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Tramea cophisa and of the ostracod Chlamydotheca 
sp. were studied by performing laboratory ecotoxic-
ity tests. Food preference was evaluated by offering 
four prey species to dragonfly nymphs and three to 
adult large ostracods. In general, the food preference 
of both predator species after being exposed to metal 
salts was not altered, compared with controls, but 
the feeding rate of T. cophisa decreased in compari-
son with controls, after exposure to each metal salt, 
except manganese. Contrastingly, predation rates of 
Chlamydotheca sp. increased after metal salt expo-
sure. This difference in response can be explained by 
differences in life-history traits of these two organ-
isms. Both species individuals preferred soft-bodied 
prey (Oligochaeta, Chironomidae) over water-dwell-
ing crustaceans that are likely to be more difficult to 
prey upon. Tests evaluating the effects of metals and 
other chemicals on predation behavior may lead to a 
better understanding of biotic interactions that can be 
restricted by chemical stress, improving our under-
standing of possible food web disruptions underlying 
chemical stress.

Keywords Benthic invertebrates · Predation 
behavior · Metal toxicity · Food selection

1 Introduction

Prey capture is part of a predator foraging behavior 
and can influence the meta-community distribution, 

Abstract Predation is known to play a prominent 
role in maintaining ecosystem structure and function-
ing. Despite metals being known to potentially affect 
predation in aquatic ecosystems, few studies have 
been conducted, so far, with the aim of evaluating this 
interplay. In the present study, the effects of four metal 
salts (copper, cadmium, mercury, and manganese) on 
the feeding rates and food preference of the dragonfly 
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as well as prey behavior (Grainger et al., 2017). Pred-
ators conduct several determinant actions to assure 
prey capture success, such as finding, choosing, cap-
turing, manipulating, and ingesting or rejecting prey 
(Kimbell & Morrell, 2015). Pollutants like metals 
may alter these actions, which may ultimately lead to 
reduced predation success rates and therefore dimin-
ished food acquisition (Walker et al., 2012).

Food intake reduction indeed appears to be a gen-
eral response to contaminant exposure (McWilliam 
& Baird, 2002). For example, studies by Smith and 
Weis (1997) and Weis et al. (2003) have shown that 
metals like cadmium, mercury, and zinc may inter-
fere with the ability of selection and the speed of prey 
capture by the fish Fundulus heteroclitus, resulting in 
a decrease in the amount of food ingested. Success in 
catching prey can be used as a sensitive behavioral 
biomarker to evaluate the sublethal effects of chemi-
cals like metals on aquatic populations and indirectly 
on aquatic community structure (Weis et  al., 2001). 
Crustaceans such as Gammarus pulex and Hyallela 
azteca have indeed been successfully used as bioindi-
cators of metal and pesticide contamination in water 
and sediment through an evaluation of their feed-
ing rates (Forrow & Maltby, 2000; Hatch & Burton, 
1999).

Dragonfly and damselfly species (Odonata, 
Insecta) have recently been suggested as promising 
test species for toxicity testing (Miguel et  al., 2017; 
Valente-Neto et  al., 2016). Odonates play an impor-
tant role in aquatic ecosystem dynamics (Costa 
et  al., 2006) being relevant predators, among oth-
ers, in freshwater food webs (Oliveira et  al., 2013). 
Their diet may range from invertebrates (mainly 
other insects) to fish and amphibian larvae of suitable 
size for their ingestion (Corbet, 1999; Fulan & Dos 
Anjos, 2015). However, when prey-predator interac-
tion occurs in contaminated environments, metals can 
be bioaccumulated in the food web due to their non-
degradability (Yuan et al., 2017). In addition, because 
they live directly associated with the sediment in its 
nymph phase, they may accumulate more metals than 
other invertebrate taxa inhabiting the water column 
(Corbi et al., 2008, 2010) and may therefore be good 
bioindicators of metal contamination (Wayland & 
Crosley, 2006).

