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Abstract Enrofloxacin (ENR) is a commonly used 
drug in aquaculture, and it is frequently detected 
in the aquatic environment. Data on ENR toxic-
ity toward aquatic species are limited. This study 
was aimed at using different biomarkers to evaluate 
the possible toxic effects of grass carp (Ctenophar-
yngodon idella) exposed to 0 (control), 1, 100, and 
10,000 μg/L enrofloxacin for 21 days as a sub-chronic 
exposure trial, oxidative stress biomarkers (includ-
ing superoxide dismutase (SOD), catalase (CAT), 
reduced glutathione (GSH), and malondialdehyde 
(MDA)), neurotoxicity indicators (including acetyl-
cholinesterase (ACHE) activity, nitric oxide (NO)), 
and digestive enzyme activities (including lipase 
(LPS), amylase (AMS) enzymes). In addition, an 
integrated biomarker response (IBR) index was uti-
lized to evaluate the integrated toxic effects of ENR 
on grass carp. Our results demonstrated that ENR 
exposure significantly increased activities of CAT, 
LPS, and AMS. ENR exposure also significantly 

upregulated the expression levels of sod1, ACHE, 
LPL, ATGL, and AMY genes. Furthermore, histo-
pathological changes were observed in the hepato-
pancreatic tissues of grass carp exposed to ENR. It 
was observed that higher IBR scores were noticed 
in the tissues of fish exposed to ENR, suggesting an 
induced biological response. The comprehensive bio-
marker index showed that CAT and ACHE activities 
have a higher response to ENR, and 100 μg/L has a 
greater impact on grass carp. These results indicate 
that ENR has a toxic effect on grass carp and impairs 
their physiological functions. This is the first study to 
explore the effects of ENR on grass carp, and it pro-
vides basic information for assessment of ENR effects 
in aquaculture.

Keywords Grass carp · Enrofloxacin · Physiological 
stress · Integrated biomarker response

1 Introduction

Population growth, over-reliance on fossil fuels, and 
climate change could threaten global food security 
in the future (Fry et  al., 2016; Yogev et  al., 2020). 
Aquatic food has made a significant contribution to 
alleviating this pressure. In order to safeguard aqua-
culture production, antibiotics are inevitably used to 
prevent and treat diseases that occur in aquaculture 
(Chen et  al., 2020; Zhou et  al., 2021). Antibiotics 
have been the focus of many ecotoxicological studies 
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due to their persistence in the environment and high 
ability to produce physiological effects (Perussolo 
et  al., 2019; Rodrigues et  al., 2019). For example, 
antibiotics can inhibit fish survival, development, and 
hatching rates by primarily disrupting the intracellu-
lar redox balance and inducing oxidative stress (Yang 
et al., 2020).

ENR, a fluoroquinolone, exerts its antibacterial 
effect by inhibiting DNA gyrase (a type II topoi-
somerase) (Sehonova et  al., 2019). It is widely used 
in the prevention and treatment of biological diseases 
in aquaculture (Li et  al., 2017, 2018; Zhang et  al., 
2019). ENR is released into the water environment 
because it is not fully metabolized by the body (Ren 
et  al., 2021). Considering that ENR can be rapidly 
adsorbed by soil particles and 90% dissipation time 
of ENR in soil and marine sediments is greater than 
150  days, it will slowly desorb from soil particles 
(Dalla Bona et al., 2015; Wei et al., 2012). The con-
tinued release of ENR may pose a potential risk to 
aquatic life. At present, ENR has been found in vari-
ous concentrations in aquatic environments around 
the world (Huang et al., 2020a; Andrieu et al., 2015; 
He et al., 2019; Tang et al., 2015; Teglia et al., 2019; 
Han et al., 2020). For example, the maximum concen-
tration of ENR detected was 5.68  μg/L in 24 water 
samples from two rivers in North China (Cheng et al., 
2019). The concentration of ENR in seawater around 
Xiamen Island was 24 ng/L (Chen et al., 2021). Pre-
vious studies have detected ENR in fish muscles. For 
example, the residual levels of ENR in the muscles of 
six fish species from the Karakaya Dam Reservoir in 
Turkey ranged from 0.0034 to 0.0073 mg/kg (Varol & 
Sunbul, 2019).

