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of K in Jalapeño and Serrano, that of Ca in Poblano, 
and that of Mg in Serrano. In Jalapeño, both Tl doses 
tested reduced the leaf Ca concentration. Low Tl doses 
(5.5  nM) caused significant and positive effects on 
the leaf K concentration in all three varieties. High 
Tl doses (11  nM) caused significant negative effects 
on the leaf concentration of Mg. In the three varie-
ties evaluated, the addition of Tl increased the leaf 
N:K ratio, that of N:Mg in Poblano and Serrano, the 
N:Mg ratio in Jalapeño, the P:K ratio in Serrano, and 
the N:Ca ratio in Jalapeño and Poblano. There was no 
effect of Tl on shoot dry biomass in any variety evalu-
ated. In Tl-treated plants, foliar concentration of this 
element varied from12.0 to 26.6  mg  kg−1 on a dry 
basis. The sum of principal component 1 and principal 
component 2 represented 80.8, 72.3, and 79.6% of the 
total variance of macronutrient concentration in leaves 
of the Jalapeño, Poblano, and Serrano varieties, respec-
tively. We conclude that Tl had differential effects on 
the nutrient status among varieties of chili pepper, with 
Jalapeño being the most affected and Poblano the least.

Keywords  Non-essential metals · Nutrient 
concentration · Thallium · Abiotic stress

1  Introduction

Thallium (Tl) is a metal widely distributed on the planet, 
and no specific biological functions have been found 
for this element in any living being analyzed. On the 

Abstract  This study aimed to assess the effects of 
thallium (Tl) on the leaf concentration of macronutri-
ents (N, P, K, Ca, Mg, and S) and the stoichiometric 
relationships of P, K, Ca, Mg, and S with N in three 
varieties of chili pepper (Capsicum annuum): Jalapeño, 
Poblano, and Serrano. Sixty-day-old seedlings of the 
three varieties were treated with Tl, in doses of 0, 5.5, 
and 11  nM in the nutrient solution. After 80  days of 
exposure to Tl treatments, the nutrient concentration 
in leaf tissue was determined. With the data obtained, 
an analysis of variance and comparison of means with 
Tukey’s test ( � = 0.05 ) were carried out, and through 
a meta-analysis, the size and direction of the effect of 
the evaluated Tl doses were determined, in the leaf 
concentrations of macronutrients. The 5.5 and 11 nM 
Tl doses increased the leaf concentration of P in Ser-
rano and that of N in Poblano, respectively. Applying 
5.5 nM Tl significantly reduced the leaf concentration 
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contrary, this element is on the list of environmental pol-
lutants of the Environmental Protection Agency (EPA) 
of the USA due to its toxic effects in various biological 
systems, including humans, animals, and plants (Galván-
Arzate & Santamaría, 1998; USEPA, 2021).

The release of Tl to the environment can occur nat-
urally and through anthropogenic activities, mainly 
involving the chemical industry and mining. This has 
caused its concentration to increase in recent dec-
ades, and it is estimated that each year, 5000 t of Tl 
are expelled into the atmosphere (Léonard & Ger-
ber, 1997; Yu & Tsunoda, 2016). In the lithosphere, 
Tl concentrations range from 0.3 to 0.6 mg  kg−1; in 
igneous rocks, from 0.05 to 1.7 mg kg−1; and in soils, 
their concentrations are associated with their origin 
and the minerals present (Frattini, 2005; USEPA, 
2021). This element can also be present in bodies 
of water. For example, in Poland, 5 to 17 ng Tl L−1 
(0.0245 to 0.0832 nM) can be found in rivers and 10 
to 15 ng Tl L−1 (0.0489 to 0.0734 nM) in seawater. 
In Lake Ocrida, located between the Macedonian 
and Albanian border, Tl concentrations are 0.5  μg 
L−1 (24.4638  nM); the Huron and Raisin rivers in 
the USA contain 21 and 2621  ng Tl L−1 (01,027 to 
12.8240  nM), respectively. It is recommended that 
water for human consumption does not exceed 2 μg 
Tl L−1 (Health Council of the Netherlands, 2002).

Tl is incorporated into the soil through the waste-
water used for irrigation in farmland. Being available 
to plants in the soil solution in its ionic form Tl(I), 
this element is absorbed and accumulated in plant 
tissue, which represents a problem for humans if it 
is incorporated into the food chain, since the con-
sumption of vegetables contaminated with this metal 
could represent a high health risk (Karbowska, 2016; 
Rodríguez-Mercado & Altamirano-Lozano, 2013). 
In these plants, the presence of contaminating com-
pounds that contain metals can disrupt homeostasis 
and cause serious toxic effects, including nutritional 
imbalances (Rezaeian et al., 2019).