Like many Odonata, ostracods are invertebrates 
that are also in close contact with the sediment since 
most species are detritivores, feeding mainly on 

decomposing organic matter (Martens, 1995). How-
ever, filter-feeding and predaceous ostracod species 
also exist (Barnes, 1995). For example, Campbell 
(1995) observed that the ostracod Australocypris 
insularis is a predator on zooplankters, able to greatly 
reduce density of small copepods such as Calamoecia 
clitellata and C. salina besides other ostracods such 
as Diacypris compacta and D. dietzi. According to 
Duleba et al. (2005), several species of this Class are 
stenobiotic, i.e., very sensitive to environmental vari-
ations, and as such, good environmental indicators of 
changes in physicochemical water conditions. They 
are also known to be sensitive to pesticides, metals, 
and other pollutants related to oil spills (Khangarot & 
Das, 2009; Ruiz et al., 2013; Rocha et al. 2018).

Despite their recognized functional relevance in 
aquatic ecosystems, the sensitivity of Odonata and 
Ostracoda to chemical stress has been poorly studied 
worldwide, especially regarding sublethal effects like 
predation behavior (Sloof 1983; Meyer et  al., 1986; 
Khangarot & Ray, 1987; Rockwood et  al., 1990; 
Havel and Talbot 1995; Khangarot & Das, 2009; Shu-
haimi-Othman et  al., 2011). Considering the above, 
the aim of the present study was to evaluate the effect 
of metal salts on the predatory behavior of nymphs 
of the dragonfly Tramea cophisa (Libellulidae, Odo-
nata) and adults of the ostracod Chlamydotheca sp. 
(Ostracoda, Cyprididae). To this end, laboratory tox-
icity tests were conducted with four metals (copper, 
cadmium, manganese, and mercury) to evaluate their 
effects on predation intensity and food selectivity. We 
hypothesized that (1) with the increase in the concen-
tration of the contaminant (metal salts), the organisms 
(predators) decrease the rate of predation; (2) at lower 
concentrations of the contaminant, the organisms 
show generalist feeding characteristics; (3) under 
exposure to the highest concentrations of metal salts, 
predators present greater food selectivity, opting for 
more sessile prey, with greater biomass.

Copper, manganese, cadmium, and mercury were 
selected as test compounds because they are common 
contaminants in aquatic environments (Campagna 
et al., 2008; Dornfeld et al., 2018; Gomes et al., 2020; 
Vogt et al., 2010; Watts & Pascoe, 2000). These com-
pounds enter the aquatic environment both through 
natural sources and through human activity, e.g., 
mining activities agricultural runoff and industrial 
effluents (Hudspith et al., 2017; Lesch & Bouwman, 
2018). Although copper and manganese are essential 
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elements, in high concentrations, they are known to 
have adverse effects on aquatic organisms (Lima 
et al., 2019; Majumdar & Gupta, 2012). Cadmium is 
a highly toxic element with a high potential for bio-
accumulation (Moiseenko & Gashkina, 2018), and 
mercury also has the potential to cause serious effects 
on growth, survival, and reproduction of invertebrates 
(Buch et al., 2017).

2  Material and Methods

2.1  Test Organisms and Culture Conditions

Tramea cophisa dragonfly nymphs were collected in 
the Mayaca reservoir, located in the municipality of 
São Carlos, SP, Brazil (21° 01′ S, 47° 53′ W). This 
small shallow reservoir is located in a permanent 
preservation area and has a surface area of 0.17  ha 
and a maximum depth of 1.20 m (Albuquerque 1990). 
The ostracod Chlamydotheca sp. was collected from 
1,000-L plastic tanks at the Fish Farming Station of 
the Federal University of São Carlos (UFSCar). Care 
was taken in selecting nymphs of similar size to run 
the predation experiments, which required large sam-
pling effort for obtaining both predator and prey. The 
need to not compromise T. cophisa population and 
the large amount of prey used, the number of replicas 
had to be limited.

In the laboratory, organisms were kept in plas-
tic trays of 29  cm (width) × 34  cm (length) × 6.7  cm 
(height) and gradually acclimated to reconstituted 
water (ABNT, 2016) and test conditions (see below) 
for 7 days before starting tests. A preliminary study 
was made to determine best conditions to maintain 
healthy individuals in the laboratory (Lima et  al., 
2019). T. cophisa nymphs were fed with Chironomus 
inquinatus larvae (Insecta, Diptera) and small juve-
niles of Artemia franciscana (Crustacea, Anostraca), 
whereas Chlamydotheca sp. was fed with dense sus-
pension of Chlorella sorokiniana (≈  108 cells  L−1). 
Both species were fed daily ad libitum.

