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studied municipality was below the detection limit, 
indicating that the water was adequately treated.
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1  Introduction

Pollution of the ecosystem due to toxic non-degra-
dable heavy metals presents a serious health hazard 
(Doabi et al., 2018; Khan et al., 2021; Pakade et al., 
2017). One such heavy metal is chromium, which 
exhibits toxicity by being able to penetrate biologi-
cal cell membranes resulting in cancer (Deepak et al., 
2021; Fu et  al., 2020; Zhang et  al., 2020). Chro-
mium can be discharged in several ways some of 
which include industrial activities and natural causes 
such as volcanic eruptions, which lead to seepage of 
chromium compounds into the environment (Pakade 
et  al., 2016; Rahman & Singh, 2019). Chromium 
has a variety of oxidation states. The rare oxidation 
states include ‘ + 1’, ‘ + 4’ and ‘ + 5’ (Bansal et  al., 
2019; Farouk et al., 2020). The most common oxida-
tion states include the trivalent Cr(III) and hexava-
lent Cr(VI) states (Park, 2020; Edwards et al., 2020). 
Hexavalent chromium is the most stable and persis-
tent form of chromium in the environment (Zhao 
et al., 2018; Zhu et al., 2020). Hexavalent chromium 
is also the most toxic form of chromium as it is highly 
mobile and can easily pass through cell membranes, 
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where it is reduced to Cr(III), making it carcinogenic, 
resulting in stomach ulcers and mitochondrial func-
tional damage (Zhao et al., 2018; Bakshi & Panigrahi, 
2018; Sadeghi et  al., 2019; Noah et  al., 2020; Zhu 
et al., 2020; Wang et al., 2021; Huang et al., 2022).

Agencies, such as the World Health Organisation 
(WHO), have set regulations for maximum toler-
able concentration limits of 0.05 mg L−1 and 0.1 mg 
L−1 for Cr(VI) in drinking water and inland surface 
water, respectively (WHO, 2003; Maitlo et al., 2021). 
Furthermore, a local study by Edokpayi et al. (2018) 
reported that the carcinogenic risk due to Cr expo-
sure, in a number of boreholes studied in Muledane 
village situated in Limpopo, South Africa, exceeded 
the 50-µg L−1 risk limit for chromium in drinking 
water as set by the Department of Water Affairs and 
Forestry (DWAF) (1996) and WHO (2006) (Loock-
Hattingh, 2016). Sources of pollution in various water 
bodies such as rivers, lakes and boreholes include 
discharge of wastewater from domestic, agricultural 
and industrial activities (Jalees et  al., 2021; Buba & 
Maina, 2020). Other causes of pollution in ground-
water sources include the geology of the aquifers, 
climate and anthropogenic activities (Edokpayi et al., 
2018; Kurwadkar et  al., 2020). Different techniques 
have been used for the removal of heavy metals which 
include ion exchange, solvent extraction and chemi-
cal precipitation (Alguacil et al., 2008; Bashir et al., 
2019; Chen et  al., 2018; Dong et  al., 2018; Feng 
et al., 2019; Sorouraddin et al., 2017; Xie et al., 2019; 
Ye et  al., 2019). These methods have been accom-
panied by setbacks; for instance, ion exchange often 
requires that concentrations of more species need to 
be measured to ascertain it (Crist et al., 2002), solvent 
extraction is generally expensive and is often results 
in poor extraction efficiencies (Nguyen & Lee, 2018), 
while chemical precipitation suffers from poor solu-
bility of chromium sulphides and requires large doses 
of precipitation agents (Pohl, 2020). Adsorption with 
the use of a suitable adsorbent can be a more effective 
technique for the removal of heavy metals in aqueous 
systems (Saleh et  al., 2020; Xiaodong et  al., 2019). 
Ferric oxide (Son et  al., 2018) and alumina (Chang 
et al., 2020) have been used as adsorbents for heavy 
metals due to their high adsorption capacity, but they 
are difficult to separate from the aqueous system 
after use and they are expensive. Therefore, there is 
a need to develop low cost and readily regenerative 
adsorbents.

