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Abstract Particulate matter (PM) is defined as a mix-
ture of solid and/or liquid particles that remain separate-
ly dispersed in air. PM is not a pollutant by itself but a
complex and dynamic combination of compound parti-
cles with biological and chemical origins. However, fine
PM (PM2.5) seems to be incriminated in the respiratory
system and poses a severe threat to human health. Sev-
eral reviews focused on chemistry segments because
they mainly contribute to fine PM concentration. Bio-
logical elements in PM2.5 should also be considered
because they cause multiple allergies and respiratory
illnesses. This review has selected articles by following
predefined criteria and demonstrated that the biological
and chemical parts of fine particles play a significant
role in PM2.5 concentration. In addition, justification on
the origin or sources of biological and chemical compo-
sitions and their effects on health become a concern in
this review. Lastly, this review can provide knowledge
that can be a useful tool for researchers, designers,
engineers and policymakers to consider for further
action.

Keywords Bio-aerosols . Chemical component . High
particulate event . Meteorological factors . Normal
condition

1 Introduction

Air pollution is one of the major environmental prob-
lems in several cities worldwide and the world’s fourth
leading cause of death (Bandpi et al. 2016) because it
contains a complex mixture of thousands of pollutants.
The mixture may contain particulate matter (PM) and
different gases, such as carbon monoxide (CO), ozone
(O3), volatile organic compounds (VOCs) and nitrogen
oxides (NO2 and NO) (Lükewille et al. 2001). The
composition of the mixture varies based on location
and emission sources (Lonati et al. 2008; Jia et al.
2017). With the development of urbanisation and
industrialisation, atmospheric particulate pollution has
become of great concern especially with regard to public
health (Baulig et al. 2004).

PM can damage human health (Amann et al. 2001;
Khan et al. 2016). Individuals are damaged by air pol-
lution based on their general exposure to pollutants as
well as factors including length of exposure, concentra-
tion of pollutants and population vulnerability (Kalisa
et al. 2019). However, children face severe risks from air
pollution because their lungs are growing, they are
active and they breathe much air (WHO 2014). Kim
et al. (2018) asserted that children are highly vulnerable
to any disease because of the premature development of
their immune systems, lungs and other organs. PM is
outlined as an advanced mixture of droplets, acids,
organic materials, heavy metals and soil materials (Li
et al. 2018). PM is classified into many classes: PM10,
PM2.5 and ultrafine particles with aerodynamic diame-
ters of less than 10 μm, less than 2.5 μm and less than
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0.1 μm, respectively (Pope et al. 2002; Das et al. 2009;
Tiwari et al. 2012).

At present, most countries focus on evaluation of air
pollution on PM10, which can be trapped in the naso-
pharyngeal tract, and PM2.5, which can enter the lungs
and reach the alveoli (WHO 2014). Exposure to high
levels of PM10 and PM2.5 can lead to asthma, cardio-
vascular pulmonary diseases, pulmonary fibrosis, can-
cer and immune responses (WHO 2014). The size of
PM is related to its feasibility in causing health issues
(Araújo et al. 2014), and Li et al. (2018) stated that small
particles tend to cause serious health issues compared to
coarse particles. Many researchers have found that PM
is a complex mixture of air contaminants, including
chemical and biological sources, such as biological or-
ganisms, nitrates, sulphates, heavy metals, organic com-
pounds and elemental carbon (Sippula et al. 2013;
Adams et al. 2015; Yoo et al. 2016; Morakinyo et al.
2016; Han et al. 2018). Maricq (2007) reported that the
chemical composition of PM could provide information
and reveal the sources of PM.Moreover, PM can act as a
carrier of chemical and biological components accord-
ing to time of sampling, location of sampling, seasons
and climates (Kellogg and Griffin 2006; Gou et al. 2016;
Maki et al. 2015).