2.2  Test Concentrations and Chemical Analysis of 
Metal Salts

Compounds were evaluated and their respective stock 
solutions were copper sulfate (10  mg  L−1,  CuSO4, 

CAS no: 7758–98-7), manganese sulfate (100  mg 
 L−1,  MnSO4, CAS no: 7785–87-7), cadmium chlo-
ride (10 mg  L−1,  CdCl2, CAS no: 10108–64-2, Carlo 
Erba), and mercury chloride (10 mg  L−1,  HgCl2, CAS 
no: 7487–94-7, ACS Merck). The nominal test con-
centrations of each chemical were obtained by dilut-
ing their respective stock solutions in reconstituted 
water. The stock solutions and test concentrations 
were prepared immediately before testing. The con-
centrations of cadmium, copper, and manganese were 
determined in stock solutions using a Perkin Elmer 
PinAAcle 900  T flame and longitudinal Zeeman 
atomic absorption spectrometer which was calibrated 
with Cd, Cu, and Mn standards (Trace Metals Basis, 
Sigma-Aldrich) and for stock solutions of mercury 
chloride using an AAS, AAnalyst 400, PerkinElmer.

2.3  Experimental Design

To evaluate the effects of metal salts on predation and 
food selectivity of T. cophisa nymphs (mean length: 
8.54  mm ± 2.88  mm) and Chlamydotheca sp. adult 
individuals (mean length: 4.32 mm ± 0.59 mm) were 
exposed for 24 h to four sublethal concentrations of 
copper sulfate  (CuSO4), cadmium chloride  (CdCl2), 
mercury chloride  (HgCl2), and manganese sulfate 
 (MnSO4) (Table  1), besides the control treatment 
(reconstituted water only). The selected test concen-
trations corresponded for  LC1,  LC5,  LC10, and  LC20 
values  (LCx = lethal concentration to x % of the test 
population) were derived from acute toxicity tests 
conducted in our laboratory with each metal salt, for 
both species (Lima et al., 2019).

Four replicates were used for each treatment, 
with each replicate consisting of a circular non-toxic 

Table 1  Test concentrations for copper sulfate  (CuSO4), cad-
mium chloride  (CdCl2), mercury chloride  (HgCl2), and manga-
nese sulfate  (MnSO4) evaluated in the predation rate and food 
selectivity tests with Tramea cophisa (Odonata, Libelullidae) 
nymphs and Chlamydotheca sp. (Ostracoda, Cyprididae) adults

Compound Exposure concentration (µg  L−1)

Tramea cophisa Chlamydotheca sp.

CuSO4  L−1 0; 100; 170; 220; 300 0; 60; 105; 140; 190
CdCl2  L−1 0; 90; 170; 240; 360 0; 3; 6; 11; 22
HgCl2  L−1 0; 25; 60; 110; 220 0; 14; 44; 55; 170
MnSO4  L−1 0; 247,000; 265,000; 

276,000; 290,000
0; 27,540; 32,726; 

36,000; 40,388
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plastic vessel (height 8  cm; diameter 11  cm) filled 
with 200 mL test solution and one individual of either 
T. cophisa or Chlamydotheca sp. Only one predator 
individual was tested per replica due to the observa-
tion, from preliminary tests, of cannibalism occur-
rence for both predator species, thus making impos-
sible to use more than one predator individual per 
test recipient. During the 24  h exposure period, no 
food was offered to test organisms. After this period, 
organisms were rinsed with non-contaminated recon-
stituted water and transferred to test vessels con-
taining 200  mL fresh prepared non-contaminated 
reconstituted water. Five specimens of each of the 
following prey species were offered to T. cophisa 
making prey density per replicate, n = 20: Ilyocryp-
tus spinifer (Crustacea, Ilyocryptidae), Artemia fran-
ciscana (Crustacea, Artemiidae), Chironomus inqui-
natus (Diptera, Chironomidae), and Dero furcatus 
(Annelida, Randiellidae). For the ostracod predator 
Chlamydotheca sp., three specimens of each prey 
C. inquinatus, A. fransciscana, and I. spinifer were 

added (total prey per replicate = 12). Test organisms 
were held with their prey for 24  h, after which the 
number of each prey species consumed was verified.