Coal fly ash (CFA) is an example of a low-cost 
adsorbent, generated as a waste material during com-
bustion of coal (Mokgehle et  al., 2019a; Vu et  al., 
2020). The abundance of CFA makes it difficult to 
dispose. Due to the voluminous nature of CFA, stock-
piled CFA during heavy rains leach heavy metal ions 
into water bodies contaminating and disrupting the 
ecosystem (Mokgehle et  al., 2019b; Hwang et  al., 
2020). Some of the toxic effects of CFA include 
increased risk of developing cancer and other dis-
eases (Whiteside & Herndon, 2018). Efforts have 
been undertaken to recycle CFA. Approximately, 20% 
of the CFA produced is being used as building mate-
rial (Sanjuán et al., 2021). Despite the uses of CFA, a 
large portion of this material remains at landfill sites 
and still poses an environmental hazard. As a reme-
diation strategy, CFA has therefore been studied as 
a sorbent for heavy metal ions (Lei et al., 2020; Xie 
et al., 2014). However, application of CFA in adsorp-
tion has often been accompanied by setbacks which 
include limited adsorption sites. To address these lim-
itations and improve the adsorption performance, this 
work was directed at the application of hydrother-
mally treated CFA-derived zeolites for the adsorp-
tion of chromium via the batch technique. The hydro-
thermal synthesis method is suitable as it firstly uses 
a green solvent, water, for producing zeolites. Sec-
ondly, it is an appropriate method for using an abun-
dant waste material (CFA) for synthesis of zeolites.

2 � Experimental

2.1 � Chemicals and Reagents

CFA was collected from a Modderfontein (Johannes-
burg, South Africa) steam plant. Al2(SO4)3

.18H2O 
was purchased from Associated Chemical Enter-
prises (Johannesburg, South Africa), and SiO2 was 
purchased from Sigma-Aldrich (Johannesburg, South 
Africa), which were used as standards in the analy-
sis of dissolved Si4+ and Al3+ species. NaOH pellets, 
HNO3 and K2Cr2O7, were purchased from Rochelle 
Chemicals (Johannesburg, South Africa). The NaOH 
pellets were used as alkaline-activating agents for 
dissolution of the aluminosilicate matrix in CFA. 
Ultra-pure water was purified using a Direct-Q 5UV 
distiller (MA, USA) with a conductivity and resist-
ance of 0.055 µS cm−1 and 18.2 mΩ respectively. A 
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magnetic stirrer was used to stir CFA and NaOH. Fil-
tration was done using a filter paper to separate the 
slurry from the NaOH-activating solution.

2.2 � Instruments

Analysis of the dissolved ions from the CFA alumino-
silicate matrix were performed on a PinAAcle 900 T 
flame atomic absorption spectrometer (AAS), pur-
chased from PerkinElmer (MA, USA). A Heidolph 
temperature probed magnetic stirrer from Heidolph 
Instruments (Schwarzenberg, Germany) was used to 
stir CFA and the alkaline activating solution. Filtra-
tion was done using a Millipore 0.2-μm membrane 
filter to separate the slurry from the NaOH-activat-
ing solution. A CN-2060 centrifuge acquired from 
Monitoring and Control Laboratories (Johannesburg, 
South Africa) was used to separate the slurry from 
the NaOH-activating solution. Analysis of the dis-
solved ions from the CFA aluminosilicate matrix was 
performed on a PinAAcle 900  T graphite furnace 
atomic absorption spectrometer (AAS) procured from 
PerkinElmer (MA, USA).