Morakinyo et al. (2016) discussed that the chemical
and biological compositions of PM could trigger nega-
tive health effects on humans because particles with
toxic chemicals could carry other biological species
and can deeply penetrate into human lungs, thereby
enhancing asthma, lung cancer and cardiovascular pul-
monary diseases. Thus, this review outlines the proper-
ties and sources of chemical and biological components
of respirable PM and prescribes future centre regions for
research and arrangement.

2 Methods

2.1 Database Sources

A literature review was conducted by database search in
Web of Science and Google Scholar by using keywords
such as chemical composition, biological composition,
respirable particulate matter (RPM), fine particles,
coarse particles, bacteria-associated PM, fungi-
associated PM, polycyclic aromatic hydrocarbon, PAH
and characteristics of bio-aerosols.

3 Chemical and Biological Compositions of RPM

3.1 Chemical Compositions of RPM

Ambient PM can absorb poisonous pollutants, such as
heavy metals, VOCs and polycyclic aromatic hydrocar-
bons (PAHs), especially particles with an aerodynamic
diameter of less than 2.5 μm (PM2.5) (Brüggemann et al.
2009; Cassee et al. 2013). According toMorakinyo et al.
(2016), PM is profoundly unique. PM can be named
carbonaceous parts, which comprise carbonate carbon,
natural carbon, basic carbon and inorganic segments
including crustal components, ionic species and trace
metals. Raes et al. (2000) stated that chemical PM
elements typically add an average of 20% to the overall
PM mass load.

Snider et al. (2016) examined the background com-
parisons of PM2.5 chemical compositions from 12 urban
locations at Mammoth Cave in the USA. The results
(relative contribution ± SD) showed that the samples
were dominated by 20% ± 11% ammoniated sulphate,
13.4% ± 9.9% crustal materials, 11.9% ± 8.4% black
carbon, 4.7% ± 3.0% ammonium nitrate, 2.3% ± 1.6%
sea salt, 1.0% ± 1.1% trace element oxides, 7.2% ±
3.3% water and 40% ± 24% residual matter at 35%
relative humidity. However, chemical compositions
were not equally distributed based on size range but
depended on their sources.

3.1.1 Organic Compounds

PAHs are a large group of organic compounds com-
prised of two or more fused benzene rings arranged in
various configurations (Kim et al. 2013). As semi-
unstable natural mixes, PAHs in air are available in
vapour and molecular phases; lighter PAH species (i.e.
usually two- and three-ring structures) were found to a
large extent in the vapour phase, whereas heavier spe-
cies (i.e. usually five-ring, atomic weight > 228) were
found in the molecular phase and predominantly in the
smaller respiratory size (i.e. PM2.5), thereby increasing
the risk of exposure (Lu et al. 2008). PAHs are muta-
genic or carcinogenic toxic chemical compounds and
are generated from the incomplete combustion of fossil
fuel and organic materials (Bootdee et al. 2016). PM2.5

sample was collected by Evagelopoulos et al. (2010) in
the regions encircled with active opencast coal mining
activities, and PM2.5-bound PAH concentrations were
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found at levels many times higher than PM10-bound
PAHs.

In another study conducted in Tehran, total PAHs on
PM10, PM2.5 and PM1.0 were collected indoor and out-
door in retirement homes and college dormitories. Com-
plete PM-bound PAHs were predominant at 83–88% in
PM2.5. This result is consistent with the statement by
Duan et al. (2005); the levels of particulate PAH are
extremely dependent on fine PM. In urban situations,
the principal source is typically traffic, although traffic
contamination might be secondary in exceptionally me-
chanical regions (Han and Naeher 2006). A study of
PAHs in PM2.5 in Spain considered the contribution of
traffic and indicated the significant role of industrial
emissions. Benzo(a)pyrene (BaP) concentration
depended on the size of the population. The correlation
of benzo(a)pyrene and complete amount of PAH (BaP/
∑PAH) was greater during the cold season when ob-
serving variability in season and time (Villar-Vidal et al.
2014). A powerful correlation between PAH levels fur-
ther confirmed that BaP is an appropriate marker com-
pound to represent all PAH levels (Villar-Vidal et al.
2014). A previous study collected atmospheric PAH
concentration to determine the seasonal variation of
sources in Harbin, China and showed that the major
source was coal combustion with 60%, followed by
traffic emissions (34%) in heating season; in non-
heating season, the main sources were traffic emissions
(59%), ground dissipation (18%) and coal average (7%)
(Ma et al. 2010). Yang et al. (2018) observed the PAH
concentration in Chengdu, China from March 2015 to
February 2016. The principal component analysis/
multiple linear regression investigation distinguished
the fundamental sources of PAH as coke (48%) and
carbon burning (52%) with engine car smoke in spring;
coke (21%), coal (52%) and engine car exhaust (27%) in
summer; vehicle exhaust (34%), coal (47%) and coke
(19%) in autumn; and vehicle exhaust (42%) and coal
(58%) in winter.