2.4  Data Analysis

After exposure to metal salts, predation rate and 
food selectivity of predator species were obtained by 
Ivlev Index of Electivity (Ivlev, 1961) calculated by 
the equation: E = (ri − Pi) / (ri + Pi), where E is the 
electivity index, ri is the relative abundance of each 
item in the stomach contents, and Pi is the relative 
abundance of each item in the environment after con-
sumption. Stomach content was not analyzed. The 
relative abundance of stomach contents (ri) was cal-
culated by subtracting the number of individuals of 
each prey remaining in each test vessel after 24 h of 
exposure, from the respective amount at the begin-
ning of the test. Index values vary from − 1 to + 1 
with the value zero indicating no selectivity; values 
lower than 0 indicate rejection of the food item and 

Table 2  Mean specific predation rates and all prey consump-
tions by four dragonfly nymphs of Tramea cophisa after 24 h 
exposure to different concentrations of metal compounds: cop-

per sulfate  (CuSO4), cadmium chloride  (CdCl2), mercury chlo-
ride  (HgCl2), and manganese sulfate  (MnSO4); p values (*) 
indicate significant differences as compared to controls

Metal Concentration Average of prey consumed per concentration Average of total 
prey consumed per 
individual

Total predation 
and percentage

p

µg  L−1 I. spinifer A. franciscana C. inquinatus D. furcatus

CuSO4 Control 4.25 (± 0.5) 4.25 (± 0.5) 4.5 (± 1) 4.75 (± 0.5) 17.75 (± 1.89) 71 (89%) ––
100 2.5 (± 0.58) 3.5 (± 0.58) 3.25 (± 0.5) 4 (± 0.82) 13.25 (± 0.96) 53 (66%) 0.0059*
170 2 (± 1.41) 4.25 (± 0.96) 3.5 (± 1) 4 (± 0.82) 13.75 (± 1.89) 55 (69%) 0.0239*
220 2.5 (± 0.58) 2.75 (± 0.5) 3.5 (± 0.58) 4 (± 1.15) 12.75 (± 1.5) 51 (64%) 0.0065*
300 2 (± 0.82) 1.75 (± 0.96) 3 (± 0.82) 3.5 (± 1.29) 10.25 (± 1.26) 41 (51%) 0.001*

CdCl2 Control 2.75 (± 0.5) 3.75 (± 1.26) 5 (± 0) 5 (± 0) 16.5 (± 1.73) 66 (82%) ––
90 2.25 (± 0.96) 3.25 (± 0.96) 5 (± 0) 5 (± 0) 15.5 (± 1.29) 62 (77%) 0.6068
170 1.25 (± 0.96) 3.25 (± 1.26) 3.25 (± 0.5) 4.5 (± 0.58) 12.25 (± 1.5) 49 (61%) 0.0102*
240 2.5 (± 0.58) 3.25 (± 1.5) 4 (± 0.82) 4.25 (± 0.96) 14 (± 2.45) 56 (70%) 0.1449
360 1.75 (± 1.26) 2.75 (± 0.96) 3.5 (± 1.29) 4.5 (± 0.58) 12.5 (± 1.91) 50 (62%) 0.0209*

HgCl2 Control 4 (± 0.82) 4 (± 0.82) 3.5 (± 0.33) 5 (± 0) 16.5 (± 0.58) 66 (82%) ––
25 3.25 (± 0.5) 3.25 (± 0.92) 3.5 (± 0.58) 4.75 (± 0.5) 14.75 (± 1.5) 59 (73%) 0.0708
60 3 (± 0.82) 3 (± 0.82) 3 (± 0.82) 4.5 (± 0.58) 13.5 (± 1.29) 54 (67%) 0.0059*
110 3.25 (± 0.5) 2.75 (± 1.26) 3.25 (± 0.5) 3.75 (± 0.5) 13 (± 1.63) 52 (65%) 0.0072*
220 3 (± 1.15) 2.25 (± 0.5) 3.5 (± 0.58) 4 (± 0) 12.75 (± 1.5) 51 (64%) 0.0040*