Adverse reactions of ENR released into the water 
environment to nontargeted organisms have been 
reported. For example, in juvenile giant freshwater 
prawn Macrobrachium rosenbergii, ENR inhibited 
the growth of shrimp, caused damage to the gill and 
hepatopancreas tissue, and also showed to induce 
oxidative stress (Zhang et al., 2019). A previous stud-
ies by Du et al. (2022). showed that ENR affects gly-
colysis/gluconeogenesis and the pentose phosphate 
pathway, which indirectly affects nutrient absorption 
and meat quality, in the gut of American shad. Qiu 
et  al. showed that ENR can produce immune sup-
pression on fish and confirmed for the first time that 
the immune suppression by ENR is closely mediated 
through alterations of the intestinal microbiome in 

fish (Qiu et  al., 2022). However, there are few stud-
ies on toxic effects of ENR on aquatic organisms, and 
there is a lack of comprehensive analysis of indica-
tors. Integrated biomarker response (IBR) is a com-
prehensive analysis method, which compares the spe-
cific adverse effects of harmful substances by simple 
calculation, screens sensitive biomarkers, and further 
accurately and effectively evaluates the ecological 
risk of the environment (Liao et  al., 2021; Samanta 
et al., 2018). Samanta et al. integrated oxidative stress 
and histopathological changes in fish gills, liver, and 
kidneys through IBR to study the adverse effects of 
domestic, industrial, and hot spring on fish inhabit-
ing polluted streams (Samanta et  al., 2018). Super-
oxide dismutase, catalase, reduced glutathione, and 
malondialdehyde are sensitive markers to assess the 
antioxidant response and lipid peroxidation caused by 
chemicals in the external environment (Huang et al., 
2020b). For example, a study has found that greater 
antioxidant was with the higher IBR index of limpets 
in polluted environment (Silva et  al., 2018). Acetyl-
cholinesterase and nitric oxide are sensitive biomark-
ers of neurotoxicity when organisms are challenged 
by toxicants and adverse environmental conditions 
(Shi et al., 2018; Iheanacho & Odo, 2020; Mukherjee 
et al., 2019). The activity of analyze lipase and amyl-
ase can be used as biomarkers to assess the health sta-
tus of an organism (Li & Li, 2020). To date, few stud-
ies have employed IBR to quantify the effects of ENR 
on aquatic organisms. In this study, grass carp were 
exposed to different concentrations of ENR (1, 100, 
10,000 μg/L) for 21 days to explore the comprehen-
sive impact of ENR on grass carp. This will enrich 
our understanding of the ecological risks of ENR in 
aquaculture.

2  Material and Methods

2.1  Chemicals

Enrofloxacin (ENR) was purchased from Hefei Bomei 
Biotechnology Co. Ltd (Anhui, China) and the purity 
was above 98%.

2.2  Animal Experiment

Grass carps (weight 91.975 ± 13.17  g, length: 
21.01 ± 0.87  cm) were obtained from Rushan fish 
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breeding base (Shandong, China). After 14 days of 
adaptation, they were randomly distributed into four 
treatments (15/group in three plastic tanks (20 L), 
n = 5 per tank). The concentrations used included 1, 
100, and 10,000 μg/L. Exposure doses of ENR were 
selected based on ambient concentrations and those 
used in production (Zhang et al., 2019; Zheng et al., 
2020; Li et  al., 2020b; Liang et  al., 2014; Phillips 
et al., 2016). The water temperature was controlled 
at 23 °C. The photoperiod was kept at 14:10-h light/
dark cycle. The fish were fed with commercial fish 
food (Xinda, Tianjin, China) twice a day. The water 
(half of the volume) of each experimental tank was 
replaced every 48  h to maintain the appropriate 
concentration and water quality. All solution sam-
ples were analyzed by HPLC equipped with a fluo-
rescence detector, which was based on the method 
(Sun et al., 2014). According to the analyzed results, 
the measured concentration of ENR (0.92 ± 0.05, 
95.14 ± 11.42, and 9012.97 ± 159.32  μg /L, cor-
responding to the 1, 100, and 10,000  μg /L) was 
within 20% of the nominal concentration, which 
meets the OECD guidelines (the OECD guideline 
for testing of chemicals No. 204, “Fish, Prolonged 
Toxicity Test”).