3.1.2 Inorganic Compounds

TraceMetal Chemical composition of PM2.5, especially
trace metal components, plays a crucial role in the
severity of the associated toxic effect (Wang et al.
2017). Samara and Voutsa (2005) stated the presence
of trace metals in most airborne PM fractions of each
aerosol volume. Cadmium (Cd), arsenic (As), chromi-
um (Cr), copper (Cu), cobalt (Co), iron (Fe), nickel (Ni),

lead (Pb), manganese (Mn), strontium (Sr), titanium
(Ti), zinc (Zn) and vanadium (V) were reported to be
widespread in PM2.5 (Niu et al. 2010; Wang et al. 2017).
Trace metals originated from soil dust formation, fossil
fuel combustion, cremation andmetal processing at high
temperatures (Morakinyo et al. 2017). In a recent study
of PM2.5 at Nanjing China, anthropogenic exercises
such as modern discharge, coal burning and traffic ve-
hicle exercises resulted in the magnetic characteristics of
particles strongly connected with trace metals; but those
obtained from natural sources were inadequate (Wang
et al. 2017). Pbmainly originated from coal emissions in
summer samples, and the main sources were found to be
smelting sector and coal emissions in winter samples. In
a study on heavymetal in PM2.5 in Kolkata published by
an Indian–Singaporean team in Air Pollution Research,
the high levels of Pb, Sr, Cd and Cd in PM2.5 were
related to industrial emissions, whereas high levels of
Pb and Zn were linked to coal burning and non-ferrous
metal melting (Das et al. 2015). Traffic emissions emit
high levels of Cr, Ni and molybdenum (Das et al. 2015).
Another study in Jharkhand, India reported that the main
sources of airborne trace metals were coal mining and
related activities, exhaust and industrial emissions from
automobiles, resuspended soil and soil crust, burning of
biomass, combustion of oil and flight emissions (Dubey
et al. 2012).

Water-Soluble Ionic Species Water-soluble ions are
chemical species that are readily soluble in water under
certain circumstances in the reduced troposphere and are
generally important elements by mass of atmospheric
aerosols (Deshmukh et al. 2011). Ammonium (NH4

+),
calcium (Ca2+), chloride (Cl−), magnesium (Mg), nitrate
(NO3

−), potassium (K), sodium (Na), sulphate (SO4
2−),

organic carbon (OC), elemental carbon (EC) and metals
are water-soluble ions usually found in PM2.5 that
comes from various sources (Ali-Mohamed and Jaffar
2000; Tsai et al. 2012; Salam et al. 2015). The major
components of urban ambient PM2.5 were SO4

2−, NO3
−,

NH4
+, OC and EC (Kothai et al. 2008; Chakraborty and

Gupta 2010; Kim et al. 2011). A total of 60 to 70% of
the absolute mass of suspended standard PM consisted
of water-soluble ions. The water-soluble fraction of
atmospheric aerosols is hygroscopic and contains many
important compounds that can change the size, compo-
sition, number, density and lifetime of aerosols (IPCC
1995; Jacobson et al. 2000; Mariani and Mello 2007;
Salam et al. 2015). Deshmukh et al. (2011) stated that
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K+, SO4
2−, NO3

