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DTPA-extractable Cd (48 mg.kg−1 to 12.81 mg.kg−1) 
and Pb (90.23  mg.kg−1 to 15.91  mg.kg−1). And 5% 
SSB500 amendment more remarkably transformed 
Cd and Pb from the acid-soluble state to the residual 
state than other treatments, demonstrating that the 
high pyrolysis temperature and application amount 
had great influence for transformation of Cd and Pb. 
In addition, the microbial community in the soil was 
significantly changed by 5% SSB500 application. At 
the phylum level, Chloroflexi is the dominant species, 
due to its strong tolerance in Cd-contaminated soil. 
At the genus level, the relative abundance of Thio-
bacillus and Defluviicoccus increased, which would 
enhance inorganic ion transport and metabolism 
functions to promote passivation and stabilization of 
heavy metals throughout the remediation process.

Keywords Sewage sludge biochar · 
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1 Introduction

In recent years, agricultural soil contamination by 
heavy metals (such as Cd and Pb) has become a sig-
nificant concern due to its high mobility and easy 
accumulation in crops (Yang, et  al., 2018). Cd and 
Pb are usually released into the soil by human activi-
ties such as excessive agricultural inputs, wastewater 

Abstract In order to investigate the effect of vari-
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irrigation, coal combustion, mining, and smelting 
(Quan, et  al., 2021). An intensive national soil sur-
vey in China showed that 19.4% of the agricultural 
soil samples (equivalent to about 26 million ha) were 
contaminated with Cd and Pb during 2005 and 2013 
(Zhao, et al., 2015). Cd and Pb have negative effects 
on organisms, including the potential induction of a 
series of physiological and neurological disorders 
(Buha, et al., 2018; Khanam, et al., 2020). Therefore, 
sustainable management of paddy soil to reduce the 
simultaneous mobilization and utilization of Cd and 
Pb has become an urgent issue. Many techniques 
have been developed for the remediation of heavy 
metals in soil, including electrokinetic remediation 
(Wang, Sun, et  al., 2021), phytomicrobial remedia-
tion (Mishra, et al., 2021; Thakare, et al., 2021), bio-
char fixation remediation (Wang, Shi, et  al., 2021), 
and clay mineral adsorption (Otunola and Ololade, 
2020). Compared to these traditional soil remediation 
methods, biochar enhancement is a very perspective 
technology because of its high efficiency and low cost 
(Wang, Shen, et  al., 2021). The practice of biochar 
to immobilize heavy metals in soil by reducing their 
mobility and bioavailability has been widely reported 
(Beckers, et al., 2019; Jörg, et al., 2020).

Research has mainly focused on the production 
of biochar from agricultural and forestry waste and 
animal manure, which have shown potential as metal 
adsorbents with higher adsorption capacity in soil 
(Hopkins and Hawboldt, 2020, Eikelboom, et  al., 
2018). Nowadays, biochar produced from sewage 
sludge feedstock is considered as an attractive mul-
tiple functional material for heavy metal stabiliza-
tion and soil quality improvement (Liu, Gong, et al., 
2020). Sewage sludge is a popular feedstock for 
biochar preparation and has attracted much atten-
tion due to its high mineral content (Lam, et  al., 
2020). SSB is commonly used for soil amendment 
(Liu, Huang, et al., 2021), which provided a sustain-
able pathway for the ever-increasing resourceful-
ness of sludge (Tomczyk, et al., 2020). Islam et al. 
(2021) found that that pulp mill sludge biochar 
had a larger specific surface area, richer functional 
groups (Islam, et  al., 2021), and stronger heavy 
metal adsorption capacity than rice straw biochar. 
Soil physicochemical properties such as soil pH, 
cation exchange capacity, and organic matter con-
tent have influence on the solidification and stabi-
lization of heavy metal by biochar in soil (Shentu, 