A 278AC Brass Parr Bomb purchased from the 
Parr Instrument Company (IL, USA) was used to per-
form crystallization of the CFA slurry. The Parr bomb 
was placed in a Labotec EcoTherm oven (Johannes-
burg, South Africa). Molecular interactions were 
characterized using Fourier transform infrared (FT-
IR) spectroscopy from Bruker (MA, USA). A Bruker 
S1 Titan/Tracer XRF analyser (Cramerview, South 
Africa) was used to determine the chemical composi-
tion of the materials.

2.3 � Ageing Studies

During ageing studies, the concentrations of 
0.5–1.5  mol L−1 NaOH were prepared. NaOH solu-
tions were prepared and then mixed with 15 g CFA in 
a 250-mL polypropylene sealable bottles and stirred 
at 400 rpm for 24 h at 50 °C to determine the extent 
of dissolution of the CFA aluminosilicate matrix. 
After the stirring period had elapsed, the slurry was 
filtered. The filtrate was then analysed for Si4+ and 
Al3+ using FAAS. The next study evaluated the effect 
of ageing time where the optimized concentration of 
NaOH was used to determine the optimum time for 
complete dissolution of the CFA Al matrix into the 
activating agent. The optimized NaOH concentration, 

50 mL, was mixed with 15 g CFA in a 250-mL poly-
propylene sealable bottle and stirred at 400 rpm for a 
variety of time intervals (6–48 h) at 50 °C. After the 
stirring periods had elapsed, the slurry was filtered. 
The filtrate was then analysed for Si4+ and Al3+ using 
FAAS. The concluding ageing study looked at the 
effect of the solid/liquid ratio. The optimized NaOH 
concentration and ageing time were used to investi-
gate the dissolution of Si4+ and Al3+ as a function of 
solid/liquid ratio (0.15–0.5 g  mL−1). These mixtures 
were placed in 250-mL polypropylene sealable bot-
tles and stirred at 400  rpm at 50  °C. After stirring, 
the slurry was filtered, and the filtrate was analysed 
for Si4+ and Al3+ content using a FAAS. Following 
the optimized ageing conditions, crystallization stud-
ies were conducted where the effect of crystallization 
time was examined.

2.4 � Crystallization Studies

A 15-mL slurry from ageing studies in Sec 2.3 was 
poured into a parr bomb and crystallized in an oven 
at 140 ◦C for 6–72 h to form zeolites. Thereafter, tem-
perature studies were conducted by pouring 15  mL 
slurry from the ageing studies, synthesized from 
the optimum conditions, into a parr bomb. This unit 
was then placed in an oven for crystallization at tem-
peratures ranging from 35 to 200 °C under a period 
equivalent to the optimum time. Analyses were then 
done on the synthesized zeolites via XRF and FTIR. 
This was followed by a study evaluating the effect 
of water content on crystallization where the solid 
(slurry):liquid (water) ratios were 5:10, 7.5:7.5 and 
15:0 (v/v). The mixtures were poured into the parr 
bomb and placed into an oven for crystallization. This 
was done under the optimum conditions of time and 
temperature. FT-IR analysis was then done on the 
resultant zeolites.

2.5 � Adsorption of Chromium

Batch adsorption studies were then done evaluating 
the effect of mass of zeolite, which ranged from 10 
to 80 mg, on the extraction of chromium. The condi-
tions for chromium adsorption were 0.5  g  mL−1 Cr, 
at a stirring rate of 100  rpm at 25  °C for 3  h each. 
After the stirring period had elapsed, the mixture was 
filtered, and the filtrate was analysed for chromium 
using FAAS. The next batch study evaluated the 
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effect of contact time (30–420  min) which was per-
formed using the optimum mass of zeolite from the 
previous study. After the stirring period had elapsed, 
the mixture was filtered, and the filtrate was analysed 
for chromium using FAAS. This was followed by the 
effect of concentration (0.1–0.9 mg L−1) studies. The 
concluding study evaluated the effect of temperature 
(25–75 °C) on chromium adsorption. All the filtered 
solutions were analysed on the FAAS. All the adsorp-
tion experiments were conducted in duplicates.