Nutrient imbalance in higher plants can trigger bio-
chemical processes that have negative consequences on 
crop growth, yield, and quality (Cvjetko et al., 2010). 
Nutritional diagnosis is an extremely important tool to 
know the effect of Tl on plant nutrition, since it allows 
identifying nutritional deficiencies or toxicities in dif-
ferent phenological stages of the plant and learning its 
effects (Alcántar et al., 2016).

In white mustard (Sinapsis alba L.), Tl+ toxicity 
reduces photosynthesis, which alters ionic homeosta-
sis and causes water imbalance, oxidative stress, and 
chlorosis (Mazur et al., 2016).

There are few studies that have quantified spe-
cific concentrations of Tl in plant tissues, although it 
is estimated that these may be less than 0.1 mg kg−1 
on a dry basis (Kazantzis, 2000). In Biscutella laevi-
gata, a pseudometallophyta species that often grows 
near mining areas, a marked ability to bioaccumu-
late trace metals, especially Tl, was found. The con-
centrations of Tl found in plant tissues ranged from 
10 to 1000 mg kg−1 of plant biomass on a dry basis 
(Pavoni et al., 2016). In mining sites nearby Kütahya, 
Turkey, Tl mean concentrations in the soil, roots, 
and shoots of the studied plants were 170, 318, and 
315 mg kg−1, respectively. Good Tl bioaccumulators 
were Cynoglossum officinale, Isatis sp., Silene com-
pacta, and Verbascum thapsus, which can be useful 
for remediation or phytoremediation of soils pol-
luted by Tl (Sasmaz et al., 2016). With the exception 
of maize (Zea mays), other crops pose a significant 
risk to human health because of their abilities to 
accumulate Tl, which represent a dare need for Tl-
focused management of soil/plant interaction (Jiang 
et  al., 2020). Importantly, the effects that Tl has on 
the nutritional status in higher plants have not been 
deeply investigated. Therefore, the main objective 
of this study was to evaluate the effect of Tl on the 
leaf concentration of macronutrients in the Jala-
peño, Poblano, and Serrano varieties of chili pepper 
(Capsicum annuum), grown hydroponically under 
greenhouse conditions. The tested doses of Tl were 
determined considering the maximum concentration 
of this element allowed in water for human consump-
tion (2 μg Tl L−1, which corresponds to 9.7855 nM 
Tl), as well as the levels reported in rivers and bodies 
of water that reach values of 12.824  nM Tl (Health 
Council of The Netherlands, 2002; Queirolo et  al., 
2009). As aforementioned, the experiment was car-
ried out in hydroponics, since this system provides 
conditions that allow real measurement of the inter-
actions between essential and non-essential elements 
(such as Tl) in the nutrient solution and may help 
explain how these interactions modify the availability 
of nutrients. In soil systems, nutrient bioavailability 
changes throughout the soil matrix as nutrients bind 
to soil particles creating micro-environments within 
the soil. This heterogeneity could add an extra level 
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of complexity in experiments needing a precise con-
trol on the external concentration of nutrients or other 
molecules (Nguyen et  al., 2016). Consequently, we 
decided to carry out the experiments in hydroponics 
under greenhouse conditions, using an inert substrate 
and a nutrient solution.

Within the genus Capsicum, Capsicum ann-
uum is one of the five domesticated species, which 
shows great variation in fruit size, shape, and color 
(Kazantzis, 2000; Madejón et al., 2007). This vegeta-
ble is of great economic importance in Asia and the 
Americas, with China and Mexico being the leading 
world producers and distributors, respectively (FAO, 
2022; Fernández, 2022).

2 � Materials and Methods

2.1 � Experimental Conditions and Plant Material

The study was carried out under greenhouse condi-
tions with average day and night temperatures of 
32  °C and 15  °C, respectively; relative humidity of 
31% during the day and 87% at night; light intensity 
of 137 µmol m−2 s−1 with a photoperiod of 11.5 h.

Seedlings were produced from hybrid seeds of 
three varieties of Capsicum annuum L.: Jalapeño 
“Emperador” NUN 70,030, Poblano “Capulín,” and 
Serrano “Coloso.”