MnSO4 Control 3.25 (± 1.26) 3.5 (± 0.58) 3.5 (± 1) 4 (± 1.41) 14.25 (± 1.71) 57 (71%) ––
247,000 3.25 (± 2.06) 3 (± 0.82) 3.75 (± 1.89) 3.75 (± 1.89) 13.75 (± 2.99) 55 (69%) 0.7763
265,000 4 (± 0.82) 3.5 (± 1) 4.5 (± 1) 4.5 (± 0.58) 16.5 (± 1.91) 66 (82%) 0.1282
276,000 2.5 (± 0.58) 2 (± 0.82) 4 (± 1.15) 3.5 (± 1.29) 12 (± 2.16) 48 (60%) 0.1517
290,000 3.25 (± 1.26) 3 (± 0.82) 2.5 (± 0.58) 3 (± 0.82) 11.75 (± 1.5) 47 (59%) 0.0686
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values higher than 0 denote positive selection (Har-
rison et al., 2005). Prior to statistical data analysis, all 
prey abundance values were logarithm transformed 
(log x + 1) to down-weight high abundance values 
aiming to approximate data normality. An array using 
the results of the Bray–Curtis similarity test was con-
structed and a permutational multivariate analysis of 
variance (PERMANOVA) was performed to compare 
results. Comparison between concentrations tested 
and controls was performed using the statistical pro-
gram BioEstat 5.0 for analysis of variance (ANOVA).

3  Results and Discussion

3.1  Chemical Analyses

For all experiments, nominal concentrations of metal 
salts were measured for stock solutions. Concentra-
tions of copper sulfate (10 mg  L−1), manganese sul-
fate (100  mg  L−1), cadmium chloride (10  mg  L−1), 

and mercury chloride (10  mg  L−1) were quantified. 
Accuracy (%) values obtained were 10.3  mg  L−1 
(100.3 ± 0.9%); 107  mg  L−1 (107.3 ± 0.2%); 9.1  mg 
 L−1 (91.1 ± 0.9%); and 9.3  mg  L−1 (93 ± 1.8%), 
respectively. Nominal concentrations did not vary 
more than 10% from measured concentrations. There-
fore, nominal initial concentrations were used to rep-
resent treatment concentrations.

3.2  Predation Rates

A voracious feeding behavior by unaffected Tramea 
cophisa nymphs was observed in the first hour after 
being transferred from treatment test solution to clean 
culture medium. This was very likely due to the food 
restriction that nymphs experienced during the 24  h 
exposure period. In line with this, Tomazelli et  al. 
(2011) observed the same behavior for Neuraeschna 
sp. (Odonata, Aeshnidae) nymphs when offering the 
common carp Cyprinus carpio larvae (Cypriniformes, 
Cyprinidae) after a 27 h exposure period without food.

Table 3  Predation rate and prey consumption of ostra-
cod Chlamydotheca sp. after 24  h exposure to copper sul-
fate  (CuSO4), cadmium chloride  (CdCl2), mercury chloride 

 (HgCl2), and manganese sulfate  (MnSO4). p values (*) indicate 
significant differences as compared to controls

Metal Concentration Average of prey consumed per concentration Average of total prey 
consumed per individual

Total predation 
and percentage

p

µg  L−1 I. spinifer A. franciscana C. inquinatus

CuSO4 Control 0.5 (± 0.58) 0.75 (± 0.5) 1.5 (± 0.58) 2.75 (± 0.96) 11 (31%) ––
60 0.5 (± 0.58) 1 (± 0.67) 0.75 (± 0.5) 2.25 (± 1.26) 9 (25%) 0.5549
105 1.75 (± 0.5) 0.75 (± 0.5) 2.25 (± 1.26) 4.75 (± 0.92) 19 (52%) 0.026*
140 2 (± 0.82) 2 (± 0.82) 2.25 (± 1.5) 6.25 (± 1.71) 25 (69%) 0.0118*
190 2 (± 0.82) 2 (± 0.82) 2.75 (± 1.26) 6.75 (± 1.26) 27 (75%) 0.0028*