− and Ca2+ were the most dominant
species in PM2.5, and the concentrations of NO3

− and
SO4

2− were the highest in all size fractions. Tahir et al.
(2013) conducted a research in Kuala Terengganu
Coastal Suburban Area, South China Sea, Malaysia,
and found that the average concentration of ions de-
creased as follows: SO4

2− >NH4
+ > K+ > Na+ > NO3

− >
Cl− > Ca2

+. The levels of ammonium (NH4
+) and sul-

phate (SO4
2−) were more than 70% of the water-soluble

aerosol mass. Over 80% of PM2.5-related ionic species
originated from non-marine sources. The concentrations
of sulphate and ammonium represented > 70% of the
water-soluble airborne mass. Sea spray, crustal loading
and biomass burning were found to be the main sources
that influenced the ionic structure of PM2.5.

Mineral Dust Peng et al. (2016) reported that Si, Ti, Al,
Fe and Ca are dust-related compounds. Philip et al.
(2017) classified them into three general categories:
mineral dust normally windblown from dry desert re-
gions (Prospero et al. 2002); anthropogenic windblown
dust from human-disturbed soils due to changes in land
use rehearses, deforestation and agriculture (Tegen et al.
1996, 2004); and anthropogenic fugitive, combustion
and industrial dust (AFCID) from urban sources. Sev-
eral studies stated that AFCID contains elements from
coal combustion (fly ash) and industrial processes (for
example iron and steel creation, cement production),
mining, quarrying, farming activities and road–residen-
tial–commercial construction (McElroy et al. 1982;
Watson andChow 2000;Guttikunda et al. 2014). Table 1
shows the summary of dominant elements of chemical
sources in respirable particulate matter.

3.1.3 Carbonaceous Species

Atmospheric PM carbonate species consist of organic,
elemental and carbonate carbon (Yang et al. 2011).
Organic carbon is a major component of ambient aero-
sols and constitutes up to 70% of the fine aerosol mass
(Jacobson et al. 2000; Sharma et al. 2018). Studies in
Beijing showed that the major contributor to the mass
cooperation of fine atmospheric particles is carbona-
ceous species (Chen et al. 1994; He et al. 2001). Li
et al. (2012) asserted that carbonaceous species can be
divided into twomain fractions: OC and EC (Turpin and
Huntzicker 1995; Li et al. 2012). OC would be emitted
either directly from the atmosphere (main OC) or from
gas-to-particle reaction (Turpin and Huntzicker 1995). T
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OC is a mixture of several natural compounds (with
primary or secondary origin), such as PAHs,
polychlorinated biphenyls, polychlorinated dibenzo-p-
dioxins, dibenzofurans and other components with po-
tential mutagenic and carcinogenic effects (Cao et al.
2003; Cao et al. 2005; Ram et al. 2008). EC is some-
times referred to as black carbon from incomplete
carbon-containing combustion (Morakinyo et al. 2016;
Turpin and Huntzicker 1995). EC is predominantly
transmitted from anthropogenic burning sources and
does not undergo chemical transformation (Li et al.
2012). Yang et al. (2005) revealed that OC and EC in
urban Beijing exhibited higher weekly concentrations
and variances in winter and much lower values in sum-
mer and spring.

3.1.4 Seasonal Variation of PM2.5 Major Component

The weather condition is a major driving force of air
pollution concentration (Hsu et al. 2017). According to
Bell et al. (2008), higher temperatures accelerate chem-
ical reactions in the air; lower temperatures make par-
ticulatematter (PM) dissipate more slowly in the air than
usual; and rain washes away water-soluble pollutants
and PM. Furthermore, the temperature is seasonal and
the concentration of PM varies according to area and
season. Table 2 shows the concentration of PM2.5 during
two different seasons (Winter and Summer).