2.2 � Treatment Design and Experimental Design

To establish the experiment, healthy and vigor-
ous 60-day-old seedlings were transplanted into 
black bags with tezontle as substrate. The study was 
established in a completely randomized experimen-
tal design (CRD) with six replicates per treatment, 
irrigated with Steiner’s universal nutrient solution 
(Steiner, 1984), which has the following chemi-
cal composition of macronutrients (in molc m−3): 
12 NO3

−, 1 H2PO4
−, 7 SO4

2−, 7  K+, 9 Ca2+, and 4 
Mg2+. The micronutrient concentrations used in mg 
L−1 were 5.000 Fe, 2.328 Mn, 0.466 Zn, 0.186 Cu, 
0.432 B, and 0.173 Mo. The nutrient solution was 
formulated with analytical grade reagents (J. T. 
Baker; Radnor, PA, USA). The electrical conductiv-
ity of the nutrient solution was 2 dS m−1 and the pH 
was adjusted to 5.5. Irrigation was automated through 
a drip system.

Three levels of Tl were added to Steiner’s nutrient 
solution: 0, 5.5, and 11  nM Tl from Tl (OOCCH3) 
(Sigma-Aldrich; Burlington, MA, USA), and the 
treatments were supplied for 80 days.

2.3 � Evaluated Variables

On day 80 after beginning the application of the 
treatments, the plants were harvested and the leaves 
were separated from the aerial part to later be dried 
in a forced air oven (Riossa, model HCF-125; Gua-
dalajara, Jalisco, Mexico) at 70 °C for 48 h. Once dry 
and at constant weight, the leaf samples were ground 
(particle size 2 mm) for macronutrient and Tl analy-
sis. Foliar diagnosis is a direct evaluation method 
that utilizes nutrient concentrations in plant tissues 
as an indicator of nutritional status. In general, recent 
matured and physiologically active leaves are the 
plant organs, which better reflect the nutritional sta-
tus. They respond more readily to variations in nutri-
ent supply and are, thus, better qualified as samples 
(De Mello & Caione, 2012).

The leaf N concentration was evaluated in the 
extract resulting from the acid digestion of dry leaf 
tissue with a solution of C7H6O3 in H2SO4 at a con-
centration of 3.3%, as described in the micro-Kjeldahl 
method (Alcántar & Sandoval, 1999). For the deter-
minations of P, K, Ca, Mg, S, and Tl, the samples 
were subjected to acid digestion with HNO3:HClO4 
(2:1; v:v) and the extracts were read in an inductively 
coupled plasma optical emission spectrophotometer 
(ICP-OES 725-ES; Agilent; Santa Clara, CA, USA). 
With the concentrations obtained, the concentration 
ratios between N and the rest of the macronutrients 
evaluated in each dose of Tl supplied were estimated. 
Additionally, as a growth parameter, the shoots dry 
biomass weight was considered, which was deter-
mined by adding the weights obtained in leaves and 
stems.

2.4 � Data Analysis

From the data obtained, analysis of variance and 
comparison of means tests were performed (Tukey, 
0.05) (SAS, 2011). To identify the main patterns of 
macronutrient foliar concentrations, we performed a 
principal component analysis (PCA), an exploratory 
statistical method for graphical description of the 
information present in large datasets. This analysis 
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was carried out using the FactoMineR library of the 
RStudio v.1.2.1335 software (R Core Team, 2018).

The sizes of the standardized effects of Tl on the 
leaf concentrations of macronutrients were esti-
mated using the natural log of the response rela-
tionship (ln RR) between plants treated with Tl and 
untreated plants (Hedges et  al., 1999) as indicated 
in the following formula:

Values of ln RR equal to zero indicate that there is 
no difference between Tl-treated and control plants. 
Positive and negative values of ln RR indicate posi-
tive and negative effects respectively; XTl represents 
the leaf concentration of macronutrient X in plants 
treated with Tl, and XC represents the leaf concen-
tration of macronutrient X in plants of the control 
treatment.

