations 
between the summer and winter seasons illuminated 
stark distinctions (Refer to Fig. 7). During the sum-
mer, PM2.5 levels spanned a range of 22 to 73  µg/
m3, whereas, in winter, this range escalated to a 
higher bracket of 113 to 178 µg/m3. This variation 
can be primarily attributed to the volume of on-road 
vehicles in operation. The discrepancy in pollution 
levels during these seasons can be linked to reduced 
vehicle emissions during the summer, resulting in 
improved air quality. Conversely, heightened pollu-
tion during winter months can likely be attributed 
to increased vehicle usage or other contributing 
factors.

These findings significantly underscore the sig-
nificant impact of vehicular emissions on PM2.5 

pollution. They underscore the urgency of adopt-
ing targeted strategies to regulate and diminish vehi-
cle-related pollution, particularly during the winter 
season, when the pollution levels tend to be more 
pronounced.

3.5 � Interpolation of NO2 and Its Implications in 2019

The comprehensive study carried out in Delhi dis-
cerned that NO2 concentration played a pivotal role 
in driving air quality deterioration. Through spatial 
analysis, it was unveiled that North and East Delhi 
experienced the most alarming levels of NO2 pollu-
tion, solidifying their status as the most significantly 
impacted areas in terms of this pollutant. These find-
ings underscore the urgency of deploying focused 
strategies to curtail NO2 emissions and counter-
act their detrimental impact on air quality across 
these regions. A concentrated approach to monitor 

Fig. 7   Spatial variation of PM2.5 over Delhi during the year 2020
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and control sources contributing to NO2 pollution 
assumes paramount importance in enhancing the 
overall air quality scenario in Delhi. (Refer to Fig. 8 
for visual representation).

3.6 � Interpolation of NO2 and Its Implications in 2020

The investigation identified NO2 concentration as the 
primary pollutant responsible for the degradation of 
air quality in Delhi. The spatial distribution highlights 
North and East Delhi as the most heavily affected 
zones in terms of NO2 pollution during the year 2020. 
(Refer to Fig. 9 for visual representation).

3.7 � Interpolation of Ozone (O3) in 2019 and Its 
Implications

The spatial analysis uncovered Bawana, Rohini, and 
Narela as primary hotspots bearing the brunt of ozone 

pollution during the period from 2019. The con-
centration of ozone in these areas implies potential 
health risks, particularly for individuals with height-
ened sensitivity to air pollutants. (Refer to Fig. 10 for 
visualization).

3.8 � Interpolation of Ozone (O3) in 2020 and Its 
Implications

The investigation unveiled the most severe pol-
lution levels during the summer season, followed 
by the post-monsoon and winter periods. Notably, 
locations including Anand Vihar, Bawana, Nar-
ela, Mundka, Dwarka Sector-8, and Vivek Vihar 
emerged as hotspots, displaying deteriorating air 
quality trends with ozone concentration. This find-
ing underscores a direct correlation between ozone 
levels and pollutants such as PM10, PM2.5, and 
NO2 (Fig. 11).

Fig. 8   Spatial variation of NO2 distribution over Delhi during the year 2019
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3.9 � Interpolation Maps for Meteorological 
Parameters (AT, WS, WH, SR, BP, RH) in 2020 
and Their Influence on Ongoing Pollution Trends

In the year 2020, interpolation maps were gener-
ated to visualize a spectrum of crucial meteorologi-
cal parameters, encompassing ambient temperature 
(AT), wind speed (WS), wind direction (WH), solar 
radiation (SR), barometric pressure (BP), and rela-
tive humidity (RH). This comprehensive analysis pin-
pointed the significant contribution of these meteoro-
logical factors to the precarious air quality conditions 
prevalent in East, West, and North Delhi regions. 
Among these, PM10, PM2.5, and NOx concentrations 
emerged as the pivotal pollutants driving the deteri-
oration of the overall ambient air quality in the city. 
Furthermore, the study discerned that meteorologi-
cal parameters including AT, WH, BP, and RH play 
a discernible role in influencing the city’s air quality 

degradation. This intricate interplay between mete-
orological conditions and air pollution underscores 
the complexity of the situation in Delhi. A profound 
grasp of these interrelationships is pivotal in devis-
ing efficacious air quality management strategies. 
This study accentuates the critical need to holistically 
consider both pollutant emissions and meteorological 
dynamics, thereby holistically addressing the mul-
tifaceted challenge of enhancing air quality within 
Delhi. (Refer to Fig. 12 for visual representation).