3 � Results and Discussion

3.1 � Synthesis of Zeolite via Hydrothermal Treatment

3.1.1 � Ageing Studies

Effect of Concentration of NaOH on the Dissolution 
of the Aluminosilicate Matrix of CFA.

The surface of the CFA particle was composed 
of a highly reactive aluminosilicate layer. The outer 
layer of CFA composed of the aluminosilicate layer 
was mainly made of SiO2 while the aluminium con-
tent was concentrated in the interior, also referred to 
as the mullite layer. The trend observed amongst the 
three concentrations studied indicated that as the con-
centration of NaOH was increased, the dissolution of 
the CFA aluminosilicate layer into NaOH increased 
(Fig. 1) (Mokgehle et al., 2019a). The disproportion-
ately larger concentration of Si4+ dissolved compared 
to Al3+, indicating that a large portion of CFA was 
composed of aluminosilicate, which had a high silica 
content. It was also observed that as the alkali concen-
tration was increased, dissolution of Al3+ increased. 
This was mainly due to the high pH of the alkaline 
solution (1.5  M NaOH), which penetrated the inner 

mullite phase resulting in an increased concentra-
tion of Al3+ compared to the 0.5-M and 1.0-M NaOH 
alkaline solutions (Fig.  1). Mokgehle et  al. (2019a) 
and Inada et  al. (2005) also reported on a similar 
trend. An optimum dissolution of 1.5 M NaOH was 
then used in subsequent experiments.

Effect of Time on the Dissolution of the Alumino-
silicate Matrix of CFA  Studies were performed to 
investigate the effect of time on the dissolution of the 
Al3+ and Si4+ matrix from CFA. Ageing times rang-
ing from 6 to 48 h were studied using the optimum 
concentration of 1.5 M NaOH. FTIR analysis of the 
dried CFA residuals after different times, with CFA 
as a reference, is shown in Fig. 2. The band occurring 
at 930 cm−1 was associated with symmetric stretching 
of Al–O and Si–O (Fernández-Jiménez & Palomo, 
2005; Musyoka et al., 2012; Mokgehle et al., 2019a). 
Additionally, it was also noted that these stretches 
appeared sharper and slightly shifted towards higher 
frequencies compared to CFA (Fig.  2), as observed 
for the 48-h peak. This suggested that the incorpo-
ration of Na+ into the CFA aluminosilicate from the 
dissolution, NaOH, matrix influenced the asymmet-
ric stretching of Al–O and Si–O (Mokgehle et  al., 
2019a). Hence, the 48-h ageing time was taken as 
the optimum and used in subsequent experiments. 
Experiments conducted for longer than 48 h resulted 
in damage to the base of the polypropylene bottle.

In Table 1, the XRF data comparing the percent-
age composition of elements in the residual product 
as a function of time is shown. Lower percentages 
of Al2O3 were observed in the CFA residues after 
48 h in comparison to CFA (Table 1). This indicated 
that during ageing, Al initially present on the mul-
lite phase of CFA dissolved into the NaOH-activat-
ing agent solution (Mokgehle et  al., 2019a). Similar 

Fig. 1   Concentration of 
Al3+ and Si.4+ at differ-
ent NaOH concentrations. 
(Experimental conditions; 
reaction duration — 24 h, 
temperature — 50 ◦C , mass 
of CFA — 15 g, volume of 
NaOH — 50 mL)
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studies reporting on the dissolution of the aluminium 
containing mullite phase into NaOH were reported by 
Joseph et al. (2020), Monasterio-Guillot et al. (2020), 
Ren et  al. (2020), and Cao et  al. (2021). Therefore, 
a higher dissolution of the alumino-silicate layer 
occurred at 48 h and was in agreement with the data 
presented in Fig. 2.