3 � Results and Discussion

3.1 � Leaf Concentrations of Macronutrients

Nitrogen  The leaf N sufficiency ranges for the 
Jalapeño, Poblano, and Serrano varieties are from 
38 to 42 (Johnson & Decotearu, 1996), from 45 
to 53 (Cruz-Crespo et  al., 2014), and from 21 to 
34  g  kg−1 on a dry basis (Carballar-Hernández 
et  al., 2018), respectively. The results obtained 
here for Jalapeño, Poblano, and Serrano are within, 
below, and above the ranges of sufficiency, respec-
tively, independently of the Tl treatments (Fig. 1). 
Tl had a differential effect on the N concentration 
among varieties. The significant reduction of 2.8% 
in Serrano stands out with the 11 nM Tl treatment, 
compared to the control. In Poblano, increases of 
3.6 and 8.5% are recorded with respect to the con-
trol, with 5.5 and 11 nM Tl, respectively (Fig. 1). 
Increased N concentration is a response mecha-
nism to counteract metal toxicity within cells in 
plants (Kapusta & Godzik, 2013). In poplar (Popu-
lus deltoides × P. nigra) exposed to toxic doses of 
Cd, the adequate supply of N increased the chloro-
phyll content and improved the health status of the 
plant (Zhang et al., 2014).

lnRR = ln[X
Tl
∕X

C
]

Phosphorus  The sufficiency ranges of P for Jala-
peño and Poblano are from 2.2 to 7.0  g  kg−1 dry 
matter (Mills & Jones, 1996), and the results of this 
study are within this range. In the case of Serrano, at 
all Tl levels evaluated, the values were below the suf-
ficiency range, which is from 2.3 to 2.6 g  kg−1 on a 
dry basis (Cruz-Crespo et al., 2014). In Jalapeño and 
Serrano, treatment with 5.5 nM Tl increased P con-
centration by 4.8 and 18.6%, compared to the control, 
respectively. The increase in P concentration with 
low Tl doses has not been documented. The expo-
sure to Cd increases the concentration of macronutri-
ents as a consequence of the alteration of the nutrient 
absorption and distribution rates within the plant, as 
a strategy to inhibit the accumulation of the metal or 
to increase tolerance to Cd; this effect has also been 
observed with beneficial elements such as selenium 
(Se) (Nazar et al., 2012). Contrarily, in Poblano, the 
mean Tl dose reduced the leaf concentration of P by 
4.8%, with respect to the control (Fig. 1).

Potassium  The leaf K concentrations were signifi-
cantly lower than the control when 5.5  nM Tl was 
applied in the Jalapeño and Serrano varieties. The 
leaf K concentrations obtained in Serrano pepper are 
within the sufficiency ranges of 47.6 to 50.8  g  kg−1 
dry matter (Cruz-Crespo et  al., 2014). In Poblano 
chili pepper, the concentrations obtained are above 
the sufficiency ranges, from 4.6 to 16.9  g  kg−1 dry 
matter (Carballar-Hernández et  al., 2018). In Jala-
peño, these concentrations are also higher than the 
range reported by Mill and Jones (1996), which were 
from 35 to 45 g kg−1 dry matter (Fig. 1).

Tl did not affect the leaf K concentration in the 
Poblano variety. Conversely, in Jalapeño and Serrano, 
the 5.5 nM Tl treatment reduced the K concentration 
by 15 and 13%, respectively (Fig. 1). The exact mech-
anism of Tl toxicity is not clear, but it is believed to 
be related to the interference of K-dependent vital 
processes, since Tl ions imitate the biological action, 
movement, and intracellular accumulation of K ions, 
thus affecting enzyme production, amino acid synthe-
sis, and transport mechanisms. Furthermore, Tl inter-
feres in the activity of Na+/K+ ATPase, since it has 
been found that Tl and K ions are univalent with sim-
ilar ionic charges and radii (Tl+, 1.76 Å; K+, 1.60 Å), 
which causes cell membranes not to have the ability 
to distinguish between these two ions (Rader et  al., 
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Fig. 1   Leaf concentration of N, P, K, Ca, Mg, and S in three chili pepper varieties treated with thallium (n = 6, � = 0.05 by Tukey’s multiple test)
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2019; Viraraghavan & Srinivasan, 2011). Impor-
tantly, most of these studies have been carried out in 
animal systems.

Calcium  Regarding the leaf Ca concentration, sta-
tistical differences were only observed among treat-
ments in the Jalapeño and Poblano varieties. In Jala-
peño, the 5.5 and 11  nM Tl doses reduced the Ca 
concentration by 8 and 10%, respectively. In Poblano, 
there was only a decrease with the 5.5  nM Tl dose 
compared to the 11 nM Tl dose. In Serrano, decreases 
in Ca concentrations were also observed with respect 
to the control, although differences were not signifi-
cant for any of the treatments (Fig. 1).