CdCl2 Control 1.5 (± 0.58) 1.25 (± 0.5) 2.5 (± 0.58) 5.25 (± 0.96) 21 (58%) ––
3 1.75 (± 1.5) 1.5 (± 0.58) 3.5 (± 0.96) 6.5 (± 1) 26 (72%) 0.1193
6 1.5 (± 1) 1.25 (± 0.5) 3.5 (± 0.58) 6.25 (± 1.26) 25 (69%) 0.2521
11 2.25 (± 0.96) 1 (± 0.82) 3.75 (± 0.96) 7 (± 0.82) 28 (77%) 0.0312*
22 2.25 (± 0.5) 1.75 (± 0.5) 2.25 (± 0.5) 6.25 (± 0.96) 25 (69%) 0.1885

HgCl2 Control 1.25 (± 0.96) 0.25 (± 0.5) 2.25 (± 0.96) 3.75 (± 0.96) 15 (41%) ––
14 2 (± 0) 1.25 (± 0.96) 3.25 (± 0.5) 6.5 (± 1) 26 (72%) 0.0077*
44 1.25 (± 0.5) 0.5 (± 0.58) 3.25 (± 0.96) 5 (± 0.82) 20 (56%) 0.0925
55 2.5 (± 0.58) 1 (± 0.82) 3 (± 0.82) 6.5 (± 1.73) 26 (72%) 0.0313*
170 2.25 (± 0.96) 0.75 (± 0.5) 3.25 (± 0.96) 6.25 (± 1.26) 25 (69%) 0.0193*

MnSO4 Control 0.25 (± 0.5) 1.25 (± 0.5) 1.5 (± 0.58) 3 (± 1.16) 12 (33%) ––
27,540 1.25 (± 0.5) 1.5 (± 0.58) 2.75 (± 0.96) 5.5 (± 0.58) 22 (61%) 0.0085*
32,726 2.25 (± 0.5) 1.25 (± 0.5) 2.5 (± 0.58) 6 (± 0.82) 24 (66%) 0.0059*
36,000 1.5 (± 0.58) 1.25 (± 0.5) 2.75 (± 1.26) 5.5 (± 1.29) 22 (61%) 0.0272*
40,388 2.25 (± 0.96) 1.5 (± 0.58) 3.25 (± 0.5) 7 (± 0.82) 28 (77%) 0.0018*
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Prey consumption rates of T. cophisa indicate that 
most metal salt concentrations tested led to a signifi-
cant decrease in predation rates as compared with 

controls, supporting our first hypothesis. However, 
for cadmium chloride, there was greater variability 
in prey consumption among replicates as observed at 

Fig. 1  Total average preda-
tion rates of the Odonata 
Tramea cophisa and 
Ostracoda Chlamydotheca 
sp. when exposed to 
metal salts: copper sulfate 
(CuSO4), cadmium chloride 
(CdCl2), mercury chloride 
(HgCl2), and manganese 
sulfate (MnSO4)

Fig. 2  Prey consumption rates of Tramea cophisa in rela-
tion to the number initially offered of each prey, in treatments 
without exposure (control) and in treatments with exposure to 

copper sulfate (CuSO4), cadmium chloride (CdCl2), mercury 
chloride (HgCl2), and manganese sulfate (MnSO4) for 24  h. 
Asterisks indicate significant differences
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one of the highest concentrations tested (240 µg  L−1) 
resulting no significant difference from control. This 
might be explained by the low number of replicates 
used, in face of restrict availability of nymphs of sim-
ilar size (Table 2). And only for nymphs exposed to 
manganese sulfate, there were no statistically signifi-
cant differences in predation rates at any of the con-
centrations tested. In line with this, Lima et al. (2019) 
noted that this species is relatively non-sensitive to 
short-term exposure to manganese. However, this 
metal is an essential micronutrient being more or less 
toxic depending on the species, the stage of life and 
physical, and chemical characteristics of the water 
(Vieira et al., 2012).

