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Abstract This study reported the state of the art of
different artificial intelligence (AI) methods for ground-
water quality (GWQ) modeling and introduce a brief
description of common AI approaches. In addtion a
bibliographic review of practices over the past two
decades, was presented and attained result were com-
pared. More than 80 journal articles from 2001 to 2021
were review in terms of characteristics and capabilities
of developing methods, considering data of input-out-
put, etc. From the reviewed studies, it could be conclud-
ed that in spite of various weaknesses, if the artificial

intelligence approaches were appropriately built, they
can effectively be utilized for predicting the GWQ in
various aquifers. Because many steps of applying AI
methods are based on trial-and-error or experience pro-
cedures, it’s helpful to review them regarding the special
application for GWQ modeling. Several partial and
general findings were attained from the reviewed studies
that could deliver relevant guidelines for scholars who
intend to carry out related work. Many new ideas in the
associated area of research are also introduced in this
work to develop innovative approaches and to improve
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the quality of prediction water quality in groundwater
for example, it has been found that the combined AI
models with metaheuristic optimization are more reli-
able in capturing the nonlinearity of water quality pa-
rameters. However, in this review few papers were
found that used these hybrid models in GWQmodeling.
Therefore, for future works, it is recommended to use
hybrid models to more furthere investigation and en-
hance the reliability and accuracy of predicting in GWQ.

Keywords Groundwater quality (GWQ) . Artificial
intelligence (AI) .Machine learning (ML) . ANN .

ANFIS

Nomenclature
CO3 Carbonate
NO2 Nitrite
RBF Radial basis function
MLP Multi-layer perceptron
DL Deep learning
RF Random forest
XGBoost eXtreme gradient boosting
R2 Determination coefficient
RMSE Root mean squared error
MARE Mean absolute relative error
MLP Multilayer perceptron
GEP Gene expression programming.
SAR Sodium adsorption ratio
MAPE Mean absolute percentage error
SI Scatter index
R Correlation coefficient
MSE Mean square error
MAE Mean absolute error
FCM Fuzzy c-means
GP Grid partition
PSO Particle swarm optimization.
NF Neuro-fuzzy
SAR Sodium absorption ratio
BNs Bayesian networks
MTEs Mixtures of Truncated Exponentials
XGB Extreme gradient boosting
VAF Variance account for
PAEE Percent Average Estimation Error
PS Potential Salinity
DENFIS Dynamic evolving neural-fuzzy inference

system
ESP Exchangeable Sodium Percentage
SVR Support vector regression
GMDH Group method of data handling

T Temperature
RSC Residual Sodium Carbonate
RBIAS Relative Bias
SOM Self-organized map
ANEP Average Normalized Error for Parameter

Estimates
LWPR Locally weighted projection regression
RVM Relevance vector machines
BNN Bayesian neural network
RE Reduction of error
IA Index of agreement
KSOFM Kohonen self-organizing features map
FGQI Fuzzy-GIS-based groundwater quality

index
ASVR Active Set Support Vector Regression
MAR Magnesium Adsorption Ratio
PMRE percent mean relative error
GQI Groundwater quality index
MARS Multivariate adaptive regression spline
M5 Tree M5 Tree model
GA Genetic Algorithm
GEP Gene expression programming.
TOC Total organic carbon
NSE Nash-Sutcliffe efficiency
WHO World health organization
LMI Legates and McCabe index
SDR Standard deviation ratio
WI Willmott index of agreement
NE Normalized error
MLR Multiple linear regression
SEM Structural equation modeling
GIS Geographic information system
FCT Fuzzy Clustering Technique
ACOR Ant colony optimization for continuous

domains
Mmce Mean misclassification error
AARE Average absolute relative error
GRNN generalized regression neural network
ASE average squared error
RSC Residual sodium carbonate
PSVM Probabilistic Support Vector Machine
MAR Magnesium adsorption ratio
KR Kellys ratio
BPNN Back-propagation neural network
DE Differential evolution.
GP Gaussian Process
RT Random tree
PBIAS Percent of bias.
PSVMs Probabilistic support vector machines
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PNNs Probabilistic neural networks
DO Dissolved oxygen
TA Total alkalinity
PBIAS Percent of bias.
BOD Biological oxygen demand
LSSVM Least square support vector machine
COD Chemical oxygen demand
SOM Self-organizing map
FFNN Feed forward neural network
FNN-
SVR

Fuzzy neural network-based support vector
regression

CE Coefficient of efficiency
AIC Akaike information criterion
KNN K-nearest neighbor
WNN Wavelet neural network
MFIS Mamdani Fuzzy Inference System
As Arsenic
ELM Extreme learning machine
MLP Multi- layer perceptron
MABE Mean absolute bias error
PCR Principal component regression
BR Bayesian regulation
RR Recharge rate
A Abstraction
AVR Abstraction average rate
LT Lifetime
GWL Groundwater level
AT Aquifer thickness
DSWS Depth from the surface to well screen
DSSL Distance from sea shoreline
TR Total rainfall
RH Relative humidity
Tmin Minimum temperature
GPR Boosted regression tree
Tmax Maximum temperature
Tavg Average temperature
TPH Total Petroleum Hydrocarbon
W Average wind speed
NSGA-II Non-dominated sorting genetic algorithm-

II
Wmin Minimum wind speed
MT3D Modular three-dimensional transport model
Wmax Maximum wind speed
ICC Initial chloride concentration
GPR Gaussian process regression
CGA Continuous genetic algorithm
PSO Particle swarm optimization.
DE Differential evolution.
ROC Receiver operating characteristics

AUC Area under the ROC curve statistic
FWQI Fuzzy water quality index
TPR True positive rate
SC Specific conductance
WQI Water quality index
SDT Single decision tree
DTF Decision tree forest
DTB Decision treeboost
RP Redox potential
SSE Sum of squared errors
SOM Self-organizing map

1 Introduction

Water is necessary for life and is critical for irrigation,
drinking water, and industry. Therefore, many tech-
niques have been proposed to monitor water quality
parameters, which is important for assessing the hydro-
logical status of water and its management activities
(Varotsos et al. 2020a; Varotsos et al. 2019; Krapivin
et al. 2017).

Ground-water is an essential element of the natural
water resources system and people have used it contin-
uously since antiquity The progress in drilling and
pumping knowledge led to easy use of groundwater
and enables people to reach a store of extremely deep
aquifers. Ground-water is inexpensive compared with
treating surface water. Along with these advantages, it
includes nutrients that are beneficial for health. The use
of groundwater could be very helpful to address a water
scarcity in regions where surface water is restricted.
Also, it could be utilized to complement surface water
resources.

Human activities influence the quality of ground
water supplies because of the dangerous chemical sub-
stances generated via agricultural and manufacturing
practices. Nitrate (NO3

−) is a common chemical con-
taminant that exists in various aquifers worldwide
(Nadiri et al. 2019). NO3

− has ability to penetrate into
ground water therefore, the high concentrations of it
NO3

− > 10 mg per liter are dangerous and cause and
harmful effect to humans (RadFard et al. 2019). Evalu-
ating the groundwater pollution caused by NO3

− con-
tamination is a difficult matter due to the complexity of
associated uncertainties and NO3

− transport (Vadiati
et al. 2016). Moreover, another common pollutant in
groundwater is salinity, comprising various ions,
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including chloride, magnesium, sodium, nitrate, bicar-
bonate, calcium, and sulfate. The simulation experi-
ments performed in (Varotsos and Krapivin 2018;
Krapivin et al. 2021) showed that heavy metals, oil
hydrocarbons, and radionuclides are considered as pri-
mary contaminants of water. Therefore, assessment of
groundwater pollutants such as heavy metals is essential
to human health. Toxic ions, for instance, bromide (Br-)
boron (B), and iron (Fe) can accumulate at advanced
level (Nasr and Zahran 2014). Additionally, some of the
heavy metals consider as micronutrients could cause
harmful health impacts when they have contents ex-
ceeding the allowable limits in drinking water
(Prasanna et a l . 2011; Prasad et a l . 2014;
Sobhanardakani 2016; Varotsos et al. 2021).

Pollution could limit and influence the development
of groundwater for potable uses. Therefore, ensuring
quality of water and its accessibility has a great effect
on quality of life. Ground-water is a main water resource
in semiarid regions; its quality and accessibility are
major concerns for hydrogeologists and environmental
managers (Jiang et al. 2009; Bain et al. 2014). Changes
in GWQ could be produced via changing ground water
flow characteristics that could leads to dissolution and
transportation of various minerals within aquifers (Hem
1985; Swarna Latha and Nageswara Rao 2012; Knoll
et al. 2017).

This study aims to provide a comprehensive review
and discuss the application of AI models for assessing
the GWQ. In this context, application of many AI
models is assessed. Moreover, a comprehensive litera-
ture review and meta analysis are conducted to discuss
the past trends and future opportunities of AI models for
predicting the GWQ.

1.1 Groundwater Quality (GWQ) Parameters

To determine the GWQ, the chemical listed in Table 1
should be considered:

In addition, the assessment of GWQ must take into
consideration the following drinking water parameters:
(Dohare et al. 2014; Varotsos et al. 2020b)

1. pH: is the inverse logarithm of H2 ion concentra-
tion. The pH scale ranges from 0 to 14, and pH
values 7-14 are alkaline, from 0-7 are acidic, and 7
is neutral. The pH of mostly drinking water is
between 4.4–8.5.

2. Turbidity: refers to the interference of some sus-
pension of particles in water with the passing of
light. It is produced via a broad set of suspended
particles. It is measured either via its impact on the
transmission of light, known as turbiditymetry, or
via it is impact on the scattering of light, called
nephelometry. According to IS: 10500–2012, an
appropriate and acceptable limit are one and five.

3. Total dissolved solids (TDS):A variation of TDS
is utilized to determine the ability of filter solids
via assistance of a filtrate. Also, it could be esti-
mated from the conductivity measurement in water
samples. The standard and permitted limits accord-
ing to IS: 10500–2012 are 500 and 2000 mg/l
respectively.

4. Electrical Conductivity (EC): is the capability of
water to hold an electrical current and differs both
with number and kinds of ions the solution com-
prises. On the other hand, the conductivity of
distilled water is lower than 1μmhos per cm. Such
conductivity relies on the existence of ions, their
total concentrations, temperature of liquid flexibil-
ity, valency, and comparative concentration. Most
inorganic acid solutions are good conductors such
as salts and bases.