In the Poblano and Jalapeño varieties, the leaf 
concentrations obtained for Ca were within the suf-
ficiency ranges reported by Uchida (2000), which are 
from 10 to 25 g kg−1, while those recorded in Serrano 
leaves are below the ones reported by Cruz-Crespo 
et  al. (2014), ranging from 24.1 to 29.9  g  kg−1 dry 
matter. Although the Ca concentrations in the three 
varieties are within the sufficiency ranges, signifi-
cant reductions in this variable are observed in the 
Jalapeño variety when the plants were treated with Tl 
(Fig. 1). Conversely, plants exposed to metals such as 
Cd and Pb show increases in the Ca concentration as a 
defense mechanism to neutralize the toxicity of these 
elements given the function of Ca as a second mes-
senger (Thévenod, 2009). In tomato (Solanum lyco-
persicum) and eggplant (Solanum melongena), the 
application of low concentrations of Cd (1.5 mg L−1) 
and Pb (75 mg L−1) had stimulating effects on plants, 
including an increase in Ca concentrations, although 
higher levels of these metals (i.e., 150 mg L−1 Pb and 
3.0 mg Cd L−1) caused phytotoxic effects, with the Ca 
concentration being inversely proportional to the Pb 
and Cd concentrations applied (Khan & Khan, 1983).

Metals such as Cd and Pb enter the cell through 
the same transport mechanisms as Ca, that is, calcium 
channels in the plasma membrane. The replacement 
of Ca2+ by these metals represents a serious imbal-
ance in the cell, given the crucial role of Ca2+ as a 
second messenger in higher plants. As a pivotal sec-
ond messenger, Ca interacts with proteins such as 
calmodulin and calcineurin that decode spatiotempo-
ral patterns of intracellular concentration of this ele-
ment, which in turn regulate a wide range of signaling 
pathways including responses to abiotic stress (Mar-
chetti, 2013).

Magnesium  Mg concentrations in the Poblano 
variety were not affected by Tl treatments. In Jala-
peño and Serrano, Mg concentrations decreased when 
applying 11 and 5.5 nM Tl, respectively, in compari-
son to the control (Fig. 1).

The leaf Mg concentrations in the Jalapeño and 
Poblano varieties are within the sufficiency ranges 
reported for higher plants. Concentrations greater than 
15  g  kg−1 can be harmful to plants, limiting growth 
and inhibiting photosynthesis (Marschner, 2012). The 
critical level of Mg in leaf tissue for early identification 
of a deficiency is 2.1 g  kg−1 dry matter (Hauer-Jákli 
& Tränkner, 2019; Riga & Anza, 2003). The leaf Mg 
concentration in Serrano is within the range reported 
by Cruz-Crespo et al. (2014), from 11 to 12.8 g kg−1 
on a dry basis (Fig. 1). To date, there are no reports 
of leaf Mg concentrations in plants treated with Tl. 
Experiments evaluating the effects of Mg deficiency 
in plants show that visible symptoms appear at the leaf 
level below the sufficiency ranges: yellow to reddish 
leaves, interveinal necrosis, and senescence in mature 
leaves (Tanoi & Kobayashi, 2015). The presence of 
metals such as Al and Cd in plants causes damage 
to cell membranes, alters the absorption of nutrients, 
and decreases photosynthesis and the biosynthesis of 
many metabolites (Rengel et al., 2015). Furthermore, 
Mg, as a structural component of the chlorophyll mol-
ecule, is associated with numerous enzymes, includ-
ing ATPases, RNA polymerases, protein kinases, 
phosphatases, glutathione synthase, and carboxylases. 
Mg is essential for membrane stabilization, and, con-
sequently, when Mg is deficient, antioxidant protec-
tion mechanisms and cell homeostasis in the plant are 
hindered (Hermans et al., 2011).

Sulfur  Thallium did not affect leaf S concentrations 
in any of the three pepper varieties evaluated (Fig. 1).

In Jalapeño chili pepper, leaf S concentrations 
have been reported higher than 0.39 g kg−1 (Azofeifa 
& Moreira, 2008). In Poblano, S concentrations of S 
were within the sufficiency ranges (1 to 5  g  kg−1 S 
on a dry basis) reported for higher plants (Marsch-
ner, 2012). Finally, the concentrations in Serrano are 
below those reported by Barker and Pilbeam (2007), 
which range from 3 to 7  g  kg−1 S on a dry basis. 
Maintaining S sufficiency concentrations is essential 
to the optimal development of plants. Since S-con-
taining compounds such as the amino acids cysteine 
and methionine are crucial components in plant 
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metabolism, S deficiencies may drastically hamper 
diverse biological processes, including hydraulic con-
ductivity, stomatal opening, net photosynthesis, leaf 
area, chlorophyll concentration in leaves, and protein 
synthesis (Wawrzynska et al., 2015).