So far, few studies have been conducted to evalu-
ate metal effect on dragonfly feeding behavior, ham-
pering comparisons between our results with studies 
also evaluating the metals tested in the present study. 
Nevertheless, previous studies have demonstrated 
a decrease in feeding rates of dragonflies following 

exposure to other chemicals. For example, a decrease 
in predation rate of Pantala sp. nymphs (Odonata, 
Libellulidae) when feeding on Ictalurus punctatus 
larvae (Siluriformes, Ictaluridae) after exposure in 
tanks chemically treated with larvicides (McGrinty, 
1980). Tomazelli et al. (2011) also reported a reduc-
tion for predation rates of dragonfly nymphs (Neu-
raeschna sp.) on C. carpio fingerlings when nymphs 
were exposed to Melia azedarach (Meliaceae) extract. 
These authors also noted slowness in movements of 
dragonfly nymphs exposed to plant extract, which 
was concluded to be the cause of reduced predation 
rate.

The predation rate of the ostracod Chlamydotheca 
sp. increased compared to control in metal salts-
affected treatments (Table  3). This increased preda-
tion rate could be caused by increased energy demand 
due to greater stress, which can be offset with greater 
predation. Alternatively, the increased predation rate 
could also be partly related with a greater energy 

Table 4  Values of the Ivlev Electivity Index (IEI) obtained 
in the food selectivity tests for Tramea cophisa and Chla-
mydotheca sp. for the control and different metal treatments 

(24 h exposure) of copper sulfate  (CuSO4), cadmium chloride 
 (CdCl2), mercury chloride  (HgCl2), and manganese sulfate 
 (MnSO4)

Metal (µg  L−1) Prey selectivity of Tramea cophisa Prey selectivity of Chlamydotheca sp.

D. furcatus I. spinifer A. franciscana C. inquinatus I. spinifer A. franciscana C. inquinatus

CuSO4 Control 0.9 0.7 0.7 0.8  − 0.83  − 0.75  − 0.5
60 0.6 0 0.4 0.3  − 0.33  − 0.58 0.08
105 0.6  − 0.2 0.7 0.4  − 0.42  − 0.75  − 0.25
140 0.6 0 0.1 0.4  − 0.33  − 0.33  − 0.25
190 0.4  − 0.2  − 0.3 0.2  − 0.33  − 0.33  − 0.08

CdCl2 Control 1 0.1 0.5 1  − 0.5  − 0.58  − 0.17
3 1  − 0.1 0.3 1  − 0.42  − 0.5 0.08
6 0.8  − 0.5 0.3 0.3  − 0.5  − 0.58 0.17
11 0.6 0 0.1 0.4  − 0.25  − 0.67 0.25
22 0.4  − 0.2  − 0.3 0.2  − 0.25  − 0.42  − 0.25

HgCl2 Control 1 0.6 0.6 0.4  − 0.58  − 0.92  − 0.25
14 0.9 0.3 0.44 0.4  − 0.33  − 0.58 0.08
44 0.8 0.2 0.2 0.2  − 0.58  − 0.83 0.08
55 0.5 0.3 0.1 0.44  − 0.17  − 0.67 0
170 0.6 0.2  − 0.1 0.4  − 0.25  − 0.75 0.08

MnSO4 Control 0.6 0.3 0.4 0.4  − 0.92  − 0.58  − 0.5
27,540 0.5 0.3 0.2 0.5  − 0.58  − 0.5  − 0.08
32,726 0.8 0.6 0.4 0.8  − 0.25  − 0.58  − 0.17
36,000 0.4 0  − 0.2 0.6  − 0.5  − 0.58  − 0.08
40,388 0.2 0.3 0.2 0  − 0.25  − 0.5 0.08

Mean ± SD 0.66 ± 0.23 0.14 ± 0.30 0.24 ± 0.30 0.46 ± 0.26  − 0.43 ± 0.20  − 0.60 ± 0.15  − 0.084 ± 0.21
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demand of the predator for possible defense mecha-
nisms against the toxic stress. In real aquatic ecosys-
tems, indirect effects of chemical stress on predation 
rates may also play a prominent role. Pearson et  al. 
(1981), for example, observed that the predator crab 
Cancer magister consumed a larger number of the 
snail Protothaca staminea in oil-contaminated sand 
when compared to uncontaminated sand. These 
authors associated this with a slower penetration of 
snails in the contaminated sand, making them easier 
to be preyed upon by the crabs.