All procedures and animal handling comply with 
the guidelines approved by the Local Animal Ethics 
Committee. No fish mortality occurred during the 
toxicity tests.

After 21 days, grass carps were euthanized with 
MS-222 (0.03%, Sigma-Aldrich Corp.). The weight 
and length of the fish were measured. Calculate the 
condition factor (CF, whole fish weight (g)/whole 
fish length (cm)3 × 100). The brain, hepatopancreas, 
and intestines were frozen in liquid nitrogen and 
stored at −80 °C.

2.3  Biochemical Biomarkers

Oxidative stress indexes (SOD, CAT, GSH, and 
MDA) in the hepatopancreas, neurotoxicity indexes 
(ACHE and NO) in the brain, and digestive enzymes 
(LPS and AMS) in the intestine were analyzed using 
commercial kits (Nanjing Jiancheng Bioengineering 
Institute, China) according to manufacturer’s proto-
col. References of all biomarker kits are in the sup-
porting information (Table S1).

2.4  Histopathological Biomarker

Fragments of hepatopancreas were immobilized in 
4% paraformaldehyde. They were then dehydrated 
in alcohol (70%, 80%, 90%, and 100%), transparen-
tized in xylene, and incorporated into Paraplast. They 
were cut into 5 μm slices and stained with hematoxy-
lin–eosin (HE). For the nuclear area, each sample 
captured 3 images under a × 1000 microscope. In each 
image, the area of 12 nuclei was measured and ana-
lyzed using ImageJ.

2.5  Quantitative Real-Rime Polymerase Chain 
Reaction (qPCR)

The RNA was extracted according to the manufac-
turer protocol from the brain, hepatopancreas, and 
intestines (n = 3) using Trizol (Accurate Biotechnol-
ogy Co., Ltd., Hunan, China). Then, use Evo M-MLV 
RT Kit and gDNA Clean for qPCR II Kit (Accurate 
Biotechnology Co., Ltd., Hunan, China) for reverse 
transcription. Use the Roche 96 Light Cycler RT-PCR 
system (Roche Applied Science, Indianapolis, IN, 
USA) to perform qRT-PCR on the target gene. The 
reaction system included 5 μL SYBR® Green Premix 
Pro Taq HS, 0.2 μL PCR forward primer (10 μmol/L), 
0.2 μL PCR reverse primer (10 μmol/L), 2 μL cDNA 
template, and 2.6-μL DEPC-treated water. The ampli-
fication procedure used a two-step method: pre-dena-
turation at 95  °C for 60  s, followed by 45 cycles of 
95 °C for 10 s and 60 °C for 30 s. β-Actin was cited 
in Wang et  al.’s previous work  (Wang et  al., 2015) 
(F: GGC TGT GCT GTC CCT GTA , R: GGG CAT AAC 
CCT CGT AGA T. GenBank access: M25013). Sod1 
was cited in Wang et al.’s previous work (Wang et al., 
2019). NCBI primer blast program (https:// www. 
ncbi. nlm. nih. gov/) is used to determine the biochemi-
cal biomarker-related pathway primer sequences of 
other genes. The primers used for qRT-PCR analy-
sis are listed in Table 1. Functional gene primers are 
synthesized by Tsingke Biotechnology Co., Ltd. Use 
the  2−ΔΔCt formula to calculate the gene fold change 
(Livak and Schmittgen, 2001). And the primer ampli-
fication efficiency of the selected genes in the study 
has been shown in Table S2.
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2.6  Integrated Multi-level Biomarker Response

This study used SOD, CAT, GSH, MDA, ACHE, NO, 
LPS, and AMS activity to calculate the biomarker reac-
tion version 2 comprehensive index (IBRv2) (Sanchez 
et al., 2013; Beliaeff & Burgeot, 2002) results. IBRv2 
was calculated following the methods described by 
Beliaeff and Burgeot (2002) with modifications from 
Sanchez et al. (2013). Details of IBRv2 can be found in 
the support information (text S1).