The macronutrient concentration results obtained 
in here indicate that Tl has differential effects among 
varieties. Although the effect of Tl on nutritional sta-
tus in higher plants has not been extensively docu-
mented, it is well known that high levels of other met-
als such as Cu, Ni, and Cd affect the absorption and 
therefore the concentration of nutrients in plants (Arif 
et al., 2016; DalCorso et al., 2014).

Principal component analysis (PCA) revealed that 
the sum of principal component 1 and principal com-
ponent 2 (PC1 + PC2) represented 80.8, 72.3, and 
79.6% of the total variance of macronutrient concen-
tration in leaves of the Jalapeño, Poblano, and Ser-
rano varieties, respectively (Fig.  2), with PC1 being 
the dominant one. Likewise, in the Jalapeño variety, 
a clear separation of the nutritional concentrations 
was observed in the three clusters corresponding to 
the Tl levels. On the contrary, in the Poblano variety, 
there is less differentiation in the concentrations of 
macronutrients based on the levels of Tl. The follow-
ing section presents the results of the size and direc-
tion of the effects of Tl, generated using the natural 
log of the response relationship (ln RR), an ad hoc 
meta-analysis approach for ecological studies related 
to stress factors, in this case presence of Tl, a non-
essential element in higher plants.

3.2 � Size and Direction of the Effects of Tl on Leaf 
Concentrations of Macronutrients

The size and direction of the effect caused by the 
5.5 nM Tl dose on the leaf K concentration was sig-
nificant and negative, respectively, in the three varie-
ties of chili pepper. The same trend was observed in 
the leaf Ca concentrations of Jalapeño and Poblano 
with the 5.5 nM Tl dose. In hydroponic systems, Tl+ 
can use the absorption routes of monovalent cati-
ons, mainly K+, due to the similarity in ionic radii 
(K+ = 1.60 Å; Tl+ = 1.76 Å). Furthermore, Tl+ tends 
to mimic the biochemistry of K+ and has a higher 
affinity for organic ligands (Holubík et  al., 2021; 
Kwan & Smith, 1991). Likewise, the size and direc-
tion of the effect of the 11  nM Tl treatment was 

significant and negative on the leaf Mg concentration. 
The reduction in the concentration of K+ can affect 
the transport of water and the translocation of nutri-
ents to the aerial part, among them Ca2+ and Mg2+ 
(Hasanuzzaman et  al., 2018), as observed in this 
study.

Fig. 2   Principal component analysis for leaf nutrients concen-
trations in three chili pepper varieties treated with thallium (0, 
5.5, or 11 nM Tl) in the nutrient solution
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Regarding N, P, and S, the size and direction of the 
effect of Tl was dose dependent and different among 
varieties. The 11  nM Tl dose significantly affected 
leaf N concentration in Poblano and Serrano, being 
positive in the former and negative in the latter.

Significant and positive effects of 5.5  nM Tl on 
the leaf P concentration in Jalapeño and Serrano 
were recorded; contrarily, this same dose caused a 
significant negative effect on the P concentration in 
Poblano. Both 5.5 and 11  nM Tl caused effects of 
significant size and of positive direction in the leaf S 
concentration in Jalapeño and Poblano (Fig.  3). The 
significant positive effects recorded may be related 
to the stimulation of mechanisms aimed at mitigat-
ing negative effects of Tl, and thus being indicators of 
tolerance in the varieties.

3.3 � Macronutrient Ratios in Leaves

The interaction among nutrients in plant tissues is of 
great importance as it is a valuable diagnostic tool 
that helps us to know and maintain optimal concen-
trations. Any imbalance in nutritional ratios can alter 
cell homeostasis and limit crop yield (Sardans et al., 
2017; Sinclair et al., 1997). The ratio between foliar 
nutrient concentrations of N and the rest of the nutri-
ents for the Jalapeño, Poblano, and Serrano varieties 
treated with Tl is shown in Table 1.

The N:K ratio increased with the 5.5 nM Tl dose 
in Jalapeño and Serrano, with respect to the control, 
while in Poblano, both evaluated Tl doses (5.5 and 
11 nM Tl) increased it. The N:Ca ratio increased in 
Jalapeño with 5.5 and 11  nM Tl, while in Poblano, 
it increased only with the 5.5  nM Tl dose, in both 
cases with respect to the ratio recorded in the absence 
of this element. In the N:S relationship, effects of 
Tl were also observed, where the 11  nM Tl dose 
increased this ratio in Jalapeño and Serrano, and the 
5.5 nM Tl dose increased it in Serrano (Table 1).