3.10 � Seasonal Fluctuations of Analyzed Pollutants in 
2019 and 2020

This study extensively scrutinized the monthly fluc-
tuations of diverse pollutants across eleven stations 
in Delhi, utilizing data sourced from the Central 
Pollution Control Board (CPCB) spanning from 
January 2019 to December 2020. During the winter 

Fig. 9   Spatial variation of NO2 over Delhi year during 2020
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season, PM10 concentrations in Delhi ranged from 
18.86 µg/m3 to 67.99 µg/m3, with the highest levels 
at Mundka (341.06 µg/m3) and Wazipur (286.92 µg/
m3) and the lowest at Mandir Marg (222.30  µg/
m3). After the lockdown, a substantial reduction 
occurred, ranging from 94.64  µg/m3 to 153  µg/
m3, attributed to decreased transport and industrial 
activities. Anand Vihar experienced the most signif-
icant change at 153.80 µg/m3, compared to 94.64 µg/
m3 in Rohini. During the monsoon season, PM10 
levels ranged from 33.45  µg/m3 to 112.13  µg/m3, 
with Dwarka Sector-8 showing pronounced changes 
due to settling particles (Fig. 13). In the post-mon-
soon season, minor PM10 increases were noted in 
Narela and Dwarka Sector-8, possibly due to relaxed 
COVID-19 policies. This underscores the effective-
ness of lockdown measures in reducing PM10 con-
centrations, especially in highly polluted areas like 
Anand Vihar, emphasizing the need for ongoing 

monitoring and sustainable practices (Gautam et al., 
2021a).

The study observed a slight reduction in PM2.5 
during winter 2020, but lockdown and summer 
monsoon had a more significant impact in reducing 
PM2.5 during summer and monsoon seasons. Over 
Dwarka Sector-8 and Narela, PM2.5 levels decreased 
by 30.32 µg/m3 to 68.06 µg/m3 compared to the pre-
vious year (Fig. 14). However, relaxation of COVID-
19 policies and increased industrial activities led to 
PM2.5 levels exceeding limits in R K Puram, Vivek 
Vihar, Bawana, and Mundka (Pal et  al., 2022). The 
outcomes divulged distinctive trajectories in pollutant 
concentrations over discrete temporal segments (Gau-
tam et  al., 2021a, b, c; Kumari & Toshniwal, 2020; 
Mahato et al., 2020; Srivastava et al., 2020). Notably, 
the period from March to September 2020 witnessed 
pronounced escalations in pollutants like PM10 and 
PM2.5 (Kerimray et al., 2020; Sethi & Mittal, 2020), 

Fig. 10   Spatial Interpolation Map Illustrating Ozone (O3) Distribution in the Year 2019
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followed by relatively minor variations thereafter. 
The intervening lockdown exerted a favorable influ-
ence, contributing to diminished concentrations of 
PM10 and PM2.5 in locales such as Wazirpur.

In the winter season, the study reveals a nota-
ble reduction in NO2 concentrations in 2019, nearly 
halving in some areas. However, in 2020, locations 
like Dwarka Sec-8 and NSIT Dwarka showed higher 
NO2 levels compared to 2019. During this period, 
NO2 levels ranged from 23.09 µg/m3 to 92.19 µg/m3 
in 2019, while in 2020, they varied from 20.12  µg/
m3 to 122.5  µg/m3. A similar reduction trend was 
observed during the summer season in 2020, with 
only a 75.59 µg/m3 increase compared to 2019. In the 
monsoon season, a reduction in NO2 was reported, 
except in areas like Vivek Vihar, Rohini, and Narela, 
which had higher levels in 2020. Post-monsoon, NO2 
levels were relatively higher in 2020 compared to 
2019. Specifically, Anand Vihar, Bawana, and NSIT 

Dwarka had slight reductions in NO2 concentrations 
in comparison to the previous year (Fig. 15).