5. Total hardness (TH): According to IS: 10500–
2012 the desirable and permissible limits for hard-
ness are from 200 to 600 mg per liter, respectively.
The impact of it size can be seen on utensils and
hot water systems in boilers, etc. The amount of

Table 1 Substances naturally discovered in some groundwaters
that could impact GWQ

Substances Type of problem

Irons (Fe+2 or Fe+3) Toilet fixtures, encrustations and
staining of laundry

Manganese (Mn−2) Toilet fixtures, encrustations and
staining of laundry

Silica (SiO2) Encrustations

Chloride (Cl−) Portability and Corrosion

Fluoride (F−) Caused fluorosis

Nitrate (NO3
−) Methemoglobinemia

Sulfate (SO4
−2) Portability

Dissolved oxygen (DO) Corrosion

Carbon dioxide (CO2) Corrosion

Miner constituents Health domains and Portability

Calcium and Magnesium
(Ca2+, Mg2+)

Encrustations
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TH for drinking water is categorized in terms of
corresponding CaCO3 concentrations as soft -0-
60 mg/, moderate – 60-120 mg/, tough-120-
180 mg/, extremely tough - >180 mg/.

6. Sulfate (SO4
−2): Sulfate ions are present in natural

water, and the majority of these ions are also
soluble in water. Several sulfate ions are generated
during the oxidation phase of their ores, and they
are often found in industrial wastes. A UV spec-
trophotometer is used to calculate the amount of
sulfate. According to IS: 10500–2012, the desir-
able limit for sulfate is 200 mg/ litter and the
permissible limit is 400 mg/.

7. Nitrate (NO3
−): is found in raw water and is

mostly a form of the N2 compound (of its oxidiz-
ing state). It is provided by chemical and fertilizer
plants, animal waste, rotting crops, and domestic
and industrial waste. A UV Spectrophotometer is
used to determine the amount of nitrate. According
to IS: 10500–2012, the desired limit for nitrate is
max.45, and there is no relaxation of the allowable
limit.

8. Total alkalinity (AIK): The number of the com-
ponents in water that appear to raise the pH to the
alkaline side of neutrality is referred to as alkalin-
ity. It is usually expressed as milligrams per liter as
calcium carbonate (m as CaCo 3) and is deter-
mined by titration with uniform acid to a pH of
4.5. CaCo 3, PO4, and hydroxides are common
alkalinity-increasing materials found in water.

9. Chloride (Cl−): can be found in all forms of
natural and raw water. It is derived from agricul-
tural operations, industrial activities, and Cl-
stones. Because of human activity, its concentra-
tion is high. According to IS: 10500–2012, the
desirable limit for Cl- is 250 and the permissible
limit is 1000 mg/l.

10. Fluoride (F−): is found in nature as fluorspar, rock
phosphate, triphite, and phosphorite crystals,
among other things. The temperature of the region,
as well as the presence of accessory minerals in the
rock minerals assemblage from which the ground-
water circulates, are factors that regulate the con-
centration of F-. According to IS: 10500–2012, the
desirable limit for F- is 1 mg/l and the permissible
limit is 1.5 mg/l.

11. Boron: is found in nature as boric acid and boric
acid salts.Weathering causes it to be expelled from
rocks and soils and end up in water. It also enters

the soil and groundwater through domestic land-
fills that are not properly sealed. It is a common
indicator compound that signals the presence of
other potentially dangerous compounds. Accord-
ing to IS: 10500–2012 the desirable limit for boron
is 0.5 and 1 mg/l the permissible limit.

12. Phosphate (PO4): is a necessary plant nutrient
that often regulates aquatic plant growth in fresh-
water. Because of the poor solubility of natural
phosphate minerals and the ability of soils to ab-
sorb phosphate, groundwater usually absorbs only
a minimal amount of phosphorus.

13. Chemical Oxygen Demand (COD): is a mea-
surement of the amount of oxygen available for
the chemical oxidation of organic matter using a
powerful chemical oxidant. High COD levels can
cause oxygen depletion due to microbe decompo-
sition to levels harmful to aquatic life. COD deter-
mination has an advantage over BOD determina-
tion in that the outcome can be achieved in ap-
proximately 5 h as opposed to the 5 days needed
by the BOD test.

14. Zinc (Zn): The earth’s crust contains approxi-
mately 0.05 g/kg of zinc. Its most commonmineral
is sphalerite (ZnS), which is usually combined
with other sulfide elements. Zinc poisoning
symptoms in humans include vomiting, dehy-
dration, electrolyte deficiency, and stomach
discomfort. Zinc chloride has been linked to
acute renal failure.

1.2 Problem Statement

Alterations in ground water chemical composition are
affected via a number of geochemical processes and
human activities that may be complicated to identify
(Almasri and Kaluarachchi 2005; Yesilnacar and
Sahinkaya 2012). Therefore, it’s essential to compre-
hend the procedures that affect GWQ for efficient man-
agement of water resource and for management and
protection of aquatic environments and such consider-
ations could have the most important influence on sus-
tainable development of countries (Batayneh et al. 2016;
Fijani et al. 2017; Sheikhy Narany et al. 2014;Srinivas
et al. 2015; Srinivasamoorthy et al. 2013; Krapivin et al.
2018). Conceptual or physical based models are con-
ventionally major tools; nevertheless, they have several
practical limitations, including the requirement for a
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large volume of data and input parameters. GWQ as-
sessment required a large number of samples with
chemical, physical, and biological variables (Belkhiri
et al. 2018). However, in various zones, large scale
sampling become unfeasible because of it is expensive
and a lack of facilities; thus, lower cost and quick
monitoring approaches are required. Conventional tech-
niques of GWQ estimation are based on mathematical
model that have lower accuracy because they typically
consider the linear relationship between dependent and
independent parameters. Because of limitations in
GWQ simulation, new computational methods are nec-
essary to enhance estimate accuracy (Maroufpoor et al.
2020). Additionally, in various instances, data have
limitations, and achieving accurate prediction is more
essential than comprehending basic mechanisms; in
contrast, the artificial intelligence (AI) models could
be an appropriate alternate.

1.3 Research Objectives

To build new and better artificial intelligence methods
for GWQ modeling, it’s vital to examine what has been
carried out with artificial intelligence approaches and
recent research, and there is a necessity for scholars to
understand what other researchers have performed in
this respect. Consequently, the contributions of the cur-
rent review are summarized as following:

1. This survey is summarizing 81 research studies
based on artificial intelligence approaches and their
advance application, growing over the past two
decades (2001-2021), input-output data consider-
ations, study areas, performance metrics, predicting
period, and assessment.

2. The survey has emphasized the gaps in application
of artificial intelligence approaches for predicting
water quality in groundwater research and models
that have not been investigated enough with hydro-
chemical, and hydrogeological data of groundwater.

3. Lastly, the review shows the benefits and limitations
of almost all models, the necessity for further re-
search in different fields, concerns with data gath-
ering, and recommendations for forthcoming im-
provements. Therefore, this survey study introduces
a snapshot of historical evolution of AI methods
over time. In depth explanation of AI models’ ar-
chitectures and mathematical theories have not been
described in this survey. However, proper

references have been mentioned in background part
of each AI method category for the readers who
want additional detailed information.

The GWQ modeling employing AI approaches for
any study includes the following steps: (1) data collec-
tion from remotely sensed/field, (2) dividing data into
sets training, validation, and testing of AI methods, (3)
selecting essential parameters that are important for
training AI models, and (4) evaluating of attained output
and comparing it with actual dataset then finding the
precision of predictor, as in Fig.1. Two sorts of input
parameters involving the hydro-chemical and aquifer
characteristics parameters, or their patterns have been
applied to predict the GWQ. The hydro-chemical pa-
rameters involve sodium (Na +), temperature (T), calci-
um (Ca2+), magnesium (Mg2+), bicarbonate (HCO3-),
SO4

−2, Cl−, TH, TDS, dissolved solids (DS), EC, pH,
F−, potassium (K), PO4, and Fe. Such parameters have
been gathered via measures filed. The hydrogeological
variables refer to aquifer characteristics such as land
use. AI methods used for predicting the water qual-
ity of groundwater could be categorized as: (1) arti-
ficial neural network (ANN) models, (2) fuzzy logic
(FL) based models, (3) support vector machines
(SVM) models, (4) hybrid models, and (5) machine
learning models.

Several papers (more than 80) have been published to
predict the water quality in groundwater by AI models
since 2001, as seen in Fig. 2. These studies have been
published in international journals from well-known
publishers such as Elsevier, Springer, IWA, Wiley,
etc., between 2001 and 2021. The studies were obtained
from searching the web utilizing the related keywords
and were selected because they were published in fa-
mous international journals in the hydrology field, water
resources field and AI sciences. It could be observed
from Fig. 2 that AI models have had obvious growth
recently, especially in 2017–2021 which gained the
highest precent of published papers. Furthermore, many
architecture variations have been noticed in addition to
this exponential increase in applications of artificial
intelligence approaches. The continued progress indi-
cates the necessity for further exploration because every
model has it is own limitation and advantages.

Based on the search, Fig.3 delineates that the most
frequently used models involve in ANN methods, with
52 papers followed by machine learning models with 21
papers. Also, it would be observed that the lowest
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frequency of papers included in hybrid models com-
pared with single models with only nine papers. The
RBF, MLP and back propagation neural network
(BPNN) are the most common ANN methods applied
in the groundwater field. Moreover, application of ma-
chine learning methods substantially in ceased from
2017 to 2021, whereas SVM model have been infre-
quently applied recently. Even though a varied rate is
observed in all publications, there is a substantial grow-
ing trend in applying AI models to predict GWQ from
2017, as shown in Fig.3.

In Table 2 many among the most widely used AI
approaches for GWQ modeling are discussed. The
methods include artificial neural network (ANN), adap-
tive neuro-fuzzy inference systems (ANFIS), support
vector machines (SVM), hybrid models, and various

machine learning (ML) techniques. Firstly, a brief over-
view for every AI method is introduced and then the
related conducted studies are cited and reviewed. This is
followed by assessment and evaluation, conclusion, and
future trends in research.

2 Artificial Intelligence Methods

2.1 Artificial Neural Network (ANN) for GWQ
Modeling

Is a resilient method, using ANN inspired by brain
processes to solve a complicated problems by making
a relationship between input and output datasets. This
relationship is produced via neurons. The connection

Fig. 1 Procedure of applying AI models for GWQ modeling
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between inputs and outputs are created in training dur-
ing the iteration process that is terminated after the
specified criterion are satisfied. Feed forward neural
networks (FFNN), that is easiest kind of neural network,
is classifying to single layer perceptron (SLP) and MLP.
SLP is makes linear connection between input and
output, is the improper model for complicated and non-
linear problem, whereas MLP provide a robust connec-
tion between input variable and output variable to
modeling a nonlinear problem. Datasets are pass across
the loop in order to get valid relation for input-output.
The BPNN is well-known sort for MLP that is use a

back-ward method of adjusting parameter of net-
works. RBFNN is other model of ANN based model
that is used the RBF as an activation function.
RBFNN model was primarily presented by (Lowe,
Broomhead, and Royal Signa ls and Radar
Establishment 1988). Figure 4 shows a simple struc-
ture of ANN model.