3.1.5 Chemical Properties of PM2.5 During Haze
Episodes

Haze is a common phenomenon in Southeast Asia
(SEA) and has occurred in the last few decades almost
every year. Latif et al. (2018) stated that the particulate
matter compositions can be divided into two categories:
inorganic and organic compositions. On February 1 and

March 31, 2011, at a South Area Supersite at Gwangju,
Korea, Park et al. (2013) reported in their study that two
pollution episodes are investigated. Hourly measure-
ments of PM2.5, organic and elemental carbon (OC
and EC), inorganic ionic species and elemental
constituents were measured during this study. Kim
et al. (2004) used IMPROVE equation in their study.
The measurement only can be used for PM2.5 fine
aerosol. The analytic method and composite equation
are shown in Table 3. Table 4 shows the PM2.5, organic
and elemental carbon (OC and EC), inorganic ionic
species and elemental constituents during winter and
summer seasons with different categories of the station.

3.2 Biological Compositions of RPM

PM2.5 is a mixture of liquid and solid particles including
chemical and biological fractions. The significant PM2.5

components in indoor and outdoor environments are
bio-aerosols, bacteria, fungi, pollen and endotoxins.
The characteristic size ranges of particles in the atmo-
sphere and bio-aerosols are shown in Fig. 1.

3.2.1 Bio-aerosols

Bio-aerosols are emitted directly into the atmosphere
from the biosphere and include living and dead organ-
isms (e.g. bacteria, archaea and algae), dispersal units
(e.g. fungal spores and crop pollen) and different frag-
ments or excretions (e.g. crop debris and brochosomes)
(Fröhlich-Nowoisky et al. 2016). Fröhlich-Nowoisky
et al. (2016) also reported that the origin, profusion,
structure and impacts of biological spray are not yet
well categorised and represent an important gap in life
science and atmosphere conditions, interaction and evo-
lution in the Earth. The chemical composition of PM2.5

provides useful data for identifying contributions from

Table 2 Concentration of PM2.5 during summer and winter season

References Location Summer seasons (μg/m3) Winter season (μg/m3)

Yao et al. (2015) Beijing, China 78 105

Bagtasa et al. (2018) Northwestern Philippines 11.9 ± 5.0 12.9 ± 4.6

Huang et al. (2018) Beijing, China 64.1 135.6

Tolis et al. (2014) Kozani, Greece 7.18–37.06 6.12–37.10

Hawkins and Holland (2010) Carlisle, Pennsylvania 2.6–53.9 2.0–43.0

Ali et al. (2015) Khanspur, Pakistan 118 ± 33.3 63 ± 49.3
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particular sources and for understanding aerosol charac-
teristics that could affect health, climate and atmospher-
ic conditions (Snider et al. 2016).

In atmospheric processes, bio-aerosols are emerging
as important but poorly understood players (Urbano
et al. 2011). Bio-aerosols contain living organisms or
are directly released from living organisms (Cox and
Wathes 1995; Wolf et al. 2010). Bio-aerosols contain
biological agents, including viruses, bacteria, bacterial
endotoxins, allergens and fungi. This definition includes
all airborne microorganisms regardless of the viability
or capability of culture to recover; it also includes whole
microorganisms as well as fractions, biopolymers and
products from all varieties of living organisms (Chithra
and Shiva Nagendra 2018). According to Morakinyo
et al. (2017), pollen, microorganisms (bacteria, fungi
and viruses) or organic microbial (endotoxins, metabo-
lites, toxins and other microbial fragments) compounds
are usually planted with bio-aerosols. Most bio-aerosols
have sizes of 0.25–20 μm in bacteria, 0.003 μm in
viruses, 1–30 μm in fungi and 17–58 μm in plant
pollens (Stanley and Linskins 1974; Thompson 1981;
Taylor 1988; Morakinyo et al. 2017).