Ostracoda Chlamydotheca sp. showed increased 
rates of predation in relation to the control (Fig.  1). 
Ostracods, for example, can ingest large quantities 
of food, in few minutes in contaminated systems 
and survive for several weeks without feeding, thus 
increasing their rate of predation at times (Vannier 

et  al. 1998). On the other hand, T. cophisa showed 
lower rates of predation compared to control (Fig. 1).

3.3  Food Preferences: Ivlev Electivity Index

Figure  2 shows the consumption rates of T. cophisa 
dragonfly nymphs on each of four prey taxa. From 
this figure, it appears that C. inquinatus and D. fur-
catus were the most preferred prey species. The Ivlev 
Electivity Index (IEI) confirms this overall preference 
of T. cophisa for the D. furcatus (IEI = 0.66 ± 0.23; 
mean ± SD for all treatments) and Chironomus inqui-
natus (IEI = 0.46 ± 0.26; mean ± SD for all treatments), 
with not a single negative value, meaning no rejec-
tion for these preys at any tested metal salt concentra-
tions (Table 4). These results confirm the food prefer-
ence of T. cophisa for organisms with higher biomass 

Fig. 3  Consumption rate of Chlamydotheca sp. (expressed as 
%) in relation to the number initially offered of each prey, for 
treatments without exposure (control) and in treatments with 
previous exposure to copper sulfate (CuSO4), cadmium chlo-

ride (CdCl2), mercury chloride (HgCl2), and manganese sul-
fate (MnSO4), during 24 h. Asterisks indicate significant dif-
ferences
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when exposed to higher concentrations of metal salts. 
Although these preys are not sessile, they have slower 
locomotion than I. spinifer and A. franciscana, cor-
roborating our third hypothesis. These results also 
agree with those obtained by Alzmann et  al. (1999) 
who found that the dragonfly Gomphus pulchellus pre-
ferred oligochaete and chironomid larvae over amphi-
pods and ephemeropteran larvae. The relatively lower 
preference for I. spinifer (IEI = 0.14 ± 0.30) and, to a 
lesser extent, Artemia franciscana (IEI = 0.24 ± 0.30) 
may have several underlying reasons, including (i) 
their overall smaller size; (ii) their movement through 
the water column rather than being sessile; and, for I. 
spinifer specifically, (iii) the presence of thorns around 
the carapace (Kotov & Williams, 2000). However, in 
the lowest concentrations of the tested metal salts, T. 
cophisa showed a generalist feeding behavior, as indi-
cated in our second hypothesis.

For Chlamydotheca sp., C. inquinatus chironomid 
larvae were the most consumed prey in the control 
in all tests performed, followed by I. spinifer and A. 
franciscana (Fig. 3; Table 4). C. inquinatus was also 
the most consumed prey species in the metal salt 
exposure treatments, for all tests performed, except 
in the treatment of 60 µg  L−1 of  CuSO4, followed by 
I. spinifer that was less consumed only at concentra-
tions of 60 µg.  L−1  (CuSO4) and in controls of  CuSO4 
and  MnSO4. A. franciscana was most consumed only 
at the concentration of 60  µg.  L−1 of  CuSO4. Thus, 
with these results, for Chlamydotheca sp., our second 
hypothesis that in low concentrations, the test organ-
isms would be generalists, is not fully supported. 
Studies on the predation behavior of ostracods are 
scarce, but they are known to prey on a wide range 
of organisms including Daphnia magna (Ottonello 
and Romano 2011) and other cladocerans, as well 
as copepods, ostracods, oligochaetes, and insect lar-
vae (Ganning, 1971; Meisch, 2000; Wilkinson et al., 
2007). The preference for the chironomid prey over 
the two crustacean preys may have been due to the 
same reasons as discussed above for T. cophisa.

4  Conclusions

In this study, we observed that the tested metal salts 
did not influence food selectivity, but the predation 
behavior of nymphs of the dragonfly T. cophisa and 

adults of ostracod Chlamydotheca sp. was altered in 
relation to the control tests. In addition, this study 
evidenced that these effects are species specific. Such 
complex species-specific predator–prey interactions 
may have pronounced impacts on ecosystem struc-
ture and functioning following chemical stress. Future 
studies are needed to shed more light on predator 
species-specific prey preferences and how these are 
affected by metal and other chemical contamination.
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