2.1.1 Bibliographic Review

Current research in predictioning GWQ reported that
ANN can present as a superior replacement for

6%

11%

36%

47%

2001-2005 2006-2010 2011-2016 2017-2021

Fig. 2 Number of published
papers (in the current study) that
used AI models in field GWQ
modeling
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Fig. 3 Number of times AI
methods are applied among
reviewed papers for predicting
GWQ
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conventional techniques. Heidarzadeh (2017) used an
ANN model to predict the GWQ of the Amol-Babol
aquifer using a the dataset from 1987 to 2010. Na was
studied as an output variable in the ANN approach
because of its high concentration in irrigation. Based
on pre modeling, the variables pH, EC, and TH were
selected as the better inputs. The researchers in (Khudair
et al. (2018) investigated applying an ANNmodel using
data for Baghdad, Iraq, for water parameters: pH, Cl−,
SO4

−2, and TDS. The findings gained using the ANN
model showed high prediction efficiency and the
parameters pH and Cl have substantially affected
model prediction, and thus are critical factors. Klçaslan
et al. (2014) proposed an ANN method to estimate
GWQ and compared it to conventional water quality
evaluation techniques; this paper proved the
effectiveness and accuracy of the ANN approach. Kuo
et al. (2004) was used-the BPNN to predict the variation
of GWQ in Taiwan. Various kinds of back progression
models were created in order to assess their perfor-
mance. The findings showed that ANN was able to
define the complex variation of GWQ and be applied
to present accurate predicting. Furthermore, a number of

hidden neurons do not greatly effect performance of the
model in training or testing. Sunayana et al. (2020) was
evaluated GWQ from 2016 to 2017 at 10 locations in
India. The TH was forecasted employing ANN by ap-
plying various training algorithms, then the finest one
was utilized in the ANN final model to predict GWQ.
They quantified the impact for both space and time on
TH of ground-water. The ANN used here was able to
forecast the TH concentrations of each point. Choi et al.
(2014) observed the foremost ions, for instance, Ca2+,
Mg2+, Na +, K +, HCO3-, Clˉ, SO4

−2, and NO3
−, in 2008

to evaluate GWQ in South Korea. The hydro-chemical
dataset of ground-water samples was analyzed applying
the SOM method, which is a type of ANN model. The
results revealed that this method could be effectively
employed for classifying and characterizing groundwa-
ters in terms of hydro-chemistry and quality on the area
size. To predict NO3

− concentrations of ground water
wells in the southern area of the Gaza Strip, Zaqoot et al.
(2018) used to ANN models MLP-NN and RBF-NN.
Both were trained and developed using seven input
variables (pH, EC, TDS, Ca2+, Mg2+, hardness, and
abstraction rate), and the results of MLP-NN showed

Fig. 4 Schematic view of ANN approach in predictioning GWQ
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better performance than RBF-NN. Wagh et al. (2017)
applied the ANN approach by BP algorithm to predict
GWQ in the Kadava River basin in the Nashik district
using parameters EC, HCO3-, TDS, TH, Ca

2+, Na +,
Clˉ, CO3, Mg2+, F, and SO4

−2. The mimic output tracks
the measured and forecast NO3

− value showed that the
ANN is a superior model to manage groundwater re-
sources in the a simpler manner. Wagh et al. (2016)
applied ANN in order to predict values of %Na, MAR,
SAR, KR, and RSC in the ground water of Nanded
Tehsil. The 50 ground-water according to various sam-
ples were studied to various physicochemical variables,
for example, pH, TDS, EC, Ca2+, Mg2+, HCO3-, Na,
Clˉ, CO3, NO3, and SO4

−2 during the pre monsoon
season in 2012. These parameters were used as input
variables in the ANN-based GWQ indices. The results
confirm that the ANN model is successfully applied to
predict ground-water suitability. Nasr and Zahran
(2014) created an ANN with feedforward BP to forecast
groundwater salinity in Egypt, which is expressed
through TDS, using pH as input parameters. The net-
work output was satisfactory, and simulation can be
used for entering new inputs. Khan et al. (2021) forecast
the amount of waterborne bacteria in GWQ via forecast-
ing the presence of E.coli applying chemical, physical,
and microbiological parameters of groundwater. SLA
was proposed to examine the pattern of ANN based
sensitivity analyses to be determine the significance of
all GWQ parameters resulting in prediction of E.coli in
ground-water. A higher correlation is seen between
E.coli and a lower pH values, although the lower corre-
lation is found between DO and pH values. The model
with turbidity, pH, TDS, and EC as inputs performed
better, according to the data. It could be inferred that
Grover’s algorithm-based superposition models are
more effective at predicting each pattern of E.coli count
in ground-water. Fadipe et al. (2021) assessed the GWQ
by predicting the water quality parameters in
Boluwaduro community, Ofatedo in Osun State. An
ANNmodel was employed using water samples collect-
ed from 18 randomly selected dug wells and subjected
to physical, chemical, and microbiological analyses.
The ANN design and were trained in some rounds until
acceptable outputs was attained with R2 out of 0.97. The
created model for TDS provided a good prediction with
TH and Mg2+ respectively. Honget al. (2001) applied
the KSOFM neural network model to analyze the im-
pact of stormwater infiltration on GWQ. It was conclud-
ed that the KSOFM model provided useful analyzing

and diagnosing tools to comprehend a dynamic in GWQ
and to extract informat ion included in the
multidimensional dataset. It is considered as to have
potential not only in GWQ monitoring and diagnosis,
but also in further environmental fields. Kassem et al.
(2021) used the ANN method with different input com-
binations of GWQ variables to identify the most impor-
tant variables impacting of the Cl− concentration predic-
tion values. Seventeen ANN models were developed
through altering inputs variables. Results revealed that
ANN 5 model with combination (AVR, ICC, A, LT,
GWL, RR, DSWS, W, AT, DSSL) delivered outstand-
ing estimation of prediction values of final Cl− concen-
trations. The ANN method illustrated how ANN devel-
oping method could be utilized to identifying key vari-
ables needed for the most important parameters
influencing Cl− concentrations. Nakagawa et al. (2017)
examined the ground water chemistry traits at
Shimabara via used of SOM, inputs to this model were
the eight main ground water chemical elements (Cl−,
NO3

−, SO4
−2, HCO3-, Na +, K +, Ca2+ and Mg2+).

Results indicated that based on chemistry, surface water
and groundwater can be classified to five major clusters
demonstrating distinctive patterns. Additionally, the five
clusters can also be divided to two main water catego-
ries, i.e., nitrate-polluted and nonpolluted water. Ac-
cording to Stiff and Piper trilinear diagrams, nitrate
polluted water was the Ca-(So4 + NO3) kind, whereas
nonpolluted water was classified as Ca- HCO3 kind.
Wang et al. (2006) developed a BPNN model to mimic
spatial distribution of NO3-N concentration in ground-
water in the North China Plain by land-use data and site
specific hydro geological properties. The GIS tool was
used to prepare and process input and output vectors
information for BPNN. The outcome indicated that GIS-
based BPNN mimic ground water NO3-N concentra-
tions effectively and capture the overall trend of ground-
waters NO3

− pollution patterns. Gemitzi et al. (2010)
applied ANN methods combined with GIS for spatial
prediction of NO3

−pollution in groundwater. These in-
volve hydraulic conductivity and depth to aquifer, land
uses, fine to coarse grain ratio in the unsaturated area
and soil permeability. The method was employed at the
South Rhodope Thrace, Greece aquifer. The findings
indicated that this method is able to illustrate a spatial
pattern of NO3

−contamination. Alizamir and
Sobhanardakani (2016) built the ANN model to predict
As, Pb, and Zn concentration in ground water. The
Levenberg-Marquardt (LM) algorithm and Bayesian
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regularization (BR) algorithm were used as the ANN
training algorithms. The performance of these algo-
rithms was assessed, and it was noticed that LM was a
great choice for predicting heavy metals concentrations
in the chosen monitoring wells. The outcomes showed
that the LM algorithm took lesser time for training of
network compared with the BR algorithm. Based on
results, it was proved that the ANN showed acceptable
range in accuracy in predicting heavy metals
concentrations in groundwater resources. Sakizadeh
(2015) utilized ANN through BR to predict water qual-
ity index (WQI), with regard to the concentrations of 16
GWQ variables gathered from 47 wells. The results
indicated the effective predicting of WQI via ANNs
via used BR algorithm. Also, the sensitivity analyses
was applied to illustrate the significance of all parame-
ters in predict WQI through ANN training and it
revealed that parameters such as PO4 and Fe are the
most significant parameters in predicting the water
quality index. Moasheri and Tabatabaie (2013) mea-
sured the value of NO3

− groundwater qualitative using
the dataset of the Birjand plain, which were gathered
from 35 wells and aqueducts every six months from
2008 until 2010. ANN was optimized through genetic
algorithm (GA) and provided values between the lab
result and actual result, which showed the reliability of
this approach for predicting the NO3