The Jalapeño and Serrano varieties showed a posi-
tive and significant interaction between the Tl con-
centration in the nutrient solution and the N:K and 
N:Mg leaf concentration ratios (Table  1). This may 
suggest a competition for absorption sites between 

these two ions, since these elements can associate 
synergistically or antagonistically in the plant (Kam 
et  al., 2019; Mazur et  al., 2016). The interaction 
between nutrients is directly related to the absorption 
of metals present in the soil solution, which depends 
on the internal mechanisms of each species or vari-
ety studied (Smical et al., 2008). This may explain, at 
least in part, the different behavior of the chili pepper 
varieties evaluated in response to Tl.

Similar results have been observed in wheat seed-
lings exposed to 1 mg Cd L−1, revealing that varieties 
exposed to Cd increased the nutritional concentration 
of N, P, K, and Mn, and decreased that of Mo. This 
response could be attributed to the genotypic differ-
ence of the plants and their tolerance capacity to Cd 
(Zhang et al., 2002).

In the present study, varieties evaluated displayed 
different responses to Tl exposure. The nutritional 
status was affected by Tl in the following order: Jala-
peño > Serrano > Poblano. Coincidentally, Jalapeño, 
Serrano, and Poblano seeds treated with 25 � M Tl 
decreased germination by 7.7, 7.5, and 5.3%, respec-
tively, as compared to the control (Buendía-Valverde 
et al., 2018).

Plants are generally sensitive to the presence of 
non-essential metals, but at low concentrations, these 
could stimulate proper growth and development (Arif 
et  al., 2016). Due to its high toxicity, we tested low 
concentrations of Tl in the present study. This could 
explain in part the relatively low variation in leaf con-
centrations of macronutrients.

Considering that Tl is a non-essential element in 
plant nutrition, and that it produces different effects 
among the evaluated varieties, it can be inferred that 
this element interferes with the absorption of nutri-
ents, probably by affecting the permeability of the 
plasma membrane. However, more studies are needed 
to explore the mechanisms that this element alters 
within the plant.

3.4 � Foliar Concentration of Thallium

A few studies have quantified specific concentrations 
of Tl in plant tissues, although it is reported that this 
element can be found in concentrations lower than 
0.1 mg kg−1 on a dry basis (Kazantzis, 2000). In this 
study, foliar concentrations of Tl in control plants 
ranged between 0.7 and 1.8 mg kg−1 on a dry basis. 
In Tl-treated plants, Tl concentrations ranged from 12 

Fig. 3   Effect size and direction of thallium on macronutrient 
concentrations in the leaves of three chili pepper varieties. Pos-
itive and negative values indicate positive and negative effects, 
respectively. The asterisk indicates significant effects (n = 6)

◂
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to 26.6  mg  kg−1 on a dry basis (Fig.  4). These val-
ues are lower than those reported for barley (Hor-
deum vulgare) and sunflower (Helianthus annuus), 
with concentration of 30–246 and 89–637 mg kg−1 of 
dry matter of stems, respectively (Kim et al., 2016). 
In five cultivars of green cabbage (Brassica oleracea 
L. var. capitata L.), a Tl hyperaccumulating plant, 
established in soil, the concentrations of this element 
in leaves ranged between 101 and 192  mg  kg−1 of 
dry matter (Ning et al., 2015). Likewise, in Tessaria 
absinthioides growing in the soil and in the wild, in 
mining areas contaminated with Tl, foliar concen-
tration ranges of Tl between 0.01 and 0.07 mg  kg−1 

were reported. The highest concentrations were 
recorded in areas where the level of Tl in water was 
120  ng L−1 (0.587  nM Tl) (Queirolo et  al., 2009). 
These results show the differences in foliar concen-
tration of Tl not only depend on plant genotype, but 
also on the production system. In edible parts of chili 
peppers, Tl concentration has been reported among 
0.17 mg  kg−1 on a dry basis (D’Orazio et al., 2020) 
and 2.91–5.31  mg  kg−1 on a dry basis (Jiang et  al., 
2020).