et al., 2022). For example, application of biochar to 
acidic contaminated soil raised the pH of the soil 
(Fang, et  al., 2016; Mansoor, et  al., 2021). Shentu 
et al. (2022) investigated the effects of groundwater 
level fluctuations on the dispersion and morphol-
ogy of Cu, Ni, Pb, and Zn by column experiments, 
which found that the stability of heavy metals in the 
fluctuating and seated zones was better than that in 
the unsaturated zone (Shentu et  al., 2022). Due to 
the complexity of the soil environment (microbial 
communities), integrated considerations were often 
required in pollution control. Microorganisms such 
as Pseudomonas syringe, Escherichia coli, Bacillus, 
and Staphylococcus could enrich and precipitate sta-
ble processes of heavy metals (Yang et  al., 2021a). 
Because of microbial metabolic processes, heavy 
metals would precipitate and be slightly chelated 
on soluble or insoluble macromolecules. Although 
microorganisms in contaminated soil were resist-
ant to heavy metals, their low activity or insufficient 
number of microorganisms often makes their reme-
diation capacity insufficient. Therefore, the regula-
tion and coupling effect of biochar on soil microor-
ganisms during soil heavy metals immobilization are 
receiving increasing attention (Tian, et al., 2020).

The most important factor determining the effec-
tiveness of sludge biochar remediation is the diversity 
of its physicochemical properties (Kong, et al., 2021). 
One of the critical factors is pyrolysis temperature. 
Higher pyrolysis temperatures can reduce the H and 
O content, increase the ash and carbon, and change 
the surface structure or functional groups, which can 
greatly change the properties of biochar (Qu, et  al., 
2020; Xing, et al., 2019). Liu, Graham, et al. (2021) 
investigated the effect of different pyrolysis biochar 
on Cd and Pb in soil by using  HNO3-treated oxidized 
balsam at 300 and 600  °C and the results showed a 
6.9-times and 5.6-times higher uptake capacities, 
respectively (Liu, Graham, et al., 2021). In addition, 
municipal sludge biochar is rich in heavy metals and 
would release into the soil over time, which could 
lead to secondary contamination of the soil (Wang, 
et al., 2020). Thus, application amount of biochar in 
remediation process became an important factor (de 
Figueiredo, et al., 2019). Irfan et al. (2021) have stud-
ied 0%, 2%, 4%, and 6% (w/w) biochar application 
in farm topsoil (0–20 cm) and found that 6% biochar 
application was most efficient in declining the bio-
availability of Pb, Cd, and Cr (Irfan, et al., 2021). The 
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above studies suggested that pyrolysis temperature 
and application amount were essential factors to be 
conducted to stabilize heavy metals. However, there 
were few studies to focus on the combined effects 
of pyrolysis temperature, application amount, and 
microbial community on the passivation and stabili-
zation of heavy metals in soil.

In this study, SSB300 and SSB500 were pyrolyzed 
with municipal sludge at 300 °C and 500 °C, respec-
tively. Sixty-day soil incubation experiments were 
conducted to simulate the complex Cd–Pb immobili-
zation process in paddy soil by different application 
amount (1%, 3%, 5%) of SSB300 and SSB500. Dur-
ing the soil incubation experiments, the bioavailabil-
ity and speciations of Cd and Pb were evaluated by 
DTPA and BCR. Furthermore, the effects of SSB on 
the abundance of microorganisms and the diversity 
of microorganisms in Cd–Pb complex contaminated 
soil were investigated by high-throughput sequencing 
(HTS) of the 16S rRNA gene and principal compo-
nent analysis (PCA). This work will provide a theo-
retical foundation for the application of SSB in Cd/
Pb-contaminated soil.

2  Materials and Methods

2.1  Sample Collection and Biochar Preparation

The soil was collected from a rice field in Songjiang 
District, Shanghai (121°9′25″E 31°5′13″N), and then 
dried and passed through a 10-mesh sieve and refrig-
erated. The physicochemical properties of the soil 
are shown in Table S1. Municipal sewage sludge was 
obtained from Shanghai Songjiang Sewage Treatment 
Plant. The feedstock was dried in an oven at 105 °C 
for 48 h and then fully ground and sieved through 60 
mesh. A certain amount of feedstock was weighed 
and put into a vacuum tube furnace for pyrolysis at a 
heating rate of 10 °C/min. The pyrolysis temperature 
was fixed at 300 °C and 500 °C for 2 h.

The pH of SSB was measured by a pH meter 
(PHS-3C, Remagnet) at a ratio of 1:20 SSB/water 
(w/v). Ash content of SSB was calcined at 800 °C for 
2 h in a muffle furnace. C, H, and N elements con-
tained in the SSB were measured using an elemental 
analyzer (Vario EL III). Specific surface area of the 
SSB was measured by a fully automated rapid spe-
cific surface area and porosity analyzer (Autosorb-iQ, 

Quadrasorb, USA). The infrared spectra of SSB were 
measured by FTIR (Nicolet 6700, Thermo, USA). 
The microscopic features of SSB were observed by 
SEM (S-4800, Hitachi, Japan).