− values. Keskin
et al. (2015) predicted groundwater pollution sources
applying ANN in Turkey. BP and Bee Algorithm (BA)
were employed in ANN modeling and 14 hydro chem-
ical datasets were employed. The better ANN classifi-
cation was achieved with 80% accuracy using the BA
algorithm. Singh and Datta (2004) used the universal
function approximation property of a multilayer,
feedforward ANN to estimate temporal and spatial
changing of unknown contamination sources, for
instance, hydraulic conductivity, porosity, and
dispersivities, and to deliver an accurate estimate for
unknown flows and transport parameters. The model
was training on patterns of simulated datasets used by
the BP algorithm. The set of source fluxes and temporal
changing simulating concentrations measurements
constitute patterns of trained. A limiting performance
evaluation display that introduced method performs
well. Sahoo et al. (2006) used BPNN to predict pesticide
concentration in ground-water monitored well. The re-
sults of the predictive model generated good agreement
with actual data in terms of R and pesticide detection
efficiency, also good correlation between actual and

predict “classes” groups. The BPNN was applied in
order to rank inputs variables with maximum potential
to pollute ground water, comprising two original param-
eters which are depth to aquifer material and pesticide
leaching class. Once those parameters were solitary
input parameters to the model, they were not capable
of predicting pollution. Though, if they were used with
further parameters, the prediction performance
effectiveness of the model in terms of R, E, ME,
RMSE, and pesticide occurrence groups improved. El
Tabach et al. (2007) proposed ANN metamodel was
applied to evaluate a risk of pollution to attain the
ground-water resource underneath the road axis of a
high-way project in north of France. Barzegar and
Moghaddam (2016) investigationed and comparationed
the accuracy of various neural calculating methods,
MLP, RBFNN, and GRNN, in predicting of ground-
water salinity which is expresses by EC. The perfor-
mance criteria of the built neural networks model re-
vealed that RBF-NN model has the most excellent per-
formance in predicting EC. Sirat (2012) employed an
ANN model in the USA in Illinois, Iowa, and 12 other
states for predicting pollution of groundwaters with
pesticides. The findings of many trials have shown that
this model has predicted the pollution well with-in every
minor group within high accuracy. It proved that ANNs
models are effective tools for predicting groundwater
pollution. (Dar et al. 2012) ANN model was used to
comprehend a correlation and sensitivity of every chem-
ical parameter with regard to fluoride. The prediction
results indicated that four parameters pH, Cl−, SO4

−2

and Ca2+ were able to better influence fluorides com-
pared with the other eight parameters. Also, the Cl− ions
were noted to be the most sensitive parameter and most
correlating to fluoride. Kadam et al. (2019) applied
ANN and MLR methods for predicting the fitness of
GWQ for drinking. The physicochemical parameters
were taken in account to compute WQI with the view
of producing reliable and accurate modeling to predict
WQI-based GWQ. The LM with 3-layer BP algorithm
was applied in the ANN structure. Additionally, the
MLR model was used to test the effectiveness of the
prediction model. The result verified that prediction of
ANN is acceptable and confirmed regular satisfactory
performance for each season. Moasheri et al. (2013)
applied the fusion of ANN and geostatistical to assess
more parameters of spatial distribution for GWQ is the
TDS plain Birjand more precisely. The analyses of the
geostatistical interpolation method and application of
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ANN for optimization results of the geostatistical
method have been examined. Ehteshami et al. (2016)
employed BPNN and RBFNN and the best architecture
for the BP model was noted to 4-5-1 and RBF with a
spread parameter = 0.5 and MSE =0.50. Result
displayed insignificant variation between architectures.
Both ANN models could be consistently predict nitrate
contamination in ground-water with satisfactory
precision.

2.1.2 Results of Artificial Neural Networks Models

The assessment of many papers on ANN modeling for
water quality in groundwater showed the follows points:

(1) The ANN methods could be expanded simply from
univariate to multivariate instances compared to con-
ceptual methods, and model complexity could easily
vary through adjusting a transfer functions, learning
algorithms, or networks architectures. Similar to any
regression model, inputs would depend on experi-
mental proofs or correlational analyses. Also, conclu-
sions of review studies showed that ANN captured
the complexity of nonlinear behaviors for GWQ
reasonably more accurately than regular regression
methods such as LR or MLR.

(2) The most popular structure of ANN for GWQ
modeling is using three or two layers with sigmoid
transfer function in the hidden layer and linear
transfer function in the output layer. This function
is more stable, differentiable, and monotonically
growing in its field and is an often used function in
predicting GWQ. It should be noted that in most
reviewed studies, the ANN architecture and num-
ber of hidden neurons were attained through the
trial-and-error method.

(3) The review show that the Levenberg-
Marquardt(LM) and Bee Algorithm (BA) algo-
rithms are good training algorithms used to train
ANN for GWQ modeling compared with other
ANN algorithms. Keskin et al. (2015) compared
the performance of BP and BA utilized in ANN
training. The best ANN classification was
achieved by the BA. The LM algorithm is the
alteration of the classical Newton algorithm
utilized to find the optimal result to minimizing
the problems. The LM algorithm is frequently
described as continuous and efficient, and many
investigators indicate that it is quicker and less

simply trapping in local minimum than further
l e a r n i n g a l g o r i t hm s . A l i z am i r a n d
Sobhanardakani (2016) compared LM and Bayes-
ian regularization (BR) algorithms in terms of
how they perform in GWQ, and it was found that
LM was a good choice for forecasting heavy
metals concentration in the selected monitoring
wells. The simulation results indicated that the
LM algorithm took less time for training of the
network compared to the BR algorithm.

2.2 Fuzzy Logic- Based Modeling for GWQ Modeling

The integration of the fuzzy inference system (FIS) and
the adaptive neural networks (AN) produced model
adaptive neuro fuzzy inference systems (ANFIS). These
models have the ability for capturing the benefit of both
approaches in a single structure. Jang (1993) established
the structure and the training process of ANFIS which
used the neural network training algorithms to create
sets of fuzzy “if and then” rule with proper membership
functions (MFs) from specifying input-output. FIS cor-
respond to sets of fuzzy “if and then” rule that have
training ability to estimate non-linear function. FIS have
two methods called Sugeno and Mamdani. The dispar-
ities between such methods occur as the following sec-
tion explains. Mamdani’s method used fuzzy MFs,
while Sugeno’s method utilizes linear/continuous MFs.

ANFIS is the AI approach with adaptable statistical
structure that can identify complicated non-linearity and
uncertainties because of randomness and inaccuracy
among variables, without trying to attain an insight as
to the nature of trends. Such method is capable of
estimating every actual stable function on the compact
sets to every level for precision. Hence, in parameters
prediction, wherever provided data in which a system
links measurable system variables with the internal sys-
tem parameters, the function mapped maybe built
through ANFIS which approximates the processes for
evaluation of an internal system parameters. More de-
tails about ANFIS it can be found in supplementary
materials and in (Jang 1993). Figure 5 shows ANFIS
structure.

2.2.1 Bibliographic Review

Some recent investigations have tried to evaluate GWQ
applying FIS. Dahiya et al. (2007) applied FSE to
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analyze GWQ. The model was optimized by testing 42
ground water-samples based on ten drinking water qual-
ity parameters. Khaki et al. (2015) assessed the ability
for using ANFIS and ANN models to assess TDS and
the level of EC for GWQ, using the amounts of further
present water quality parameters NO3

−, SiO2, Na+, pH,
Ca2+,, Mg2+, K, HCO3, Clˉ, Fe) in Malaysia. The results
indicated that both methods have the ability to interpret
behavior of water quality parameters in groundwater.
(Aryafar et al. 2019) GP was employed to identify
relationship between GWQ parameters, using the inde-
pendent variables (K+, Na+, pH, Ca2+, Clˉ, CO3,
HCO3-, Mg2+, So4

−2 and NO3
−) in order to predict

dependent variables (TH, TDS, EC) for 240 samples
of groundwaters gathered from 12 wells in Iran. Also,
ANN and ANFIS techniques were developed to further
verify the estimation ability of GP through comparing
the predicted and actual values for chemical parameters.
Findings revealed the superiority of GP acceptable per-
formance was delivered via each model in prediction of
intended parameters of water quality. In India (Kumar
et al. 2020) applied MLR, SEM, and ANFIS models,
through mixing three datasets for various areas and time
period in four different methods, various regression
approaches designed used the TDS as the output param-
eter and the input parameters used were (K +, SO4

−2,
Ca2+, Mg2+, Clˉ, Na +, and NO3

−, TH). Similar regres-
sion coefficients were noticed for both SEM and MLR

models, while the ANFIS model demonstrated a better
performance than the MLR model. Vadiati et al. (2016)
used the MFIS model through commonly accept GWQ
indices. The method assessed for it is able to evaluate
the drinking water quality for 49 samples gathered in
every season from groundwater sources in Iran from
2013 to 2014. Input membership function was described
as “desirable”, “acceptable” and “unacceptable” depend
on experts’ knowledge and standards and allowable
restrictions imposed via WHO. Tutmez et al. (2006)
used the ANFIS model of ground-water that EC depend
on concentrations for positive charged ions in water.
The prediction results indicated that this model outper-
form over conventional approaches in prediction EC
from TDS. Jebastina and Prince Arulraj (2018) investi-
gated NO3

− pollution in ground water of Coimbatore
district of India used 71 observation wells years 2011–
2012. The inputs for producing the ANFIS method is
average for EC, Na+, Ca2+, Clˉ, TH, K and the output
was the concentrations of NO3

−. Outcomes for the best
ANFIS model were evaluated via deterministic, geo-
statistical and kernel smooth techniques utilizing GIS.
Five models developed using the, ANFIS method pre-
dicted NO3

− concentrations. Selvaraj et al. (2020) gath-
ered 30 ground water samples from bore well as dug
well source and used chemical parameters to measure
FWQI. Five FIS models with various linguistic param-
eters and five classifications of fuzzy model were

Fig. 5 ANFIS architecture
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established, for example “excellent”, “good”, “poor”,
“very poor” and “not suitable”. Of the findings achieved
from such method, six samples were classified to “ex-
cellent”, eight samples to “good”, 12 into “poor”, three
into “very poor” and one into “not suitable”. Also the
result of this method were compared with the output
found from the deterministic technique. MFIS was
employed for analyses of the GWQ in Nadiad district,
India (Prajapati and Parekh 2016). Various groundwater
variables such as EC, TDS, PH, Cl and Ca were utilized
to analyze GWQ. Different membership functions, “de-
sirable”, “acceptable” and “not acceptable” are used and
fuzzy logic rules were defined. The results indicated that
MFIS is very useful and effective tool in assessment of
GWQ. Dixon (2005) effectively used FL and GIS, GPS,
remote sensing to measure ground-water-vulnerability
maps. Nadiri et al. (2017) used Larsen fuzzy logic (LFL)
in conjunction with Sugeno fuzzy logic (SFL) and
Mamdani fuzzy logic (MFL) to assess the groundwaters
vulnerability in the Varzeqan Plain, in north western
Iran. Nikoo and Mahjouri (2013) used PSVM and FIS
methods for probabilities water quality zoning
which is important to GWQ. The needed data for
training PSVM was produced by using FIS in the
Monte Carlo analysis. PSVM rained based water
quality index give probability of belonging to vari-
ous water quality classes “very low”, “low”, “medi-
um”, “high” and “very high”. The prediction result
was compared with attained results from clustering
methods which are FCT and SOM. These outcomes
of GWQ zoning were illustrated in maps using using
GIS. Nadiri et al. (2013) presented the supervised
committee machine with AI method employing the
SFL, MFL, ANN, and neuro fuzzy (NF) to predict
fluorides concentrations. The findings demonstrated
that all of those models have the same fitting to
fluorides dataset in the study area, and do not
predicting fine for samples in mixing zones.