2.7  Statistical Analysis

Mean ± standard error of the mean (SEM) was used to 
calculate all data. Three biological replicates were set 
for each treatment. Statistical analyses use SPSS statis-
tics 19 (SPSS Inc., Chicago, Ltd., USA). The data were 
determined for normality and homogeneity of variances 
using the Shapiro–Wilk test and Levene’s test, respec-
tively. If the data does not satisfy the normal distribu-
tion and variance homogeneity, Log-transformation is 
performed on the data. If the data is not satisfied after 
Log-transformation, nonparametric analysis is used. 
One-way analysis of variance (ANOVA) and Dunnett’s 
test could be used to analyze statistically significant 
differences between treatments and the corresponding 
control. The level of significance was set at P < 0.05 (*) 
and P < 0.01 (**).

3  Results

3.1  Growth Performance

Exposure to ENR had no effect on CF index of grass 
carp. CF is shown in the supporting information 
(Fig. S1).

3.2  Molecular and Biochemical Responses

3.2.1  Oxidative Stress Responses

Compared with the control group, the activities of 
SOD (Fig.  1a) and GSH (Fig.  1c) and the content 
of MDA (Fig.  1d) showed no significant differences 
after 21 days of exposure to ENR. Compared with the 
control group, the activity of CAT (Fig. 1b) was sig-
nificantly increased in the 1 μg/L (p < 0.05), 100 μg/L 
(p < 0.01), and 10,000 μg/L (p < 0.01) ENR exposure 
group.

Through exposure to ENR, the transcription level 
of sod1 (Fig. 1e) in hepatopancreas of grass carp in 
all exposed groups was upregulated compared with 
the control. When the concentration was 1  μg/L, it 
was significantly upregulated (p < 0.01). The tran-
scription level of cat (Fig. 1f) in all exposed groups 
was upregulated compared with the control, but not 
significantly.

Table 1  Selected genes, 
primer sequences, and 
GenBank access

Gene name Primer sequence 5′-3′ Product 
size (bp)

Tm (℃) GenBank access

Sod1 F: CGC ACT TCA ACC CTT ACA 218 61.5 GU901214.1
R: ACT TTC CTC ATT GCC TCC 

cat F: TTG AAC CGA AAC CCC GTG AA 139 60.1 MG821473.1
R: GCC GAT GTG TGT CTG GGT AA

LPL F: AAC GAG AGC CAA CAG CCA A 186 59.2 FJ436077.1
R: GAG CAC CAA GAC TGA AGC C

ATGL F: TTC CGT GGT GTG CGT TAT GT 134 60.1 HQ845211.2
R: TGG AAG CTG GTG GAA CTG TC

AMY F: TTC CGT GGT GTG CGT TAT GT 134 60.1 FJ641975.1
R: TGG AAG CTG GTG GAA CTG TC

Water Air Soil Pollut (2023) 234:548 548   Page 4 of 14



1 3
Vol.: (0123456789)

Fig. 1  Enzyme activities of SOD (a), CAT (b), GSH (c), 
content of MDA (d), and the transcription levels of sod1 (e) 
and cat (f) in hepatopancreas of grass carp after 21  days 

of exposure to different concentrations of ENR (0, 1, 100, 
and 10,000  μg/L). Data are mean ± SEM (n = 3). *p < 0.05; 
**p < 0.01 relative to the control

Fig. 2  Enzyme activities 
of ACHE (a) and content of 
NO (b) and the transcrip-
tion levels of ACHE (c) 
in the brain of grass carps 
after 21 days of exposure 
to different concentra-
tions of ENR (0, 1, 100, 
and 10,000 μg/L). Data 
are mean ± SEM (n = 3). 
*p < 0.05; **p < 0.01 rela-
tive to the control
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3.2.2  Neurotoxicity Responses

After 21  days of exposure to ENR, the activity of 
ACHE (Fig.  2a) and the content of NO (Fig.  2b) 
showed no significant difference compared with the 
control group. But the activity of ACHE increased 
with the increase of exposure concentration, and the 
content of NO was lower than the control group.