2.2  Incubation Experiments and Sample Analysis

The incubation experiments were carried out in a con-
stant temperature incubator (25 °C). Certain amounts 
of SSB300 and SSB500 were added to 600  g con-
taminated soil to achieve final application rates of 1%, 
3%, and 5% (w/w). DI water was added to the mix-
ture to achieve a final soil moisture level of 70% and 
then mixed thoroughly to achieve homogeneity. Water 
loss was replenished with DI water every 2 days. Soil 
samples were collected on 7, 15, 30, and 60 days for 
further analysis.

DTPA-extractable Cd and Pb in soil were analyzed 
(Sun, et  al., 2021a) according to the method of Sun 
et  al. (2021a). Cd and Pb fractions in the soil were 
analyzed by a modified BCR sequential extraction 
method (Gao, et al., 2020). The concentrations of Cd 
and Pb were analyzed by inductively coupled plasma-
mass spectrometry (Z-2000, Hitachi, Japan).

2.3  High-Throughput Sequencing and Analysis

To investigate the microbial community diversity 
characteristics of soil samples after SSB500 addition, 
blank and soil with 5% SSB500 addition after 60-day 
incubation were collected for microbial community 
analysis by high-throughput sequencing (HTS) of 
16S rRNA genes and principal component analysis at 
Meiji Biotechnology Co. polymerase chain reaction 
(PCR); amplification primers 338F (ACT CCT ACG 
GGA GGC AGC AG) and 806R (GGA CTA CHVGGG 
TWT CTAAT) were used.

The amplified samples were sequenced, and the 
data were processed to remove bad sequence data 
and detect suspicious chimeras to obtain high qual-
ity bacterial sequence data. To enhance compara-
bility between samples, OTU clustering was per-
formed based on the similarity between sequences 
(similarity > 97%); community composition analy-
sis and principal component analysis were per-
formed on the data. The raw sequencing date has 
been uploaded into the NCBI database Sequence 
Read Archive (SRA) and the accession number is 
SUB11379370.
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3  Results and Discussions

3.1  SSB Characterization

Physicochemical properties of SSB300 and SSB500 
are listed in Table 1. The SSB yield decreased from 
69.14% to 52.97% as the temperature raised from 
300  °C to 500  °C. The reduction in SSB yield was 
mainly due to the decomposition of more organic 
matter at higher temperatures (Yuan, et  al., 2015). 
With the pyrolysis temperature increased, the min-
eral ash content of SSB enhanced. The ash contained 
oxides and carbonates of Na, K, Ca, and Mg, which 
were alkaline in aqueous solution, and the surface of 
SSB was rich in alkaline groups (-COO- and -O-), 
raising the pH of SSB (Meier, et al., 2017). Elemen-
tal analysis found that C, H, O, and N contains in the 
SSB500 were less than those in SSB300. The H/C, 
O/C, and (O + N)/C atomic ratios were usually used 
to estimate the hydrophilic, aromaticity, and polarity 
of the SSB (Yuan et al., 2015), respectively. It can be 
seen from Table 1 that the aromaticity and hydropho-
bicity of SSB raised and the polarity reduced with 
increasing pyrolysis temperature, which was consist-
ent with previous research (She, et al., 2020).

The SSB300 and SSB500 surface functional-
ity was analyzed by FTIR spectroscopy for reveal-
ing the functional group changes on the surface. As 
shown in Fig. 1, the spectra were compared to reflect 
the effect of pyrolysis temperature on the presence of 
various functional groups. The FTIR peak observed 
in SSB300 and SSB500 at approximately 3432  cm−1 
was assigned to O–H stretching of alcoholic or phe-
nolic functional groups. The hydroxyl vibration peak 
of SSB500 reduced compared to SSB300; the higher 
pyrolysis temperatures detached the bound water 
and caused the hydrogen-bonded -OH to break. The 
stretching vibration peak of aliphatic -CH2 was near 
2925   cm−1. The intensity of the aliphatic -CH2 peak 
also declined with increasing pyrolysis temperature, 
indicating a reduction in non-polar aliphatic func-
tional groups on the surface of SSB. It was owing to 

that most of the organic aliphatic hydrocarbons in the 
sludge decompose into gasses such as  CH4 and  CO2 
at high temperatures, which increased the aromaticity 
of the SSB. The absorption peak at 1631   cm−1 was 
the absorption peak stretching vibration of the amide 
carbonyl group, and the O–H bending vibration peak 
at 1450–1400  cm−1 could be used as a determination 
of the presence of carboxylic acid compounds. The 
increase in pyrolysis temperature led to a decrease 
in aliphatic functional groups and an increase in aro-
matic structures in the sludge-derived biochar, which 
was consistent with the results reported by Zhang 
et al. (2022). The reason may be due to the aryl ring 
which was able to supply π-electron and form strong 
bond against heavy metal ion (Zhang, et al., 2022).