2.2.2 Results of Fuzzy Logic Models

The assessment for many papers on fuzzy based predic-
tion for water quality in groundwater displays the fol-
lowing issues:

(1) Of the investigated studies, those using a fuzzy-
based model ranked second, while ANFIS ranked
highest because it provides the benefits of both
ANN and FIS models. ANFIS could managing

non-linearity, uncertainties and fuzziness relate to
water quality of groundwater. ANFIS has some
benefits in signal identifications, converse coding
and noise cancelation. ANFIS has improved result
when datasets are normalize (Ahmed et al. 2017).

(2) ANFIS model has demonstrated superior perfor-
mance in managing data of water quality in
groundwater as it has two categories of parameters
(linear and nonlinear) that could be adapted appro-
priately during training phase (Jang 1993). Beside
member function which was illustrates the vital
role and right selection lead to finest optimizing
for parameters, thus result with highest precision
(Jang 1996), an additional vital reason to design
the excellent ANFIS model is identifications tech-
nique used to split inputs spaces. Common
methods employed are subtractive cluster, grid
partition and fuzzy c-mean cluster by different
functions (Jang et al. 1997). Consequently, this
model could do well through nonlinear data along-
side with appropriate selection groundwater pa-
rameters such as (EC, TDS, PH, Cl, Ca, Mg,
NO3

− …, etc.) decided via the designer.
(3) Some models such as MFIS and FWQI were pre-

sented for water quality in groundwater modeling.
They performed well in managing GWQ. The
fuzzy-based model was capable of delivering the
highest accuracy of result, and simply incorporat-
ing previous knowledge to the model language
naturally. This permits parameters to estimate the
algorithms in order to give the practical primary
values that reducess the opportunity to find need-
less local minimum. An Additional benefit is the
capability to extrapolate that reveals new informa-
tion revealed from data (Lindskog 1997). The
fuzzy rule based model describes input and output
relationships more pragmatically and it has physi-
cal interpretations that have allowed scholars in
GWQ research to select FIS instead of ANN
models (Dahiya et al. 2007; Esmaeilbeiki et al.
2020).

2.3 Support Vector Machine (SVM) for GWQ
Modeling

The idea of not being able to separate dataset in support
vector networks was established in 1995. This kind of
machine training used non-linear inputs mapped to
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highest dimension space then ensure higher generaliz-
ing. This was model based on the named large margin
component and developed according to structure risks
minimizing theory. Support vector machine could pro-
duce good accuracy compared with KNN, linear and
NN classifiers because it does not involve knowledge.
The model includes regression model complexity, reg-
ularization, and kernels functions (Cortes and Vapnik
1995). Hence, it’s called the kernel model. Kernels
function and parameters must be carefully choosen to
decrease the bound on Vapnik dimensions (Hadian et al.
2021).

The mappings used by SVM schemes are designed to
ensure that dot products may be computed easily in
terms of the variables in the original space, by defining
them in terms of a kernel function selected to suit the
problem. The extended support vector machine model
can solve a function assessment problem via using loss
function Vapnik epsilon (ε) insensitive and Huber loss
function as displayed in Fig. 6 through overall structure
for support vector machine (Chen and Pao-Shan 2007;
Yaseen et al. 2019).

This model could be design via linear, spline, poly-
nomial, and RBF networks (Suykens and Vandewalle
1999). SVM is commonly used in order to develop
the classification models of predicting trends and also
solve regression and time series challenges
(Raghavendra et al. 2014). Numerous models have
been built utilizing kernel architectures as shown in
Table 2.

2.3.1 Bibliographic Review

In the field of water quality for groundwater prediction
with SVM, (Jafari et al. 2019) TDS of the ground water
aquifer at the Tabriz plain was assessed with groundwa-
ters physicochemical parameters such as (Na +, Ca2+,
HCO3-, Mg2+, SO4

−2) using MLP, ANFIS, SVM, and
GEP for a period of 10 years from 2002 to 2012.
According to the outcomes, GEP, MLP, SVM, and
ANFIS methods would be effectively used in
predicting TDS alteration and the GEP provided better
results compared to the other methods. Alagha et al.
(2014) built SVM and ANN models to predict ground-
water NO3

− concentrations applying scant input
datasets, the samples used data of 22 municipal wells
in Palestine (2000–2010). The conclusions indicated
that the developing AI approaches could be effectively
used to evaluate impacts of future management scenario

on ground water NO3
− concentrations, leading to higher

acceptable groundwaters sources management and
decision making. Gholami et al. (2011) applied the
SVM model to forecast concentrations for Ni and Fe,
then it was compared with BPNN, and the results
indicated that this model could be considered as a
suitable algorithm to predict Fe and Ni concentrations.
Actually the SVM technique has delivered the best
forecast for toxic metals, resulting faster operating time
comparing with the ANN model. Dixon (2009) evalu-
ated the ANN and SVM integrated into GIS to identify
contaminated wells using 14 GIS derived land use pa-
rameter and soil hydrogeologic parameters as prelimi-
nary input. Good water quality dataset NO3-N from
6917 wells in USA were applied as an outputs goal
class. Findings showed good performance by NN when
compared with support vector machine. Arabgol et al.
(2016) used the SVM model prediction NO3 concentra-
tions in groundwaters in Iran. SVM presented as a
promising tool to predict NO3 concentrations utilizing
the sets of simply measurable GWQ parameters as input
(T, ground water depth, TDS, land use, DO, pH, EC and
season in year). The mapping for NO3 concentrations in
ground-water were arranged for all seasons applying
training SVM with GIS interpolation scheme. The re-
sults indicated that this method can be utilized as a
faster, reliable, and cost-effective technique to measure
and predict the GWQ. Isazadeh et al. (2017) used SVM
and ANN models with various input designs, and the
findings confirmed that each model showed good per-
formance when using input well location. Also, the
results showed that SVM and ANN generated better
accuracy in estimation of three qualitative parameters.
Moreover, the significance of auxiliary input vari-
able was determined using Gamma testing. Purkait
et al. (2008) used ASVR, ANN and MLR to predic-
tion As contaminations in ground water. Among
those models the ANN model that used the BP
technique demonstrated more accurate result in
predicting As contamination. Also, it is important
to note that the architecture of the ANN model used
here with 4-layer feedforward BP can be utilized as
a satisfactory prediction model for assessing As
contamination in groundwater.

2.3.2 Results of Support Vector Machines

(1) The SVM or SVR are effective ML approaches
that have been built and employed for various
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classification and regression challenges throughout
the past two decades. Even though a low number
of published studies considered the prediction of
GWQ by SVM compared with ANN models, it
was applied to predict various time series for the
myriad of practical applications in this realm.

(2) In predicting SVM, properly selecting kernel func-
tions and the values of parameters is very crucial.

In many above-mentioned papers such as
(Gholami et al. 2011;Dixon 2009; Arabgol et al.
2016) RBF has been used as the best kernel func-
tion. While Sigmoid and RBF were used as the
kernel function in (Alagha et al. 2014). However,
in some papers, the kernel function used was not
revealed. Many researchers have chosen the RBF
function as the kernel function for SVR over the

a)

b)

Fig. 6 (a) Typical SVM architecture for groundwater quality modeling, (b) Nonlinear SVM Vapnik ε insensitivity loss functions, when
predict values are with in tube loss is 0 and outside loss is scale for variation between predicted value and radius of ε tube
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years due to it is accuracy and reliability in
performance.

(3) The majority of papers used a trial-and-error meth-
od to determine the optimal parameters of the SVM
model, with the exception of one analysis (Jafari
et al. 2019), which did not mention a tool to deter-
mine the optimal parameters of the SVM model.

2.4 Hybrid AI Models for GWQ Modeling

Since it was discovered that artificial intelligence
methods have some limitations by non-linear process
and nonstationary process, many hybrid prediction tech-
niques that comprise data pre-processing/combined var-
ious artificial intelligence models to increase abilities for
artificial intelligence models. Combined various AI
models of various phases of modeling and employing
effective approaches for input data preprocessing made
the developed of these models more effective. Owing to
the ability of geostatistical tools in spatial assessment,
hybrid artificial intelligence geostatistical methods were
employed in several studies to utilize their capability in
mimicking spatiotemporal for GWQ. GA was initially
presented during 1962, then significantly enhanced as
time progressed. It works on selecting, crosses over, and
mutating operators (Goldberg and Holland 1988) of the
binary string used for codes; therefore, it used actual
variables vector as chromosome, actual variable as gene
and actual number as allele. Vectors were decoded and
underwent fitting assessment, that help decide if a vector
should undergo mutation or crossover. GP models,
which are combined GA and GP, it is depend on Dar-
winian concept for evolution theory introduced by
(Koza et al. 1997). It’s an independent, organized and
domain approach that instinctively solves problems and
does require the designer to have in-depth information
for solutions structures. The functions of GP are an
optimizer and classifiers. Such technique included syn-
tax trees with branch as function with argument and
leave of the tree as variables and continual. Many algo-
rithms are dependent on behaviors for the organism,
such as particle swarm optimization (PSO) particle
swarm optimization uses principle of bird flocks, fish
teaching and swarming theory. It depends on the simple
idea by least coded. Its benefits over GA consist of
improved performance because of groups interactions
and memory retention (Eberhat and Kennedy 1995).
Figure 7 and 8 show the structure of the hybrid model.