Hargreaves et al. (2003) stated that bio-aerosol size
distributions differ significantly by type. The sizes of
pollens, fungal spores, bacteria and viruses are typically
5–100, 1–30 μm, 0.1–10 μm and less than 0.3 μm,
respectively. Bio-aerosols span a broad variety of aero-
dynamic diameters (Da) from viruses, which are the
smallest (Da 20–300 nm), to pollen, which have diam-
eters of up to 100 μm. Other commonly studied bio-
aerosol classes are bacterial and fungal spores, with
typical Da values of 1–3 and 1.5–30 μm, respectively
(Wolf et al. 2017). Liu et al. (2016) reported the positive
correlation of the respirable fractions of bacteria with
PM2.5 and that of the respirable fractions of fungi with
PM10. Several variables, including temperature, relative
humidity, wind velocity and physical characteristics of
bio-aerosols, influence the transport of bio-aerosols and
other air pollutants in the gas phase (D’Amato 2002;
Woo et al. 2013; Kalisa et al. 2018; Kalisa et al. 2019).
Bowers et al. (2011) reported a high diversity of bacteria
in outdoor air; these bacteria sometimes originate from
unexpected sources, such as dogs.

3.2.2 Bacteria

The levels of bacteria normally vary from 104 cells m3 to
106 cells m3 (Lighthart 2000) but may be higher in theT

ab
le
3

IM
P
R
O
V
E
eq
ua
tio

n
fo
r
fi
ne

pa
rt
ic
ul
at
e
m
at
te
r
(K

im
et
al
.2
00
4)

S
ite

an
d
pe
ri
od

S
ou
rc
es

id
en
tif
ie
d

C
om

po
ne
nt

M
as
s
(μ
g/
m

3
)

C
om

po
ne
nt

an
al
ys
ed

an
d
co
m
po
si
te
eq
ua
tio

n

K
w
an
gj
u,
K
or
ea

(2
2
M
ar
ch
,1
1–
13

A
pr
il
an
d
25
–2
6

A
pr
il
20
01

A
si
an

du
st
st
or
m

ev
en
t(
m
in
er
al
du
st
,s
ul
ph
at
e,

or
ga
ni
c
ca
rb
on
,e
le
m
en
ta
lc
ar
bo
n)

E
le
m
en
ta
lc
ar
bo
n
(E
C
)

O
rg
an
ic
ca
rb
on

(O
C
)

N
on
-s
ea
-s
al
ts
ul
ph
at
e

(n
ss
-S
O
4
2
− )

N
O
3
−
(n
itr
at
e)

F
S
(f
in
e
so
il)

2.
6

8.
1

6.
9

3.
0

8.
9

T
he
rm

al
-C
O
2
an
al
ys
is
3[
S]

−
0.
25
[N

a]
io
n

ch
ro
m
at
og
ra
ph
y
an
al
ys
is

2.
20
[A

l]
+
2.
49
[S
i]
+
1.
63
[C
a]
+
2.
42
[F
e]
+
1.
94
[T
i]

120 Page 6 of 14 Water Air Soil Pollut (2020) 231: 120



vicinity of point sources, such as composting crops,
wastewater treatment plants and feedlots (Lange et al.
1997; Albrecht et al. 2007; Rinsoz et al. 2008). Table 5
listed the dominant species of bio-aerosols in ambient
PM2.5 and their concentration levels across the world.
Rachna (2018) defined bacteria as prokaryotic microor-
ganisms that are considered the first organisms on Earth
and evolved around 3.5 billion years ago. Bacteria can
be autotrophs (which can prepare their own food by
photosynthesis or chemosynthesis) as well as hetero-
trophs (depends on others for their food). With the
thriving human activities such as solid wastes and sew-
age transport, processing and favourable wetlands can
enhance the abundance of cultured airborne bacteria in
urban environments (Gangamma 2014).

Haas et al. (2013) reported that bacteria are associat-
ed with large particles in urban air. Cao et al. (2014)
discovered that the depiction of pathogens recognised in
the bacteria society as a whole is 0.017% in PM10 and
0.012% in PM2.5 specimens; their concentration in-
creased twice from an average of 0.024%.
Proteobacteria are the most dominant bacterial compo-
nents identified in PM2.5 (Bowers et al. 2013; Liao et al.
2013; Cao et al. 2014; Du et al. 2018). To date, the
features of most airborne bacteria, including pathoge-
nicity, cell activity, resistance to adverse meteorological
conditions and biotransformation, are not very evident.
Research on the connection between pollutant concen-
tration and bacterial community composition in PM2.5 is
restricted by several gaps in understanding and technol-
ogy that could lead to contradictory results.