3.2.3  Digestive Enzyme Responses

Compared with the control group, LPS (Fig.  3a) 
activity increased significantly at exposure concen-
trations of 1 μg/L (p < 0.01) and 100 μg/L (p < 0.05). 
AMS (Fig.  3b) activity in all exposed groups was 
higher than that in the control group. And it was 

significantly increased when exposure concentration 
was 100 μg/L (p < 0.05).

The expression of LPL (Fig.  3c) was inhibited in 
the intestinal tract of grass carp exposed to ENR, and 
the mRNA transcription level of LPL was signifi-
cantly downregulated (p < 0.05) when the concentra-
tion was 1  μg/L. Compared with the control group, 
the mRNA transcription level of ATGL (Fig. 3d) sig-
nificantly decreases (p < 0.05) when the concentra-
tion is 10,000  μg/L. The mRNA transcription level 
of AMY (Fig. 3e) was significantly downregulated at 
1 μg/L (p < 0.05) and 10000 μg/L (p < 0.05).

3.3  Hepatopancreas Histopathology

The results of histopathological examination of the 
hepatopancreas of grass carp are shown in Fig. 4. The 

Fig. 3  Enzyme activities of LPS (a), AMS (b), and the tran-
scription levels of LPL (c), ATGL (d), and AMY (e) in the 
intestines of grass carps after 21 days of exposure to different 

concentrations of ENR (0, 1, 100, and 10,000 μg/L). Data are 
mean ± SEM (n = 3). *p < 0.05; **p < 0.01 relative to the con-
trol
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structure of normal hepatopancreas tissue is neatly 
arranged, the cytoplasm is intact, and the nucleus is 
clear (Fig. 4a, e). Compared with the control group, 
the exposure group had vascular congestion, espe-
cially in the portal vein (Fig.  4b–d, f–h). Exposure 
to ENR can also cause cell nuclei to become smaller 
(Fig. 4i). Compared to the control group, the nuclei in 
the 1 μg/L (p < 0.05) and 100 μg/L (p < 0.05) groups 
were smaller.

3.4  Integrated Biomarker Response

In this study, eight biomarkers were selected to 
explore whether grass carp exposed to ENR would 
be toxic. The star plot of the IBR index of grass carp 
exposed to different concentrations of ENR is shown 

in Fig.  5a, and the obtained IBR value is shown in 
Fig.  5b. In all exposed groups, the content of NO 
was inhibited, while the activities of CAT, ACHE, 
LPS, AMS, and the contents of MDA were induced. 
Among all the biomarkers measured, the changes in 
CAT and ACHE were obvious. IBR values show that 
the stress caused by 100 μg/L is the highest.

4  Discussion

Oxidative stress is closely related to fish growth and 
health during fish culture. Fish under oxidative stress 
are often weak in immunity and disease resistance, so 
their health status and growth performance are nega-
tively affected. Studies have shown that organisms 

Fig. 4  Representative photomicrographs of hepatopancreas 
tissue sections of grass carp after 21 days of exposure to dif-
ferent concentrations of ENR (0, 1, 100, and 10,000  μg/L). 
a control × 100; b 1  μg/L × 100; c 100  μg/L × 100; d 

10,000  μg/L × 100; e control × 1000; f 1  μg/L × 1000; g 
100 μg/L × 1000; h 10,000 μg/L × 1000; i hepatopancreas cell 
nuclear area. Data are mean ± SEM (n = 12). V, blood vessel; 
arrow, hyperemia
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exposed to pollutants increase the production of reac-
tive oxygen species (ROS) due to increased meta-
bolic and biotransformation activities, which further 
increase the antioxidant enzyme activity and/or tran-
scription level in the body (Regoli & Giuliani, 2014). 
SOD and CAT play a huge role in removing active 
oxygen and the body’s protective defense response 
(Zhang et al., 2017). SOD can effectively remove the 
superoxide anion free radicals generated during the 
oxidation process in organisms and convert them into 
 H2O2 and  O2. GSH can be used as a cofactor to com-
bine with exogenous compounds to degrade toxic sub-
stances out of the body (Ajima et al., 2021; Sehonova 
et  al., 2019; Su et  al., 2019). MDA is a toxic prod-
uct of lipid peroxidation, which can indirectly reflect 
the degree of oxidative damage in the body (Zhang 
et al., 2017). When the antioxidant system is unable 
to eliminate free radicals produced by xenobiotics, 
the content of MDA will increase (Lin et al., 2016). 
For example, Sehonova et  al. exposed zebrafish to 
5, 10, and 500  μg/L enrofloxacin for 14  days, and 
the results showed that enrofloxacin can cause oxi-
dative stress in exposed fish and lipid peroxidation 
was observed at the highest concentration (Sehonova 
et al., 2019). The enhanced expression of antioxidant 
genes and enzyme activity observed in this study 
indicated increased ROS production. However, MDA 
content did not change, which may be due to the anti-
oxidant response to avoid the oxidation of macromol-
ecules due to oxidative stress (Grott et al., 2021). In 
this study, SOD activity did not change significantly, 
while CAT activity increased significantly compared 