3.2  Bioavailability of Cd and Pb

During the 60-day incubation, the change of DTPA-
extractable Cd in the tested soil is displayed in Fig. 2 
(a). The content of Cd bioavailability in the soil was 
significantly reduced with the addition of SSB. The 
stabilization efficiencies of Cd in soil at the 1%, 3%, 

Table 1  Basic physicochemical properties of SSB

SSB Yield (%) Ash (%) pH BET  (m2/g) C (%) H (%) O (%) N (%) H/C O/C (O + N)/C

SSB300 69.14 47.73 6.65 20.47 25.48 2.67 20.27 3.85 1.26 0.60 0.38
SSB500 52.97 67.25 7.30 60.53 20.36 1.05 8.30 3.04 0.62 0.31 0.22
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Fig. 1  FTIR spectra of SSB
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and 5% application amount (SSB300) were 45.83%, 
56.23%, and 67.61%, respectively. The stabiliza-
tion efficiency of 1%, 3%, and 5% application rate 
(SSB500) for Cd in soil was 49.69%, 62.23%, and 
70.61%, respectively. Obviously, the stabilization effi-
ciency of 5% SSB500 for Cd was much better than 
5% SSB300. The soil with 5% SSB500 application 
showed greatest impact, which was a 72.98% reduc-
tion in Cd bioavailability compared to the blank 
group (from 47.45 to 12.82 mg/kg). This was consist-
ent with previous research (Zhu, et  al., 2017). Fig-
ure  2 (b) reflects the effects of SSB application on 
the bioavailability of Pb in soil. Similarly, the content 
of Pb bioavailability was higher in SSB300-treated 
samples than in SSB500-treated samples. Possible 
reasons were the higher pyrolysis temperature of the 
SSB had more specific surface area and pore vol-
ume, which could provide more habitat for Cd and Pb 
(Yang et al., 2021b). Therefore, the higher the appli-
cation amount, the greater reduction in the bioavaila-
bility of Pb. The bioavailability of Pb was reduced by 
82.4% (from 90.23 to 15.91 mg/kg) in the soil after 
applied with 5% SSB500 in current research.

The main reason for the better passivation effect 
of SSB addition on heavy metals was that SSB pos-
sessed a large specific surface area, which enhanced 
the permeability of the soil and provided a suitable 
environment for microorganisms in the soil (Meier 
et  al., 2017). In addition, due to the larger specific 
surface area of SSB300 and SSB500, it reduced the 
solubility of heavy metals by adsorption, and thus 
availably reduced the migration of heavy metals 
in soil (She et  al., 2020). Moreover, Li et  al. (2020) 
reported that biochar contained a large number of 
organic functional groups (-C–OH, -C = O, COO-) 
and could complex with heavy metal Cd (II) or inor-
ganic salt ions (Si,  S2−,  Cl−, etc.) (Li, et  al., 2020). 
It was another reason why SSB reduced the bioavail-
ability of Cd and Pb in soil. In agreement with the 
results of Zhou et al. (2017), the application of SSB 
in contaminated soil reduced the ecotoxicity and 
mobility of Cd and Pb in soil (Zhou, et al., 2017).

3.3  Speciation of Cd and Pb in Soil

The BCR method classifies the Cd state in soil into 
four speciation, including acid soluble, reducible, 
oxidizable, and residual state (Qureshi et  al., 2020). 
Figure 3 shows the effect of different SSB treatments 

on the distribution of Cd morphology. For the blank 
treatment in Fig.  3(a), the main state of Cd in the 
initially contaminated soil (0-day) was acid solu-
ble state, which accounted for about 53.83%. Acid 
soluble state reflected the toxicity of heavy metals 
and was easily absorbed by plants (Liu, Xiao, et al., 
2020). After 60-day incubation, acid soluble state in 
the soil decreased from 29.13 mg/kg to 20.18 mg/kg. 
Residual state was the most stable state in the soil and 
had a crystalline structure of soil minerals that were 
not available to plants (Xu, et  al., 2016). Residual 
state in the original contaminated soil increased from 
7.67 mg/kg (0 day) to 13.79 mg/kg (60 days), due to 
the soil having self-purification function and stabiliz-
ing effect on heavy metals.