2.4.1 Bibliographic Review

Some researchers attempted to integrated various types
of AI models to overcomeweaknesses and then enhance
their precision. Jha et al. (2020) used a novel hybrid
structure integrated with the FL and GIS based GQI to
measure GWQ in India using FGQI models (with seven
critical variables) for two seasons. The model inputs
parameters done by Trapezoidal membership function
based on water quality standards for drinking purposes
and expert knowledge were classified (desirable, accept-
able, and unacceptable). The outcomes were compared
with other models and the FGQI model predicted GWQ
better than the traditional methods and was more reliable
and realistic for GWQ valuation and analyses at large
scales. Maroufpoor et al. 2020 applied hybrid models
based on neuro fuzzy systems combined with fuzzy c-
mean data cluster (FCM) and grid partition (GP) models
and ANN combined with PSO algorithm to forecast a
spatial distribution for parameters EC, SAR and Cl of
ground water. The findings of these methods were com-
pared with the geostatistical method which include
kriging, inverse distance weighted (IDW), and RBF.
Outcomes indicated that the hybrid model NF-GP gave
lower values of both RMSE, and MAE and a higher
value of R was found; it was a most appropriate model
for predicting the water quality parameters. Aguilera
et al. (2013) showed that applying a hybrid model of
BNs with MTEs provided a proper result for predicting
GWQ. The outcomes attained allow the difference of
three classes of sampling, representing three various
groups of GWQ and the possibility that the sampling
point belongs to all clusters permits the uncertainties in
clusters to be measured, and a risk related in term of
water quality management. Jalalkamali (2015) used a
variety of hybrid approaches, including ANFIS-GA and
ANFIS-PSO to model three GWQ parameters in the
Kerman plain involving Cl concentration, EC, and PH,
assuming different combinations of monthly variables
of rainfall and ground water level, as well as three
various quality parameters. The findings showed that
both models performed well in the spatiotemporal
simulation of GWQ. The paper also showed that
groundwater variations around the aquifer, and runoff,
play important roles in forecasting GWQ. Kisi et al.
(2017) employed the ANN-PSO model and the ANN-
DE model to predict parameters of ground water quali-
tative such as SAR and So4

−2. The prediction results
revealed that ANN-DE provided better accuracy
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comparing with ANN-PSO in predicting these ground-
water parameters. Cho et al. (2011) investigated the
estimation of prediction performance of various models
such as MLR, ANN, PCR and grouping of principal
components and ANN (PC-ANN) in predicting of As
concentrations and provided evaluation tool for Thai-
land, Laos, and Cambodia. Prediction precision of PC-
ANN shows better performance than other models.
Alizamir and Sobhanardakani (2018) used the ANN-
PSO approach to predict heavy metals such as (Cu, Zn,

Pb, and As) contamination in ground water sources in
Iran. The results showed that this hybrid model could be
successfully used for predicting concentrations of heavy
metals in ground water resources at the Toyserkan Plain.
In (Kisi et al. 2019) the GWQ variables and quality
parameters were modeled through simple ANFIS and
ANFIS training via evolution algorithm including PSO,
DE, CGA and ACOR, and the results of modeling
shown that four proposed algorithms improved ANFIS
performance in predicting the (TH and EC), and in

Fig. 7 Steps of hybrid model
procedure (Kisi et al. 2019)

Fig. 8 General structure of optimizers by ANN (hybrid-model) where X = inputs, Y = output, bias is justified via the training process, H =
number of hidden layer and w = weight (Tiyasha, Tung, and Yaseen 2020)
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algorithms (SAR, PSO, CGA) have the best perfor-
mance compared with other algorithms. Fijani et al.
(2013) coupled SFL, MFL, ANNs, and NF methods to
estimate groundwater vulnerability in the Maragheh-
Bonab basin of Iran. (Soltani Mohammadi et al. 2017)
predicted GWQ parameters such as SAR, EC, and TDS
using ANN and ANN- PSO models and compared their
outcomes with observed data. The inputs to predict
parameter TDS included of EC, SAR, pH, SO4

−2, Na
+, Ca2+, Mg2+, but for SAR, it included HCO3-, pH,
Na+, and TDS, and as for EC, it involved So4

−2, pH,
Ca2+, SAR, andMg2+. The results reveal that the highest
predicting accuracy for SAR, EC, and TDS was related
to model ANN-PSO by using the tangent sigmoid acti-
vation function. Bashi-Azghadi et al. (2010) studied a
new method to estimate the location and total of leakage
from unknown contamination source using data of
GWQ. They developed probability prediction models,
PSVMs and PNNs for identifying and evaluating core
attributes of an unknown ground water contamination
source, in term of location, timing and magnitude. In
their proposed method the GWQ prediction model
derived-out of MODFLOW and MT3D were coupled
with a multi objective optimization model NSGA-II.
The comparison of accuracy of both models found that
the PSVM model was better than PNN. The results
revealed in real time monitoring groundwater that the
probabilistic mass functions of unknown contamination
source location and relative errors in estimation values
of leakage depending on the actual concentration of
water quality indicators at monitoring wells were better
evaluated via training probability in both PSVMs and
PNNs models.

2.4.2 Results of Hybrid AI Models

(1) Many papers have reported using PSO in resolving
practical optimizing problems in the world such as
(Liu et al. 2007;Melin et al. 2013;Selakov et al.
2014; Soltani Mohammadi et al. 2017). PSO could
be more efficiently applied to forecast a spatial
distribution of parameters of groundwaters due to
it has small computational volume, simple opera-
tion, is not reliant on problems, high convergence
rate, worldwide search ability, able to deal with
complex problems and could escape local mini-
mum (Maroufpoor et al. 2020;Jalalkamali 2015).
However, in (Kisi et al. 2017) DE algorithm
showed better results than PSO which is a

population based stochastic searching method to
solve continuing optimizing problems.

(2) GA is a population based stochastic optimizing
tool that could successfully deal with nonlinear
and nondifferential water quality of groundwater
data problems through attaining optimal solutions
via the repetition procedure. The operators could
rise to other spaces with look space to discover best
new way out. It’s a not thorough method till re-
quired solution is attained (Jalalkamali 2015).
These benefits let them to solving high complex
and multiparameter challenges.

(3) GP delivers stable and effective result (Maroufpoor
et al. 2020); although, limited investigation have
considered GP model. It was shown good perfor-
mance once datasets are preprocessed. The explicit
and linear representation of this model relies on
ease, effectiveness, and genetic operator. Further
investigation is required to best utilization of GP
model consider they would be simply used, devel-
op through training and solving the complex chal-
lenges in unpredicted manners.

(4) Another combined model was integrated such as
BNs with MTEs and Fuzzy Logic with the GIS-
based GQI showed good outcomes for prediction
GWQ. By merge ANN with PCA in (Cho et al.
2011) a new set of variables and the PC scoring are
produced from perpendicular linear transformation
of previous data, then these scores utilized in pre-
diction as helpful variables.

(5) The majority of research papers used one or com-
binations of multi-dimensional data analyses ap-
proach in ANFIS, i.e., GP, PSO, CGA, DE and
ACOR cluster. Moreover, CGA and PSO are the
superior tools compared with others in handled the
classification of GWQ (Kisi et al. 2019).

(6) Even though many studies have applied used hy-
brid models in hydrology, most studies conducted
for modeling groundwater level (Fahimi et al.
2017; Tiyasha and Yaseen 2020; Rajaee et al.
2019; Tiyasha and Yaseen 2020; Moosavi et al.
2012)

2.5 Machine Learning Models for Modeling Water
Quality of Groundwater

Machine learning (ML)methods for instance, XGBoost,
M5P, MARS, GEP and RF are the effective models to
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deliver the non-linear relation between input-output pa-
rameters. XGBoost approach produces several shallow
decision tree, combinations for whole trees generates the
highest precision regulation through forecasting (Chen
2016). A decision tree was built via XGBoost algo-
rithms and did not just proceeded to minimize the aim
function through consideration of loss function but also
protect trees from overfit during regularization proce-
dure. Additionally, flexibility in tuning hyperparameter
for XGBoost model make such model very common in
various exploration disciplines (Bhagat et al. 2020). The
M5P used a binary decision tree (DT) and multi-linear
regression to forecast continuous mathematical charac-
teristics. The initial stage involves dividing criteria to
produce the decision tree. The second stage involves
pruning technique to remove overfitting and building of
the linear regression functions (Etemad-Shahidi and
Bonakdar 2009). MARS is a regression model built in
1990 (Friedman 1991) which is the combination of
regression and recursive partitioning. The method is
categorized as a forward and backward subclass
selecting process. This model involves product degree,
dependent parameters, intercept, basic function and
knots. The GEP model is based on the same idea as
GP and GA, but it have characteristics of model
(Danandeh Mehr et al. 2018). In particular, GEP uses
fit testing, genetic operators and individual population
(Esau et al. 2019). The RF another model using regres-
sion method with combinations of trees predictor. RF is
random chosen segment for training data set of all trees
(Breiman 2001). The prediction process of RF approach
is displayed in Fig. 9. More details about applied other
machine learningmodels can be found in supplementary
material. The applications of machine learning models
for prediction water quality in groundwater is demon-
strated as following sub section.

2.5.1 Bibliographic Review

Many investigations have been done in the field of water
quality for groundwater using machine learning
methods. El Bilali et al. (2021) applied Adaboost,
ANN, RF, and SVR methods with 520 samples of
dataset relate to 14 ground water quality variables in
Berrechid aquifer, Morocco. They were applied EC, T,
PH as inputs to prediction PS, SA, MAR, R, RSC, ESP,
TDS as outputs. Their calculations showed that the
general forecast performance of Adaboost and RF
methods were highest than SVR and ANN. Moreover,

generalization capability and sensitive to input analysis
showing that ANN and SVRmethods have better ability
in generalizing and lower sensitivity to input parameters
than RF and Adaboost. Lopez et al. (2021) predicted
groundwaters uranium concentration via RF regression,
using 23 environmental variables from statewide ground
water geochemical data base and in publicly accessible
maps of soil and aquifer physico-chemical properties in
California. They noticed that ground water of concen-
trations Ca, NO3, and So4

−2, soil pH, and clay contents
(weighting average from zero- and two-meters depth)
were the most significant predictors of groundwaters
uranium concentration. Singha et al. (2021) introduced
a DL based model for predicting GWQ and compared
with other machine learning models, ANN, XGBoost,
and RF. A total of 226 ground water samples in India
were used. Outcomes demonstrated that the DL method
provided better predicting result by give higher
precision compared to other ML models, input
variable importance calculated through forecast
approaches highlighted that DL technique is the most
pragmatic and precise model in predicting the GWQ.
Bedi et al. (2020) examined performance of leading ML
classifiers in order to forecast the NO3 and pesticide
concentrations for ground water wells, used land use,
hydrogeologic and water quality data. Each scenario
was able to forecast both the NO3 and pesticide concen-
tration with accuracy equivalent to earlier attempts. The
XGB generated the best prediction among other
methods. Therefore, this model is able to provide a good
alternative to other water quality prediction methods.
Rodriguez-Galiano et al. (2018) applied a comprehen-
sive GIS data base of 20 variables involving
hydrogeological and hydrological characteristics as in-
put for models to predict NO3. ML algorithms for ex-
ample CART, RF and SVM were applied as wrappers
considered 4 various subsequent search methods and
most features that gained significance from RF and
CART models were utilized as the embedding method.
RF provided the better performance with mmce = 0.12
and AUC = 0.92. Rodriguez-Galiano et al. (2014)
implemented RF to predict the NO3 contamination. A
GIS database including 24 variables associated with
essential hydrogeologic proprieties remotely sensed
driving forces parameters and physical chemical
parameters measured and used as input to design
various predictive models of NO3. Also, RF was
compared with LR method used various efficacy
measures to guarantee their generalization capability.
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The outcomes showed the capability of Random forest
to develop accurate model with robust regression
abilities. Vijay and Kamaraj (2019) assessed the water
quality parameters such as TDS, EC, PH, So4