Effect of Volume of NaOH on the Dissolution 
of the Aluminosilicate Matrix of CFA  Studies 
were performed to investigate the effect of volume 
of NaOH used for the dissolution of Al3+ and Si4+ 
from CFA. As the volumes of 1.5 M NaOH increased 
from 30 to 100 mL, a proportional increase of Al3+ 
was observed, while concentrations of Si4+ generally 
remained the same (Fig. 3). Therefore, this indicated 
that more of the aluminosilicate matrix dissolved into 
solution when a larger volume of NaOH was used 
(Kaze et al., 2018; Mokgehle et al., 2019a, b, Kuenzel 
& Ranjbar, 2019). Therefore, the 100-mL volume of 
1.5 M NaOH was the optimum.

FTIR studies on the CFA dried residual products 
evaluating the effect of volume are shown in Fig. 4. 
Bands at 930  cm−1 associated with Al–O and Si–O 
were most intense for the residual where 100  mL 
of NaOH was used (Mokgehle et  al., 2019b). This 
indicated that the inclusion of Na+ from the NaOH-
activating agent, into the aluminosilicate layer of the 
CFA matrix, influenced the asymmetric stretching of 

Fig. 2   FTIR spectra of 
residual products as time 
was varied

Table 1   XRF data for the effect of time on the dissolution of 
the aluminosilicate layer of CFA

Metal oxide CFA 6 h 24 h 48 h

MgO 0.86 0.75 0.84 0.81
SiO2 34.9 29.8 30.5 32.5
Al2O3 29.0 22.9 22.9 22.4
P2O5 0.47 0.29 0.32 0.34
K2O 0.87 0.69 0.66 0.62
CaO 10.5 8.63 10.3 10.7

Fig. 3   Concentration of Al 
and Si for three different 
volumes of NaOH. (Experi-
mental conditions; reaction 
duration — 48 h, tempera-
ture — 50 ◦C , mass of CFA 
— 15 g, concentration of 
NaOH — 1.5 M)
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Al–O and Si–O (Mokgehle et  al., 2019a, b). Hence, 
the residue corresponding to when 100 mL of NaOH 
was used was observed as the optimum and is in 
consensus with the results from the FAAS studies in 
Fig. 3.

3.1.2 � Crystallization Studies

Effect of Time, Temperature and Variation in 
Water Content on Crystallization  An evaluation 
on the effect of crystallization on time was performed 
at 6, 24, 48 and 72  h. Bands associated with Al–O 
and Si–O symmetric stretching at 930 cm−1 appeared 
to be most intense for 72 h. This indicated that more 
of the glassy phase present in CFA reacted with the 
alkaline activator (NaOH) to form zeolite as time was 
increased as shown in Fig.  5a. Therefore, the opti-
mum time was 72 h.

A subsequent study was done investigating the 
effect of temperature performed at 35 ◦C , 120 ◦C and 
200 ◦C for 72 h. At 35 °C, the Al–O and Si–O sym-
metric stretching vibrations at 930  cm−1 appeared to 
be almost non-existent compared to the residue crys-
tallized at 120 and 200  °C (Fig.  5b). This indicated 
that the dissolved glassy phase (from CFA) present in 
the NaOH alkaline solution failed to effectively form 
the aluminosilicate gel and eventually crystallize into 
zeolite at lower temperatures (Wałek et  al., 2008; 
Musyoka et  al., 2012; Mokgehle et  al., 2019a; Kob-
ayashi et  al., 2020). Hence, the optimal temperature 
for zeolite crystallization was 200 °C.

Thereafter, the analysis on the water content 
of zeolite crystallization was examined at H2O/
SiO2 = 0, H2O/SiO2 = 1, H2O/SiO2 = 2 correspond-
ing to additions of 0, 7.5 and 10  mL of ultra-pure 

water to 15 mL slurry, respectively. The most intense 
peak for Al–O and Si–O asymmetric vibrations was 
observed at a H2O/SiO2 = 1. This suggested that 
water addition improved the conversion of the CFA 
glassy phase matrix to zeolite, by forming a super-
saturated medium which subsequently allowed for 
more of the NaOH dissolved Si4+ and Al3+ species to 
crystallize on the ash surface (Tajunnisa et al., 2017; 
Mokgehle et al., 2019a, b; Lu et al., 2021). However, 
when larger amounts of water are added, the forma-
tion of the zeolite crystals is interrupted (Mokgehle 
et al., 2019a). Therefore, the optimal result was H2O/
SiO2 = 1.