Regarding O3 levels, there was a reduction in cer-
tain locations like Wazirpur, Vivek Vihar, and Roh-
ini, indicating positive impacts from air pollution 
control efforts. However, O3 remained dominant in 
other areas during winter, with levels ranging from 
0.53  µg/m3 to 35.05  µg/m3. During the summer 
monsoon season, there was a significant reduction 
in O3 levels (7.32  µg/m3 to 67.62  µg/m3), possibly 
due to increased rainfall and favorable meteorologi-
cal conditions for pollutant dispersion (Fig. 16).

Interestingly, O3 levels during the monsoon 
season showed low variation, suggesting a rela-
tively stable impact of human activities on air 
quality at this time. In the post-monsoon season 
of 2020, O3 levels dominated compared to the 
same period in 2019. Several factors, including 
changes in weather patterns, human activities, or 

Fig. 11   Spatial Interpolation map depicting ozone (O3) distribution in the year 2020
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environmental influences, could contribute to this 
shift. This underscores the importance of ongoing 
monitoring and analysis of air quality data to com-
prehensively understand the complex interplay of 
factors affecting air quality and its implications for 
environmental and public health.

Simultaneously, O3 concentrations underwent 
a considerable downturn in 2020, while NO2 lev-
els demonstrated subtle fluctuations amidst the 
lockdown. Stations like Vivek Vihar, Rohini, R.K. 
Puram, and Mundka manifested analogous pollut-
ant patterns encompassing PM10, PM2.5, and NO2. 
In contrast, O3 prominently manifested in Mundka 
relative to 2019. Stations including Bhawana, 
Mandir Marg, NSIT, Narela, and Dwarka ech-
oed comparable trends post-lockdown, revealing 
augmented PM10 and PM2.5 concentrations likely 
linked to biomass burning activities (Gadhavi & 
Jayaraman, 2010; Prabhu et al., 2020; Shaik et al., 
2019).

Elevated pollutant concentrations during Janu-
ary and February could be attributed to the shal-
low boundary layer effect, causing pollutant accu-
mulation near the Earth’s surface (Badarinath 
et  al., 2009; Budakoti & Singh, 2021; Nair et  al., 
2007). These findings underscore the intricate 
dynamics of pollutant variations across diverse 
localities within Delhi, underscoring the impera-
tive of comprehending localized influences and 
activities contributing to air pollution. Implement-
ing tailored strategies for controlling and mitigat-
ing pollution sources, especially during heightened 
pollution episodes, emerges as critical for enhanc-
ing regional air quality.

Analysis of seasonal pollutant trends in Delhi 
revealed declining PM2.5 and PM10 levels in win-
ter, summer, and monsoon, with notable variation 
in the 2020 post-monsoon period. NO2 followed 
a similar pattern but increased post-monsoon in 
2020. Ozone formation benefited from reduced 
emissions in summer. Targeted air quality strate-
gies and ongoing monitoring are vital for Delhi’s 
air quality and public health.

3.11 � Evaluation of Air Quality Index (AQI) Impact 
on Public Health

The evaluation of combined pollutant effects and 
the resulting AQI shifts in Delhi between 2019 
and 2020 yielded invaluable insights. The study 
unveiled noteworthy AQI alterations in specific 
locations during this period. A standout was NSIT, 
exhibiting a substantial 44.1% AQI increase. Simi-
larly, Wazirpur, Narela, and Mandir Marg saw sig-
nificant AQI shifts, with rises of 34.2%, 36.1%, 
and 19.2%, respectively. On the other hand, sta-
tions like Anand Vihar, Rohini, Mundka, and 
Dwarka Sector 8 displayed relatively modest AQI 
changes below 15%. However, it’s pertinent to 
observe that certain spots such as Vivek Vihar and 
Bawana depicted elevated pollutant mass concen-
trations, attributing to higher AQI values than in 
2019. This could potentially be linked to COVID-
19 pandemic-induced manufacturing of essential 
goods like Personal Protective Equipment (PPE) 
kits, medicines, and masks.

These findings underscore the intricate interplay 
between pollutant levels, AQI shifts, and factors 
including industrial activities and local conditions. 
The study accentuates the necessity of continual air 
quality monitoring and assessment, along with the 
implementation of robust pollution control meas-
ures, particularly in locales experiencing notable AQI 
fluctuations.