3.5 � Shoot Biomass Production

Exposure to Tl did not significantly affect the dry 
biomass of shoots in any of the three chili varieties 
evaluated (Table 2). Coincidently, biomass produc-
tions as not affected by the doses of Tl tested, nei-
ther. Interestingly, no visual symptoms revealing 
nutrient deficiencies or toxicities caused by Tl were 
observed. In white mustard (Sinapis alba L.), Tl 
toxicity was observed in leaves when its concentra-
tion in the nutrient solution increased from 0.489 to 
4.89 μM, after 4 weeks of treatment (Mazur et  al., 
2016). Such Tl levels are very high compared to 
those evaluated in our study. Roots are the best Tl 
bioaccumulators, as compared to shoots (leaves 
and stems) (Queirolo et  al., 2009). Furthermore, 
the Tl bioconcentration capacity among plant spe-
cies follows the following gradient: rhizome veg-
etables > leafy vegetables > fruit vegetables (chili in 
this category) > cereal (Jiang et al., 2020).

Table 1   Nutrient 
concentration ratios 
between N and the rest of 
the macronutrients analyzed 
in chili pepper leaves 
treated with thallium (Tl) 
for 80 days

Means ± SD with different 
letters in each variable 
indicate significant 
differences (n = 6, � = 0.05 
by Tukey’s multiple test)

Jalapeño
Tl (nM) N:P N:K N:Ca N:Mg N:S
  0.0 15.30 ± 0.61a 0.75 ± 0.01c 1.67 ± 0.01c 2.99 ± 0.04b 27.41 ± 0.26a
  5.5 14.11 ± 0.26a 0.86 ± 0.01a 1.78 ± 0.03b 2.94 ± 0.04b 25.14 ± 0.47b
  11.0 15.43 ± 0.31a 0.82 ± 0.01b 1.90 ± 0.02a 3.47 ± 0.03a 26.68 ± 0.48a

Poblano
Tl (nM) N:P N:K N:Ca N:Mg N:S
   0.0 15.48 ± 1.16a 0.97 ± 0.05 c 1.63 ± 0.05 b 3.15 ± 0.04 b 26.97 ± 0.38b
  5.5 16.63 ± 1.08a 1.06 ± 0.02 b 1.79 ± 0.04 a 3.28 ± 0.04 b 27.71 ± 0.30ab
  11.0 16.89 ± 0.79a 1.13 ± 0.05 a 1.71 ± 0.06 ab 3.59 ± 0.11 a 28.82 ± 0.82 a

Serrano
Tl (nM) N:P N:K N:Ca N:Mg N:S
  0.0 26.96 ± 0.17 a 0.92 ± 0.02 b 2.10 ± 0.03 a 2.74 ± 0.06 b 24.36 ± 0.03 a
  5.5 22.94 ± 0.53 b 1.06 ± 0.03 a 2.17 ± 0.03 a 3.15 ± 0.10 a 26.66 ± 1.38 a
  11.0 24.64 ± 1.09 b 0.92 ± 0.01 b 2.09 ± 0.03 a 2.84 ± 0.06 b 25.00 ± 0.85 a

Fig. 4   Leaf concentration of Tl in three chili pepper varieties 
treated with thallium (n = 6, � = 0.05 by Tukey’s multiple test)
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4 � Conclusions

Herewith, we demonstrated that the exposure to Tl 
has different effects on the nutrient status of three 
chili pepper varieties: Jalapeño, Poblano, and Ser-
rano. Jalapeño was the most affected variety, while 
Poblano was the least. The susceptibility of the 
Jalapeño variety to Tl was evidenced in the sig-
nificant negative correlations between this metal 
and the foliar concentrations of Ca and Mg, as well 
as with the Ca:S and Mg:S concentration ratios. 
Also in Jalapeño, the Tl concentration in the nutri-
ent solution was positively related to the leaf N:K, 
N:Ca, N:Mg, P:Ca, and P:Mg concentration ratios. 
On the contrary, in Poblano, Tl only correlated sig-
nificantly and positively with the leaf Mg:S con-
centration ratio. The principal component analysis 
demonstrated that the sum of principal component 
1 and principal component 2 represented 80.8, 72.3, 
and 79.6% of the total variance of macronutrient 
concentration in leaves of the Jalapeño, Poblano, 
and Serrano varieties, respectively, with principal 
component 1 being the dominant one. Tl did not 
affect shoot dry biomass in any of the three varieties 
evaluated, though plants exposed to this element 
concentrated 12.0 to 26.6  mg  kg−1 on a dry basis. 
Thus, different genotypes of chili pepper exhibit dif-
ferent responses to Tl.

Data Availability  The datasets generated during and/or ana-
lyzed during the current study are available from the corre-
sponding author on reasonable request.
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