For the SSB treatments in Fig. 3(b)–(g), acid sol-
uble state of Cd was significantly reduced and the 
residual state increased in the soil with SSB applica-
tions after 60-day incubation. Especially, there was a 
49.70% (from 25.13 mg/kg to 12.64 mg/kg) reduction 
in acid soluble state and a 94.14% (from 12.98  mg/
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kg to 25.20  mg/kg) increase in residual state for 
5% SSB500 treatment in Fig.  3 (g). As observed in 
Fig.  3(f) and (g), 5% SSB500 was able to convert 
more of the Cd acid soluble state to the residual state 
than 5% SSB300. Additionally, in Fig. 3(c), (e), and 
(g), the passivation and stabilization of Cd became 
more effective with the application amount of SSB 
increased.

As shown in Fig. 4, SSB had the similar influence 
on Pb stabilization process compared with Cd. For all 
treatments with 60-day incubation, acid-soluble state 
in Cd and Pb both decreased significantly, whereas 
the relative residual state increased significantly. And 
the effect of 5% SSB500 was more obvious than the 
1% and 3% application amount. Adding 5% SSB500 
to the soil, the acid soluble state of Pb declined by 
73.07% (from 27.37 mg/kg to 7.37 mg/kg), while the 
content of residual state increased by 93.21% (from 
27.67 mg/kg to 53.46 mg/kg). Sun et al. (2021b) also 
found that Pb tended to be more stable with the for-
mation of stable minerals at a higher SSB application 
amount (Sun, et al., 2021b).

As the results shown in Figs. 3 and 4, the higher 
application amount and pyrolysis temperature, the 
higher degree of passivation and stabilization of Cd 
and Pb in the soil. Wang et al. (2022) also found that 
As and Pb mobility in contaminated soil was reduced 
by the addition of sulfide FeO coated biochar in dif-
ferent pyrolysis temperatures and application amounts 
(Wang, et  al., 2022). Tan et  al. (2017) explored at 
different pyrolysis temperatures and the effect of 
pyrolysis temperature on the surface charge of SSB 
(Tan, et  al., 2017). The negative charge on the sur-
face of SSB gradually decreased with increasing tem-
perature, while the fixation of Cd and Pb increased. 
Factors such as ash content, pH, oxygen-containing 
functional groups, polar groups, and hydrogen bond-
ing of SSB could affect its surface charge. The deter-
minants of surface charge were hydroxyl groups, and 
the hydroxyl group content declined with increasing 
temperature, leading to a reduction in negative sur-
face charge (She et  al., 2020). The pyrolysis tem-
perature affected the chemical composition structure 
of SSB, causing changes in soil properties (specific 
surface area) and also differences in the adsorption 

mechanism of heavy metals, thus remarkably influ-
encing the availableness of SSB remediation of heavy 
metals.

3.4  Microbial Community Composition Analysis

Microorganisms were the leaders of various biogeo-
chemical processes in soil (Xie, et al., 2021), and they 
were directly and indirectly affected by the content 
of soil heavy metals (Piotrowska-Seget, et al., 2004). 
Heavy metal contamination could reduce microbial 
abundance, diversity, and biochemical activity and 
alter community structure (Ellis et  al., 2003). In the 
current study, the speciation of Cd and Pb in soil was 
responded by the abundance of microorganisms at the 
phylum and genus levels after 60-day incubation. As 
shown in Fig. S5, the Shannon index of soil samples 
incubated with 5% SSB500 increased significantly, 
reflecting the increase in microbial diversity in soil 
after 5% SSB500 application to soil (Ji, et al., 2020).