−2, Cl,
NO3, CO3-, HCO3-, metals ions, trace components.
There are two main classifications high and low levels
of water pollution noted in Vellore district. This work
emphasizes on predicting water quality by applying ML
classifiers algorithms C5.0, Naïve Bayes and RF as
leaner for water quality forecast with good accuracy
and efficiency. Rahmati et al. (2019) chose three state
of the art machine learning methods including kNN,
SVM, and RF were chosen to spatially model ground
water NO3

− concentration. The methods were calibrated
with NO3 concentration from 80 wells which equal70 %
of the dataset and later validating with NO3 concentra-
tion from 34 wells which equal 30% of dataset. These
methods were compared with uncertainties methods and
these results highlighted that kNN model was the better
model. Singha et al. (2020) measured concentrations for
several heavy metals (HMs) and compute six ground-
waters contamination indices. This research work also
studied the performance of DL based regression model
by comparison research. The findings shown that the
DL-PMI scoring lower error than DL based ground
water HM contamination model. Comparing of both
models DL model provided better performance.
Barzegar et al. (2017) applied ELM, MLP, and SVM
methods to forecast the level of F− pollution in the

ground-water. The samples were evaluated for EC,
pH, main chemical ions, and F−. To develop these
approaches, dataset of (Na+, K+, Ca2 and HCO3-)
concent ra t ion was ut i l i zed as input and F
concentrations as outputs. The result presented that
ELM models performed better than MLP and SVM
models. Stackelberg et al. (2021) established a BRT
model for predicting pH condition in the US. The pre-
diction result revealed that Ca2 contents of soil and
aquifer material robustly control pH once combined
with long flow-paths was most alkaline condition. A
novel aspect of such a model was the presence of
mathematically based estimates of groundwater flow
properties (age and flow-path length) as predictor pa-
rameters. Knierim et al. (2020) employed BRT models
to predict SC and Cl, and TDS were computed from the
correlation with SC. The descriptive parameters for
BRT model comprised fit location and construction,
surficial parameters, and parameters extracted from the
ground water flow model, including predicted ground-
water ages, and the BRT model was able to be capture
zones of notarized higher salinity that exceeded the TDS
minor extreme pollutant levels for drinking water of
500 mg per litter. Parameters that worked as surrogate
for place along groundwaters flow-paths were essential
predictors, indicating that much of the controls on dis-
solving solid is related to rock water collaboration as
residence period increases. Khalil et al. (2005) studied
various models to predict NO3 concentrations in ground

Fig. 9 Schematic view of the RF
model
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water such as ANN, SVM, LWPR, and RVM. The
prediction result showed the capability of machine
learning to develop an accurate model with robust
predictive ability, therefore constituting a useful means
for saving efforts in groundwaters pollution modeling
and developing model performance. Esmaeilbeiki et al.
(2020) data-intelligent models used data collected from
367 wells in India to chose scenarios to predict EC and
TH, which are GMDH, DENFIS, GEP, MARS, and M5
Tree. Outcomes revealed that GEP for input combina-
tions involving TH, Na+, Cl-, HCO3- parameters and
DENFIS using Ca, Mg, EC parameters provided a better
performance in predicting TH and EC, respectively.
Maiti et al. (2013) proposed an ANN based method set
in the BNN structure and employed it to predict GWQ
based on the geo-chemical and geo-physical datasets
gathered from the western part of India. This study
showed that the trained model could classify validation
and test sets with 85% and 80% accuracy, respectively.
Based on cross-correlation evaluation and Gibb’s dia-
gram of geochemical characteristics, a groundwaters
attributes of the study area were classifyed to sets: “very
good”, “good”, and “unsuitable”. BNN model based
result indicate that most values of GWQ fall in the range
of “good” to “very good” excepting for a few places
near the Arabian Sea. Bui et al. (2020) used a novel data
mining algorithm that included the GP in the large
GWQ data to predict NO3

− pollutant and strontium
possible future increase concentrations groundwaters.
The prediction result was comparing with RF, M5P,
and RT models, it was indicated that GP algorithm
outperformed over other algorithms used water quality
parameters (EC, T, HCO3−, pH, F−, Cl−, K +, Ca2+,
Na +, Mg2+, and SO4

−2) as the inputs to the models.
Yang et al. (2017) measured the GWQ via MLP-ANN
optimizing by BP algorithm and WNN model in the
coastal aquifer, South China applying eight parameters,
e.g., TDS, TH, COD, Cl, So4

−2, NO3
−, and F. The

findings attained from these approaches demonstrated
that WNN has the highest accuracy comparing with
ANN. Norouzi and Moghaddam (2020) applied the
fuzzy groundwater quality index (GQI) to reduce the
uncertainty via the fuzzification of the GQI technique.
Moreover, RF algorithm, as the learning approach based
on the ensemble of decision tree, was applied to assess
the GWQ. For drinking purposes, validating and
comparing the methods showed that the method fuzzy
groundwater quality index has high accuracy as the
more reliable technique in GWQ assessment.

Additionally, the result demonstrated that the RF
model could be used as a reliable model for ground
water vulnerability, investigation and appropriately
manage or monitor of any aquifer. Nolan et al. (2015)
employed different machine learning models, BRT,
ANN, and BN to predict NO3

− concentrations in Cali-
fornia. Prediction result revealed that BRT better than
BN and ANN. Whereas BN ranked as second-best
predictive model after BRT. Also, comparisons between
these models with MLR and RF regression model were
done. The results of BRT were compared to RF, MLR
had low holdout with R2 = 0.07 and described less than
half difference in training datasets. Spatial pattern of
prediction via BRT model agreed acceptably well with
earlier actual patterns of NO3

− occurrence. Singh et al.
(2014) built ensembles of classification and regression
models and used the ground water hydro-chemistry
database at India. SDT, DTF, and DTB methods were
compared with the SVM model. The DTF and DTB
methods showed more accurate performance than SVM
in classification and regression. It should be mentioned
that combination of bagging and stochastic gradient
boosting algorithms in DTF and DTB methods, respec-
tively resulted in their improved prediction capability.
The ensemble models effectively presented the influ-
ence for seasonally differences and anthropogenic acts
on groundwater hydro-chemistry.

2.5.2 Results of Machine Learning Algorithms

The approaches that fall into the above-mentioned
groups are summarized in this section.Machine learning
algorithms are common methods after traditional
techniques.

1) MARS is a flexible model and it has the capability
of managing high dimension problems in regression
and classification, making it a superior model to
testing for predicting water quality of groundwater.
It could independently classify additive contribu-
tion (Friedman 1991). Also, the M5 Tree model
could produce good generalization, best compre-
hend the parameters relationships, avoid overfitting,
and attain good accuracy. Nonetheless they
displayed inferior performance in comparison with
DENFIS and GEP (Esmaeilbeiki et al. 2020). GEP
encode specific population as linear string for fixed
length and later express them as non-linear entities
of various shapes and sizes.
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2) Also, the accurate performance of kNN model in
classification was shown, and it performed better
than SVM and RF (Rahmati et al. 2019). On the
other hand, kNN required more discovery along
with research opportunity for hybrid k-NN models.

3) There are many variants of DT that are remain to be
tested concerning water pollution and GWQ such as
naïve bayes trees. Model solve problems (recursive
dive and conquer) and generalization of complex
issues, leads to increase of applying complex data
of GWQ prediction. Additionally DT models are
easy to understand (Vijay and Kamaraj 2019).

4) BRT model do not require data transformation, are
able to be fitted for complex non-linear relation-
ships, and automatically way combines interactions
effect between predictors (Elith et al. 2008). The
BRT model is, thus, fit suitable for prediction water
quality condition complexity, heterogeneous setting
for instance the glacial aquifer system (Erickson
et al. 2018) and further aquifers setting (Ransom
et al. 2017;Knoll et al. 2017). Also, in (Knierim
et al. 2020) the BRT model supporting the hypoth-
eses for each surficial or deep sources of salinity.
Moreover, BRT proved it has good capability in
predicting patterns of NO3

− (Nolan et al. 2015).

3 General Research Assessment and Evaluation

Analysis of artificial intelligence models shown that
these methods generated better result than statistical
techniques for example linear and logistic regression
as exhibited in Table 2, ANN methods were applied
predominantly as a first methods for GWQ modeling.
Additionally, use of new classification methods such as
KSOM as a type of ANN model for recognizing pollut-
ing and nonpolluting wells must increase. The propaga-
tion of using the AI approaches began in the late 1990s,
and many AI applications involved using various clas-
sical AI methods including ANN, ANFIS, SVM and
ML. The latest trends include hybrid models, which are
an important development of AI models that integrated
different basic algorithms for estimation of water quality
in groundwater. These combinations make standalone
models more reliable and cost effective through decreas-
ing the cost of computation and increasing the accuracy
of produced outcomes. A limited number of papers were
found to hybrid models in GWQmodeling in this work.