with the control, possibly because CAT involved in 
the removal of  H2O2 was more active compared with 
SOD activity (Magara et al., 2018). It is not surpris-
ing that the gene transcription level of SOD increases 
without changing at the functional level. Because 
there are multiple regulatory steps involved between 
transcription and translation in eukaryotic cells, there 
is a delay (Defo et al., 2015).

ACHE activity has been widely recognized as a 
sensitive biomarker of neurotoxicity of organisms 
(Shi et  al., 2018; Iheanacho & Odo, 2020). It not 
only inactivates acetylcholine, ensuring the normal 
function of the neuromuscular system, but also par-
ticipates in neurodevelopment (Yang et  al., 2018). 
Alterations in ACHE activity may lead to changes 
in cholinergic neurotransmission (Yuan et al., 2018). 
The increased levels of ACHE hydrolyzed the acetyl-
choline produced in the body, which eventually led 
to the reduction of neurotoxicity (Li et  al., 2020a). 
In this study, the activity of ACHE increased. The 
results of this study may be due to overcompensa-
tion (Badiou et  al., 2008; Pan et  al., 2012). NO is a 
neurotransmitter that is enzymatically synthesized 
by nitric oxide synthase (NOS) in various cell types 
(Carreno Gutierrez et al., 2020; Serafini et al., 2020). 
NO plays an important role in cell signal transmission 
and neurotransmission (Jay et al., 2014). In this study, 
the level of NO decreased compared to the control 
group, which may be due to the generation of ROS 
that reduced the level of NO in the brain. NO reacts 
quickly with oxygen free radicals  (O2∙-) to produce 
peroxynitrite anion (ONOO-), which can further form 

Fig. 5  a Related star maps and comprehensive biomarker 
response index (IBRv2) values of grass carp after 21  days 
of exposure to different concentrations of ENR (0, 1, 100, 
and 10,000  μg/L). Abbr.: SOD superoxide dismutase activ-
ity, CAT catalase activity, MDA malondialdehyde, GSH glu-

tathione, ACHE acetylcholinesterase activity, NO nitric oxide, 
LPS lipase, AMS amylase. The area above 0 reflects induction 
of the biomarker and below 0 indicates reduction of the bio-
marker. b Histogram of IBRv2
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peroxynitrous acid (ONOOH), thereby reducing the 
level of NO (Liu et al., 2013).

In general, most pollutants entering an organ-
ism enter the intestines, where they alter the activ-
ity of intestinal enzymes that play an important role 
in digestion (Adeyemi et al., 2020; Xie et al., 2019). 
Therefore, the activity of digestive enzymes can 
be used as a biological indicator of fish growth and 
health (Xie et  al., 2019). Changes in the activity of 
biological digestive enzymes may change the process-
ing of dietary inputs, which in turn may affect energy 
metabolism (Kong et al., 2019). Wang et al. showed 
that under severe ammonia stress, fish consume more 
energy by increasing digestive enzymes in the intes-
tine to maintain the balance of ammonia accumula-
tion and metabolism in the body (Wang et al., 2021). 
Previous studies have fed zebrafish with oxytetracy-
cline (OTC) at a therapeutic concentration (80  mg/
kg body weight) for 6  weeks. The results showed 
increased amylase and lipase activities, indicating that 
fish need more energy to resist the pressure caused by 
antibiotics (Limbu et al., 2020; Zhou et al., 2018). In 
this study, the activity of amylase and lipase increased 
significantly, which may be due to the increase of 
energy supply by fish to enhance the body’s adapta-
bility to ENR. Previous studies have shown that there 
was a low correlation between gene expression and 
enzyme activity of AMS and trypsin. For example, 
the study by Xie et  al. showed that the activities of 
lipase and amylase under  Cd2+ exposure were signifi-
cantly inhibited, while significantly downregulating 
the activity of the respective encoded enzymes (Xie 
et  al., 2019). In Houde et  al.’s previous study, AMS 
gene expression was upregulated and AMS enzyme 
activity was inhibited under hexachlorocyclopen-
tadiene exposure (Houde et  al., 2013). Our research 
results show that the activities of lipase and amylase 
are significantly increased, while the mRNA expres-
sion level of related enzymes is significantly down-
regulated. These results suggest that gene expression 
and enzyme activity may show different responses 
under different conditions (Schwarzenberger & Fink, 
2018). The difference between mRNA expression 
level and related biochemical reactions needs further 
study (Kim & Jung, 2016; Defo et al., 2015).