3.2 � Adsorption Studies

3.2.1 � Effect of Mass of Zeolite

Adsorption studies were performed to evaluate the 
effect of mass of zeolite. Batch adsorption stud-
ies were performed on different amounts of zeolites 
(10–80 mg) with 5 mL of 0.5 mg L−1 of chromium 
solution for 180 min each. In Fig. 6, it is shown that 
as the mass of zeolite was increased, the percentage 
removal of chromium increased. This suggested that 
larger doses of zeolite resulted in a larger surface area 
for adsorption of larger amounts. A similar effect was 
reported by Saranya et  al. (2017), Mokgehle et  al. 
(2019b), Bai et  al. (2020), and Qiu et  al. (2020). 
The adsorption capacities for the 10, 20, 40, 60 and 
80  mg zeolites were 0.245, 0.100, 0.058, 0.035 and 
0.025 mg g−1, respectively. Hence for further studies, 
80  mg of zeolite was used as the optimum dose for 
removing Cr.

Fig. 4   FTIR spectra of 
CFA residual products 
where the effect of volume 
of NaOH was evaluated
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3.2.2 � Effect of Contact Time

Batch adsorption studies were performed to evalu-
ate the effect of contact time on zeolite. Adsorption 
studies were performed using 80 mg of zeolite, with 
5 mL of 0.5 mg L−1 of chromium solution at different 

contact times (30–420  min). From Fig.  7, a general 
trend of an increased percentage removal of Cr was 
observed as contact time was increased. This revealed 
that at lower contact times many adsorption sites on 
the zeolite structure were left unoccupied; however, 
with an increase in the adsorption period, more of 

Fig. 5   a FTIR spectra of 
zeolites residues synthe-
sized at different time inter-
vals. b FTIR spectra for 
zeolite residues synthesized 
at different temperatures. 
c FTIR spectra for zeolites 
synthesized with different 
solid/liquid ratios

Fig. 6   Percentage removal 
of chromium while varying 
mass of zeolite used in 
batch adsorption studies 
(experimental conditions; 
concentration of chromium 
— 0.5 g mL.−1 Cr, contact 
time — 3 h, temperature — 
25 °C)
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these available sites were filled by Cr. This trend 
was also reported by Saranya et  al. (2017) and Bai 
et al. (2020). Therefore, 420 min was applied as the 
optimum time for future studies. The low removal 
percentages at 300  min could probably be due to 
agglomeration of the zeolite in solution, preventing 
its dispersion and subsequent availability of sites for 
adsorption (Dhiman & Sharma, 2019; Javadian et al., 
2020).

3.2.3 � Effect of Concentration

Adsorption studies were performed to evaluate the 
effect of the concentration of chromium on adsorp-
tion. Batch adsorption studies were performed at 
different concentrations of chromium from 0.1 to 
0.9  mg L−1. From Fig.  8, a proportional increase in 
percentage removal of chromium was observed with 
increasing concentration. This suggested that mass 
transfer could have been influential during adsorp-
tion under these conditions. A large initial chromium 
concentration provided a large driving force for chro-
mium sorption onto the zeolite surface via cation 
exchange, as seen for the 0.9-mg L−1 study (Fig. 8). 

Furthermore, at initial concentrations of 0.7 and 
0.9 mg L−1, the removal of Cr showed a tendency of 
flattening out due possibly to exhaustion of available 
adsorption sites. This was in agreement with what 
was observed by Kulkarni et  al. (2018) and Hayati 
et al. (2018). Therefore, 0.9 g mL−1 was the optimum 
concentration.