As seen in Fig.  5(a), the dominant phyla of bac-
teria in several groups of samples were Proteobacte-
ria, Actinobacteria, Firmicutes, Bacteroidotas, and 
Chloroflexi. The presence of these microorganisms 
in large relative abundance demonstrated that they 
played an important role in heavy metal–contami-
nated soil and were well-adapted to extreme envi-
ronments (Xie et  al., 2021). The relative abundance 
of Proteobacteria in the 5% SSB500 added incuba-
tion group decreased from 31.9% to 24.9% com-
pared to the blank group, when the bioavailable Cd 
and Pb contents were significantly lower, indicating a 
positive correlation between Proteobacteria and soil 
heavy metal content. The similar study by Gosai et al. 
(2018) found that Proteobacteria was more abun-
dant in the samples contaminated with heavy metals 
(Gosai, et  al., 2018) and this bacterium was highly 
tolerant to heavy metals (Guo, et  al., 2019). From 
the perspective of Proteobacteria, it can be shown 
that 5% SSB500 had a good passivation and stabi-
lization effect on soil Cd and Pb. As for the relative 
abundance of Actinobacteria (Zhu, et  al., 2013), the 
increase of this bacterium was negatively correlated 
with the Cd content in the soil, and the relative abun-
dance of Actinobacteria was significantly increased 
in the 5% SSB500 group, indicating a decrease in 
the toxicity of Cd in the soil after treatment with 
SSB500. The relative abundance of Chloroflexi in the 
soil applied with 5% SSB500 increased greatly. And 

Fig. 3  The effects of SSB on the distribution of Cd form in 
soil. a Blank, b 1% SSB300, c 1% SSB500, d 3% SSB300, e 
3% SSB500, f 5% SSB300, g 5% SSB500

◂
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the results of DTPA and BCR evidenced that the bio-
available state of Cd and Pb decreased significantly 
after 60-day incubation, as well as intensified the 
shift from the acid soluble state to the residual state 
of heavy metals. The results suggested that the rela-
tive abundance of Chloroflexi can reflect the reduc-
tion of heavy metal contamination in the soil. It was 
found that Chloroflexi could reduce heavy metal con-
tamination, increase soil organic carbon content, and 
promote soil respiration through extracellular pre-
cipitation, cell wall adsorption, enzymatic oxidation, 
and intracellular complexation (Zhang, et  al., 2020). 
Therefore, biologically effective heavy metals in soil 
could be reduced by cultivating Chloroflexi in soil, 

providing an important supporting role for passiva-
tion and stabilizing soil heavy metal research through 
microbial perspective.

The relative abundance of microorganisms in dif-
ferent treatment groups at the genus level is shown in 
Fig.  5(b). The main genera with high relative abun-
dance were Bacillus, Defluviicoccus, Massilia, Lyso-
bacter (genus Lysobacter), Sphingomonas, Pseudar-
throbacter, and Flavisolibacter. However, the other 
genera accounted for 35.6% and increased to 47.8% 
with the addition of 5% SSB500, indicating that the 
addition of SSB500 effectively increased the diver-
sity of microorganisms in the soil. Because of its high 
specific surface area, SSB can be used as a carrier to 

Fig. 4  The effects of SSB 
on the distribution of Pb 
form in soil. a Blank, b 1% 
SSB300, c 1% SSB500, 
d 3% SSB300, e 3% 
SSB5500, f 5% SSB300, g 
5% SSB5500
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enhance microbial adhesion and growth (Qin, et  al., 
2019). Among them, the relative abundance of Massi-
lia, Flavisolibacter, and Lysobacter decreased by 
11.3%, 4.9%, and 1.8%, respectively, after adding 5% 
SSB500. However, the relative abundance of Thio-
bacillus and Defluviicoccus increased by 4.1% and 
1.5%. This phenomenon was consistent with the find-
ings of Li et al. (Liu, Zhang, et al., 2021). Han et al. 
(2020) have found that Massilia and Lysobacter were 
proportional to the concentration of Pb and Cd in the 
soil. Thiobacillus and Defluviicoccus were genera 
commonly considered to be susceptible to heavy met-
als (Han, et al., 2020), inversely proportional to heavy 
metal concentrations (Hu, et al., 2021).