Addressing pollution sources and activities con-
tributing to heightened pollutant concentrations 
emerges as a pivotal strategy for enhancing air quality 
and protecting public health in Delhi. (See Fig. 17a-b 
for visual representation).

3.12 � Correlation Analysis

To analyze the relationship between different param-
eters used in the study, we calculated the correlation 
matrix using r software (Hmisc Package). The cor-
relation matrix provided us with seasonal correlation 
as well as an overall correlation in different colors 
(Black: Annual correlation, Red: Monsoon, Olive 
Green: Post-monsoon, Sky blue: Summer, and Pur-
ple: Winter).

We found that PM10 showed a significant corre-
lation with NO2 (r = -0.72), PM2.5 (r = 0.90), solar 
radiation (r = -0.32), and temperature (r = -0.51). 

Fig. 12   Monthly Temporal Variations of Solar Radiation 
(SR), Barometric Pressure (BP), Ambient Temperature (AT), 
Relative Humidity (RH), and their corresponding impacts 
across all study stations

◂
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On the other hand, NO2 had a significant correla-
tion with O3 (r = -0.44-winter), PM2.5 (-0.63-post 
monsoon), and wind speed (r = -0.28). The O3 
parameter showed a significant correlation with 

solar radiation (0.26) in summers and was nega-
tively correlated with relative humidity.

Additionally, PM2.5 was found to be negatively 
correlated with temperature (r = -0.52), wind speed 

Fig. 13   Monthly variations of PM2.5 across all stations in Delhi during 2019 and 2020

Fig. 14   Monthly variations of PM10 across all monitoring stations in Delhi during 2019 and 2020
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(r = -0.71 & -0.72-winter & post-monsoon), and 
solar radiation (r = -0.49). Furthermore, the high 
correlation between PM2.5 and PM10 indicated 
that their sources were common. These findings 

provide insights into the interdependence of vari-
ous parameters affecting air quality and can help in 
devising effective strategies for mitigating air pol-
lution (See Fig. 17a–b for visual representation).

Fig. 15   Monthly Variations of NO2 Pollutant over the monitoring stations in Delhi During 2019 and 2020

Fig. 16   Monthly Fluctuations of Ozone (O3) Pollutant over 11 selected monitoring stations in Delhi during 2019 and 2020
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Fig. 17   a –b AQI and correlation matrix over Delhi in 2019 and 2020
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4 � Conclusion

This study underscores the pivotal role of Geo-
graphic Information Systems (GIS) in pollution 
mapping, encompassing data collection, analy-
sis, visualization, and decision-making. GIS offers 
multifaceted advantages across diverse domains. 
Concerning Delhi’s air quality, PM10 levels fre-
quently exceeded AQI standards, reaching a peak of 
67.99 µg/m3 during winter. The situation worsened 
in winter and post-monsoon due to nearby crop 
burning. Surprisingly, summer 2019 witnessed even 
higher PM2.5 pollution levels than in winter, with 
southwest Delhi recording values as high as 73 µg/
m3, and west Delhi peaking at 178 µg/m3. Reduced 
on-road vehicles were key in lowering summer pol-
lution, while winter pollution remained largely 
unaffected. The AQI trend typically decreased from 
winter to monsoon but abruptly increased post-
monsoon. In 2020, the lockdown led to a significant 
decrease in summer AQI, with reductions as high as 
58.00% in NIST Dwarka, 52.49% in Anand Vihar, 
and 50.27% in Mundka. Monsoon AQI percentages 
ranged from 6.98% in NSIT Dwarka to 48.85% in 
Mandir Marg. However, Vivek Vihar (50.31%) and 
Narela (31.12%) showed higher emissions com-
pared to 2019, attributed to PPE kit production and 
transportation activities.

Winter and post-monsoon periods exhibited up to a 
24% change in AQI, emphasizing the need for continu-
ous monitoring and action to address pollution sources 
and enhance air quality in Delhi. Policymakers can lev-
erage these findings to promote sustainable practices 
for public health and the environment. In essence, GIS-
powered pollution mapping is crucial for a comprehen-
sive understanding, strategic action, and collaborative 
efforts toward a cleaner and healthier environment. 
This study’s insights into Delhi’s air quality reinforce 
the urgency of addressing pollution sources and taking 
informed actions to enhance air quality and promote 
community and environmental well-being.
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