All former review and study papers have regularly
emphasized only input variables, which are is consid-
ered as crucial for the prediction procedure, and many
input optimization methods were applied in order to
guarantee the most likely inputs used are qualified to
relationships recognized with output variables. Alhough
researchers have studied the input and output relation-
ship for prediction, attention and fewer analyses have
been considered in GWQ review papers regarding out-
puts variables. Because the basic method of these papers
is to determine the relationships between the input-out-
put. Also, because of it could be those inputs are utilized
for training, optimization and dimensional decrease, and
the relationship is determined depending on its sensitiv-
ity toward selected outputs; therefore, they are empha-
sized in this study. Additionally, the outputs are usually
chosen based on the issue addressed via the researchers
for instance, when the issue is salinity in groundwater,
therefore, EC or TDS is carried as output not through
using any predefined method. The main output vari-
ables, as highlighted as in Fig. 10 represent a number
of studies which employed every output variable out of
all the considered studies. Consequently, the present
review focused on the evaluation of output and which
output variable have frequently used to measure water
quality in groundwater in most studies. Figure 10 shows
that, out of 81 measured papers, most studies reviewed
in this study used variable NO3

− with 20 out of 81
studies as output to measure water quality of groundwa-
ter, which indicates how essential this variable is in
predicting GWQ. NO3

− was mostly considered in case
for GWQ classification and regression where multiple,
or single parameters were evaluated versus government
standard as well as classifying in simplified classes.
From Fig. 10 the other most popular GWQ variables
are TDS, EC, and TH which are an important, a part of
many water related reactions. For instance, TDS is cru-
cial water quality and groundwater healthy indicator,
and a high concentration of it maybe cause people to
suffer from some diseases such as kidney and heart
illnesses. Water that has a high-level of solids maybe
caused laxative or constipation effects (Sasikaran et al.
2016). Also, the increase in ions concentration improves
the EC of water. Usually, EC reveals mineralization and
salinity in the water and the value of dissolved solids in
water determine EC. The impact of SO4

−2 reduction
results play a major role in mediating redox conditions
and biogeochemical processes for ground water system.
Along with Sulfate, Cl which are essential inorganic
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anions, are found in differing concentrations in natural
waters and constitute an indicator of contamination.
Their presence in groundwater may reveal anthropogen-
ic pollution because they exist in urine and maintenance
products. Another output frequently used is WQI which
is computed via a complex numerical formula using
excessive time and might have incorrect values. This
process included using multiple water quality parame-
ters to calculate and compare themwith standards values
to improve comprehension for the nonscientific com-
munity, for example policy makers (Smith 1990). The
essential GWQvariable is pH, which is the seventh most
used as output variable, hydrogen ion’s ability is the
most powerful initiators of each chemical and biological
processes, including decomposition, toxicity, solubility,
and degradation. Only some variables maybe have not
directed and cooperative influence. For example, in-
creasing Na + in irrigation water maybe result in sec-
ondary alkalization of the soil. Also, the COD variable,
is used in the GWQ indicators which have visible mi-
crobial and chemical reactions that occur in presence of
oxygen in water. COD signifies the need for care or the

scope of rivers contamination. In addition there are
many output variables used to measure the GWQ not
displayed in Fig. 10 because they were only used once,
such as PO4, Ni, source of pollution, E.coli, uranium,..,
etc. According to the reported review, it’s obvious that
the performing ability of artificial intelligence is reliant
on water quality’s multidimensional nature. While con-
structing the regression/classification models, complex-
ities depend on number of various input variables com-
bined such as less is best while excessive input variables
increase complexity of the model. Its important to high-
light the ability of AI methods in many applications with
various model versions as in Table 2, and it could
expand dependent upon government policies, geologi-
cal site, regional population behavior, climate changing
and other exclusive scenarios. Therefore, there is no
concern in applications of AI models in easy cases,
nevertheless, everchanging of GWQ caused by depen-
dent variables could be causing a significant influence
on prediction outcome.

Figure 11 demonstrations a number of review studies
regarding every country where the study area is situated.
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Many study areas are situated in Iran and India, with 26
and 20 out of 81 papers respectively. This point may
display the attention of Iranian and Indian academics in
water quality in groundwater realm. However, it could
be because of dryness or partial dryness of areas as Iran,
for example the surface water resources are at a low
level, and groundwaters is the greatest obtainable water
resources, and consequently GWQ database are more
accessible compared to data of surface water. The next
category has the USA with 10 papers and Turkey with 4
papers and the remaining countries can be seen in
Fig. 11. It’s known that the black box AI models are
valuable in GWQ modeling, however, they aren’t de-
veloped utilizing comprehensions on physical process
engaged. In this kind of prediction, information regard-
ing fundamental mechanisms is not required and amajor
aim is attaining predictions accurately.

Performance indicators are statistical measures that
help for developers to evaluate and calibrate prediction
performance on any platform. In addition, performance
precision and effective is translated to comprehensible
and expressible forms. Twenty evaluation criteria were
used for predicting GWQ as represent in Fig. 12. The
quantitative errors measure method is mainly used with
AI techniques. The root mean squares errors (RMSE) is
the most often applied squared errors measuring system
with 46 papers, followed by Determination coefficient
(R2) (29 papers, correlation coefficient (R) with 19
papers, the mean squared errors (MSE) and mean abso-
lute errors (MAE) with 14 and 15 papers respectively,
and Nash Sutcliffe efficiency (NSE) and mean absolute
percentage errors (MAPE) with 7 papers. Some perfor-
mance metrics are not illustrated in Fig. 12 because they

not commonly used in many papers such as (%bias, CE,
RSR, SI, WI, mmce, AUC, ROC, …, etc.).

RMSE is commonly used because it could reveal
numerous deviations, its reliable and provides the
highest weights to errors. Outliers must remove R2,
which is the second most preferred metric, assessing
forecasted values generated via such method with re-
spect to observed values, that provide performance of
models and range between zero to one. Other set in-
volves the absolute error, which are named: MAE, MSE
and MAPE. They’re an absolute variance between ob-
served value and predict value. However, they do not
model validity, they only provided information about
range of errors and they have good sharpness. R and
NSE measure a robust relationship among dataset and
comparative movements for two data sets by difference
units. Various papers have been reported classifying the
GWQ to classes named, “excellent”, “good”, “poor”
and “very poor” according to standards of GWQ guide-
lines of study areas. Among calculated performance
indicators, though R2 and R were commonly applied
for model’s estimation, they are over sensitive to the
highest amounts and insensitively to addition and pro-
portionate variations between models prediction and
actual dataset (Moriasi et al. 2007). However, the
MAE has been applied as a major measurement because
the ultimate values in the forecast dataset are less sensi-
tive than RMSE (Fox 1981). According to studies, NSE
is the normalized metric that quantifies the residual
variance’s relative magnitude in comparison to the cal-
culated data variance (Nash and Sutcliffe 1970). Ac-
cording toMoriasi et al. (2007) the efficiency guidelines
of the hydrological model assessment are very
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successful for the hydrological model, where NSE is
more than 0.75. Therefore, this is another extraordinary
measure to be examined for such modeling.

4 Conclusion and Future Trends

This study provides a review of the innovations of water
resources engineering on applying artificial intelligence
models, novelty of water quality in groundwater model-
ing with various challenging problems in many devel-
oping areas and aims to be attained in the forthcoming
research, AI modeling approaches have been success-
fully applied for water quality in groundwater papers, as
reviewed via 81 research studies from 2001 till 2021.
The AI methods are integrated tools of biological sci-
ences, statistics, and mathematics. These models could
overwhelm the particular difficulties via behavior,
thinking, and learning. Once integrated with learning
they become machine learning. The AI methods could
be helpful once it’s difficult to develop a sufficient
information drive simulating model because of a short-
age for ability to acceptably build the mathematic or
physic models for the basic processes. AI methods have
some important steps involving inputs dataset consider-
ation, inputs dataset partition, control of model charac-
teristics, test set, training set and so on. All these stages
will be carefully designed, and the model performance is
expected to be reasonable. Even so, it must be noticed
that there was no generally accepted method for
performing these stages; rather some various research
studies performed each stage empirically and/or by trial

and error, taking available data and existing conditions
into account. The analysis of the study’s findings, which
were divided into two distinct sections for example the
assessment of each AI group and the overall assessment
and evaluation, will serve as a valuable resource for
researchers looking to conduct comparable work in a
related area, create novel approaches, and increase the
quality of modeling. To achieve this aim, the next points
are recommended:

1.1. AI methods are tools for data and, if proper and
competent control stations are developed that can
deliver continuous and stable data worldwide,
they can achieve the highest precision with con-
sistent, regular and adequate amounts of data.

1.2. . Several fields of research include data collection
challenges and some problems are impossible to
solve. Therefore, more AI models should be de-
veloped that can address the lack of data and the
lack of continuous information. With recent tech-
nological advances, such as GIS and remote sens-
ing, the problem of lost data and data, especially
unreachable stations, can be solved. These tools
may also be used to control resources or to model
the environment. For better spatial GWQ model-
ing, high resolution data from satellites is
available.

1.3. As to the various GWQ simulation AI models, a
specific kind of AI model for a particular problem
is practically not to be recommended. It is obvious
that a hybrid or coupled model performed better
than single AI models. In the various stages of the
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GWQ modeling, various types of AI techniques
can be evaluated to choose a better AI model in
each stage and combine it to achieve an optimum
modeling efficiency.

1.4. The AI models can be implemented in the evalu-
ation of groundwater quality in three significant
application areas. The fields of application have
been divided as:

1. Concentration estimation of different ground-
water quality parameters: For reliable concen-
tration estimation in groundwater, AI models
such as ANFIS, ANN, SVR, and tree-based
models can be effective instruments in this
field. According to the literature, the efficiency
of these models is comparable and close to each
other, but newer models such as ANFIS and
tree-based models provide more reliable results.
However, because ANFIS employs fuzzy logic,
it outperforms it in scenario-based problems.

2. Classification of groundwater quality parame-
ters for instance NO3 polluting areas: for this
aim, the SOM model was used as a powerful
model to classify polluting and unpolluting
areas, this model has superior visual capabili-
ties, and the SOM model can be an excellent
alternative in this filed.

3. Optimization of the prediction of groundwater
quality parameters: the main focus of this field
of application is the determination of hydro
economic mechanisms that optimized econom-
ic expenditures for environmental purposes and
various scenarios. The AI models can be opti-
mized using multi-objective particle swarm op-
timization (MOPSO), Non-dominated Sorting
Genetic algorithm (NSGA-II), and multi-
objective shuffled complex evolution metropo-
lis (MOSCEM-UA) algorithms, which are the
well-known meta-heuristic optimizing methods
to multi objective optimization in water re-
sources management therefore, it can be a great
option to find the best results in this area.

1.5. Several AI approaches, such as ELM, SVM,
MARS models, have been effectively employed
for GWQ estimation but as standalone models,
they are not ever combined with bioinspired
optimization techniques. They may then be
stuck in optimal local solutions and cannot

estimate GWQ accurately. In order to address
this problem in future studies, standalone
models must be coupled with other algorithm
for example evolutionary algorithms such as
Ant colony optimization model, genetic algo-
rithm etc., then performance of this novel or
hybrid model must be examined in estimate
the GWQ. The achieved outcome from hybrid
model comparison with standalone model will
enable us to determine hybridization effective-
ness compared to standalone models and de-
livers insights into the strengths of hybrid
models.

1.6. After reviewing all the research papers regarding
GWQ, it could be conclude that the contamina-
tions mixing processes of groundwater quality are
complex and causing a synergetic reactions pro-
duces changes in water quality composition. Dur-
ing the experimental period, other variables such
as irregular velocity bed configuration, sediment
load, and the dead regions should therefore be
addressed.

1.7. Because of the low number of studies in GWQ
field modeling using hybrid–AI models, its rec-
ommended that additional research be conducted
on this topic.
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