3.2.3 Fungi and Pollen Grains

Fungi are derived from natural activities (soil, plants and
animals) and anthropogenic sources (Jacobson 2012;
Kalisa et al. 2019). Zhang et al. (2010) stated that fungal
spores are the dominant biological component of air-
borne particles. The spore concentrations of Penicillium
and Aspergillus increased with the increase of fine par-
ticle concentrations (Haas et al. 2013; Yan et al. 2016).
About 4 to 11% of the total mass concentration of RPM
was contributed by fungal spores and pollen (Womiloju
et al. 2003; Kalisa et al. 2019). However, the concentra-
tion of fungal spores in PM10 is greater than that in
PM2.5 (Kalisa et al. 2019); the concentration of speci-
menswith dominant loads ofmicroorganisms in PM10 is
4.5% greater than in PM2.5 (1.7%). Fröhlich-Nowoisky
et al. (2009) reported that the capacity of parasitic sporesT
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under adverse ecological conditions (outrageous cold to
hot) empowers them to be ever-present in the surround-
ing PM; they can comprise up to 45% of PM size
portion and have normal streamlined distance across >
1 μm. Telloli et al. (2016) detected and identified fungal
spores and pollen grains based on morphological prop-
erties. Organic particles were collected and examined by
scanning electron microscopy with energy-dispersive
X-ray spectrometer. Aspergillus spores, which could
lead to allergies and aspergillosis to crop farmers, are
the most common elements of organic particles
sampled.

3.2.4 Endotoxin

Tim Sandle (2016) stated that bacterial endotoxin is the
lipopolysaccharide component of the cell wall of Gram-
negative bacteria. Endotoxin is ubiquitous in nature and
has potent toxicity. Endotoxin is present in small amounts
in environmental particles (Morakinyo et al. 2016) because
it is stable under extreme conditions (Sandle 2016). Studies
showed that the endotoxin levels in PM10 are 3–10 times
greater than in PM2.5 (Allen et al. 2011;Nilsson et al. 2011;
Morakinyo et al. 2016). Other studies confirmed that
PM2.5 is correlated with airborne endotoxins (Carty et al.
2003; Mueller-Anneling et al. 2004; Morakinyo et al.

2016) and passes through the lungs after inhalation.
Heinrich et al. (2003) distinguished surrounding airborne
endotoxins in coarse and finemolecular portions; however,
the level of such toxin is 10 times higher in coarse PM. The
concentration of endotoxin was elevated in the atmosphere
in locations where organic materials such as wastewater,
composting equipment and farms are handled (Rolph et al.
2018). Ambient endotoxin is usually below 10 EU/m3 in
rural and urban regions butmay exceed 100 EU/m3 around
enormous sources, such as manure centres, farms and
sewage treatment plants. Based on the ambient sampling
campaign of Rolph et al. (2018), endotoxin is mainly
associated with coarse fragments because large quantities
of endotoxins can bind to create larger particles.

4 Conclusion

PM, especially fine particles (PM2.5), is a complicated
heterogeneous mixture of gases and can adversely affect
human health. The chemical and biological components
of PM lead to various health problems. Studies on
exposure to fine PM could provide basis for establishing
operational regulatory rules to reduce outdoor air pollu-
tion and directly extend life. However, research on
biological components is still lacking in many countries.

Fig. 1 Characteristic size ranges of atmospheric particles and bioaerosols (A) protein (B) virus, (C) bacteria, (D) fungal spore and (E) pollen
grain (Fröhlich-Nowoisky et al. 2016)
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Further studies should focus on the biological compo-
nents of PM that have not yet been fully understood.
The results would be useful for designers, engineers and
researchers who endeavour to undertake research in this
area.
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