3.2.4 � Effect of Temperature

Adsorption studies were performed to evaluate the 
effect of temperature on the adsorption of Cr(VI). 
The temperatures studied ranged from 25 to 75  °C 
with 80 mg of zeolite and 5 mL of 0.9 mg L−1 chro-
mium solution for 420 min each. As temperature was 
increased, the percentage removal of chromium was 
observed to also increase (Fig.  9). This indicated 
that there was an increase in the uptake capacity of 
chromium by the zeolite as the temperature rose from 
25 °C. This suggested that the adsorption process was 
endothermic in nature. This increased capacity was 
probably due to the increased number of binding sites 
that may have been generated by firstly the possible 
breakage of some internal bonds near the surface of 

Fig. 7   Percentage removal 
of chromium at various 
contact times (experimental 
conditions; mass of zeolite 
— 80 mg, concentration of 
chromium — 0.5 mg L.−1, 
temperature — 25 °C)
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Fig. 8   Percentage removal 
of chromium at different 
chromium concentrations 
(experimental conditions; 
mass of zeolite — 80 mg, 
contact time — 7 h, tem-
perature — 25 °C)
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binding sites and secondly due to the increased col-
lision frequency by the adsorbate onto the adsorp-
tion sites (Saini & Melo, 2013; Vijayalakshmi et al., 
2017). Therefore, 75  °C was identified as the opti-
mum temperature in this study.

3.3 � Application Studies

Application studies were conducted on water col-
lected from the Thulamela Municipality wastewater 
treatment site, as shown in Table 2. Analysis of chro-
mium in the wastewater samples revealed concentra-
tions that were lower than the limit of detection. This 
suggested that Cr contamination was unlikely as the 
Cr effluent concentration was well below the regu-
latory threshold set by the WHO 2013. Besides Cr, 
other heavy metals were detected which included Fe, 
Hg, Mn and Se. The removal percentage in increasing 
order was as follows: Hg < Se < Fe.

4 � Conclusion

CFA-derived zeolites were shown to be efficient for 
the removal of heavy metals from wastewater. CFA-
derived zeolites were synthesized based on the hydro-
thermal treatment method. The optimum conditions 

for ageing was a concentration of 1.5  M, at a time 
of 48  h and NaOH volume of 100  mL. Thereafter, 
crystallization studies yielded optimum conditions at 
72 h, temperature of 200 °C and H2O/SiO2 = 1. Char-
acterization of the synthesized zeolites indicated sym-
metric stretching of Al–O and Si–O due to the incor-
poration of Na+ into the CFA aluminosilicate layer, 
indicating zeolite formation. XRF data showed that 
the SiO2 and Al2O3 content was highest in the zeolite 
synthesized for 48  h. The optimum conditions from 
the batch adsorption studies were mass = 80 mg, con-
tact time = 420 min, influent Cr concentration = 0.9 M 
and temperature of 75  °C, where removal percent-
ages improvements of 77% were obtained from the 
first to the last optimization study. The optimised 
batch adsorption parameters were then applied for 
the removal of chromium and other selected heavy 
metals in tap water from the Thulamela municipal-
ity. Though the removal of chromium could not be 
determined during application studies, based on ICP-
OES studies, CFA-derived zeolites were efficient in 
the removal of Fe, Mn, Hg and Se with percentage 
removals of 96.46, 72.97, 25.00 and 72.00%, respec-
tively. Furthermore, ICP-OES analysis indicated that 
the concentration of chromium was below the detec-
tion limit, signifying that the tap water from the stud-
ied municipality was adequately treated.
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Table 2   Some of the heavy metals detected using ICP-OES in 
the influent and effluent at the Thulamela water treatment site

Heavy metal concentration (mg L−1)

Cr Fe Mn Hg Se

Influent - 0.792 0.074 0.012 0.025
Effluent - 0.028 0.020 0.009 0.007
Removal (%) - 96.46 72.97 25.00 72.00
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