Histopathology can reflect the health status of 
organisms exposed to a variety of environmental pol-
lutants (Correia et al., 2020; Lam et al., 2013). It can 
be employed as biomarkers of contaminant exposure 

and consequences (Iftikhar et  al., 2022). Because of 
its sensitivity to aquatic pollution, the hepatopancreas 
is often used as a histopathological index to assess the 
health of fish (Yancheva et al., 2016). Our histopatho-
logical results indicate that grass carp hepatopancreas 
may be affected by ENR. The hepatopancreas of fish 
exposed to ENR will show congestion and a decrease 
in the area of the nucleus. Congestion may be caused 
by increased blood pressure after exposure to poi-
son (Bernet et al., 1999). Compared with the control 
group, the area of hepatocyte nucleus is smaller. Sim-
ilar to the results of this study, Zhang et al. exposed 
Macrobrachium rosenbergii to 5  mg/L ENR for 
14  days and found that its hepatopancreas nucleus 
had coagulated and became smaller (Liu et al., 2015; 
Zhang et al., 2019). A small nucleus is a sign of apop-
tosis. Previous studies have shown that ENR can 
induce hepatocyte apoptosis (Liu et al., 2015; Zhang 
et al., 2019).

The IBR index is considered to be a general 
description of the “health” of the animal in the envi-
ronment (Adeyemi et al., 2020). It is used to prove the 
environmental stress caused by animals exposed to 
xenobiotics (Adeyemi et  al., 2020). It can help inte-
grate all the parameters to show changes that could 
not be so easily noticed (Mukherjee et  al., 2022). 
In this study, the method was used to integrate bio-
chemical indicators to understand the impact of ENR 
on grass carp more comprehensively. These results 
showed that the response of CAT and ACHE activ-
ity might imply its high sensitivity to ENR. This is 
consistent with the analysis results of a single indi-
cator. The results of these two indicators were more 
representative, which helped us better understand the 
toxicity of ENR to grass carp. Interestingly, the stress 
caused by ENR exposure is stronger at 100 μg/L. This 
may be because high concentrations of ENR trigger 
defense mechanisms more rapidly, and after a short-
time response, the biomarker gradually adjusts and 
returns to a baseline condition. IBR indicators can be 
a quantitative and effective tool for monitoring ENR 
on fish toxicology.

5  Conclusions

This study was a contribution to the assessment of 
adverse effects of ENR on grass carp. Multi-bio-
marker methods indicate that exposure to ENR can 
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cause grass carp oxidative damage and neurotoxicity 
and affect digestive enzyme activity. In addition, our 
results indicate that CAT and ACHE activities have 
a higher response to ENR. CAT and ACHE activities 
are more sensitive to ENR. Further, it was observed 
that a concentration of 100 μg/L ENR was the most 
toxic to grass carp after 21 days of exposure. Histo-
pathological results indicate that ENR may induce 
cell apoptosis and cause hepatopancreas cell damage 
in grass carp. Considering the large-scale use of ENR 
in aquaculture, it may pose a major risk to aquatic 
organisms. The concentration of ENR in the aquatic 
environment needs to be controlled to avoid further 
harm to humans.
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