As reported, biochar not only can stabilize soil 
heavy metals, but also has a synergistic effect on 
the regulation and coupling of soil microorganisms. 
Similar results were obtained in this study. Overall, 

the bioavailability of Cd and Pb in soil was signifi-
cantly reduced when SSB500 was applied. The addi-
tion of 5% SSB500 had a better effect on the stability 
and soil properties of heavy metal, as 5% SSB500 can 
complex with heavy metals through a large number of 
organic functional groups, such as –COOH and -OH 
reaction, and reduce the concentration of soil Cd and 
Pd (Lan, et al., 2021). The reduction of heavy metal 
pollution can be observed from the perspective of 
microorganisms susceptible to heavy metals. In addi-
tion, the huge specific surface area and the complex 
microporous structure of 5% SSB500 provided bind-
ing sites for microorganisms (Li, et al., 2022), some 
of which were also involved in the stabilization of 
heavy metals. Generally, it was evident that the addi-
tion of SSB500 has reduced the bioavailability of 
Cd and Pb, which has led to the improvement of soil 
microbial community diversity (Liu, Zhang, et  al., 
2021).

When discussing changes in the composition of 
microbial communities, it was difficult to obtain dif-
ferential information from simple community struc-
ture maps. Therefore, principal component analy-
sis (PCA) was used to analyze microbial population 
information. As shown in Fig.  6, PCA analysis 
explained 88.70% of the variation in bacterial popu-
lations at the phylum level and 85.37% of the varia-
tion at the genus level. As shown in Fig.  6(a), after 
projecting the coordinate points of each sample, the 
relative abundance of SSB-treated samples at the 
genus level was greater in the direction of Chloroflexi 
and Actinobacteria than in Blank. Actinobacteria was 
identified to be able to participate in the iron cycle to 
produce Fe, which could be absorbed by other indige-
nous microorganisms to maintain their normal growth 
(Zhang, et al., 2019). In brief, the significant increase 
of the relative abundances of these functional bacte-
rial communities could promote the soil nitrogen and 
carbon cycle, thus improving the reusability of the 
soil (Zhang, et  al., 2021). As shown in Fig.  6(b), at 
the genus level, the Blank group in both the Massilia 
direction and the Flavisolibacter direction indicated 
that the relative abundance of these two genera was 
higher, while the soil with 5% SSB500 showed less 
relative abundance at both genus levels. The results 
reflected that the addition of 5% SSB500 signifi-
cantly improved the microbial community structure, 
increased the relative abundance of beneficial micro-
organisms in the soil, and reduced the contamination 
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of soil with heavy metals to some extent. It was con-
sistent with the conclusion of Han et  al. (2017) that 
biochar could improve soil properties, inhibit soil 
acidification, and provide a carbon source to promote 
microbial growth (Han, et  al., 2017). These results 
demonstrated that SSB500 was not only environmen-
tal-friendly, but was also beneficial to improve the 
diversity and composition of microbial community by 
increasing the bacterial abundances with heavy metal 
resistance.

4  Conclusions

The preparation of sewage sludge into biochar and 
its application to heavy metal–contaminated soil 
solved the problem of outlet of sludge waste to a 

certain extent, thus realizing the resource utiliza-
tion of waste. The effect of SSB500 was better than 
that of SSB300, and the application of 5% SSB500 
was better than that of 1% and 3%. As seen in the 
results of DTPA-extraction, the application of 5% 
SSB500 could reduce the bioavailability of Cd and 
Pb by 72.8% and 82.4%, respectively. The results of 
BCR-extraction showed that at higher pyrolysis tem-
perature and application amount, more of the mobile 
state (acid soluble state) of Cd and Pb was converted 
to the stable fraction (residual state). In the soil incu-
bation experiment, the acid soluble state of Cd was 
reduced by 49.70% (from 25.13 mg/kg to 12.64 mg/
kg), while the residual state increased almost two-
fold in the soil with 5% SSB500 (from 12.98  mg/
kg to 25.19 mg/kg). Similarly, the acid soluble state 
of Pb decreased by 73.07% (from 27.37  mg/kg to 
7.37  mg/kg), while the residual state increased by 
93.21% (from 27.67 mg/kg to 53.46 mg/kg). Mean-
while, the addition of 5% SSB500 could act as a soil 
remediation and improve the diversity and species 
of soil microbial community within 60 days. At the 
phylum level, the relative abundance of Chloroflexi 
increased significantly, indicating that the bioavail-
ability of Cd and Pb was reduced and the increase 
of easily available carbon sources would favor the 
growth of Chloroflexi in paddy soil. At the genus 
level, the significant increase in the relative abun-
dance of Defluviicoccus reflected that the application 
of 5% SSB500 reduced the contamination of Cd and 
Pb in paddy soil. Microbial studies illustrate the syn-
ergistic stabilization of Cd and Pb by SSB and soil 
microorganisms, both of which microorganisms and 
SSB are indispensable.
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