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Abstract In the process of identifying groundwater
pollution sources, in order to solve the problem that
the monitoring data of monitoring wells was insuffi-
cient or the correlation between monitoring data and
model parameters was weak, a monitoring well opti-
mization method based on Bayesian formula and in-
formation entropy was proposed. Two-dimensional
phreatic groundwater solute transport model was built
and solved by using GMS software. To reduce the
computational load of calling the numerical model
repeatedly in the optimization design of the monitor-
ing schemes and the identification process of the
pollution sources, the Kriging method was used to
establish the surrogate model of the numerical model.
Under the condition of single well monitoring and
determined monitoring frequency, with the target of
optimization of monitoring position number D and

monitoring time interval Δt , both the single-
objective monitoring scheme with the minimum in-
formation entropy of the model parameter posterior
distribution and the multi-objective monitoring
scheme with the minimum information entropy and
the shortest monitoring time were optimized respec-
tively. According to the above-optimized monitoring
schemes, the delayed rejection adaptive Metropolis
algorithm was used to identify the pollution source
parameters. The case study results showed that under
the condition of pre-set single well monitoring with
monitoring frequency of 10 times, the single-
objective optimized monitoring scheme was D = 37
and Δt = 20 days. Under this monitoring scheme, the
mean errors of inversion pollution source parameters
α = (XS, YS, T1, T2, QS) were 0.09%, 0.4%, 4.72%,
2.43%, and 9.29%, respectively. The multi-objective
optimized monitoring scheme was D = 37 and Δt =
2 days. Under this monitoring scheme, the mean er-
rors of the inversion parameters α = (XS, YS, T1, T2,
QS) were 12.76%, 3.77%, 5.13%, 1.36%, and
7.68%, respectively. Compared with the monitoring
scheme based on the single-objective optimization,
although the inversion mean error of the five param-
eters based on the multi-objective optimized monitor-
ing scheme increased by 2.75%, the monitoring time
significantly reduced from 180 to 18 days.
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1 Introduction

Identification of groundwater pollution sources is the
process of reversing the location of the pollution source,
the release intensity of the pollution source and the
release time. And the process is carried out by establish-
ing groundwater solute transport model and using the
monitoring data in the monitoring well. Clearly, the
essence of identification of groundwater pollution
sources is to inverse and identify the solute transport
model parameters by using the monitoring data. At
present, the methods for solving the inverse problem
mainly include Bayesian statistical method (Sohn et al.
2000; Chen et al. 2018), geostatistical method
(Snodgrass and Kitanidis 1997), differential evolution
algorithm (Ruzek and Kvasnicka 2001), genetic algo-
rithm (Giacobbo et al. 2002), simulated annealing algo-
rithm (Dougherty andMarryott 1991), and Kalman filter
(Wang et al. 2018). Among them, the Bayesian statisti-
cal method aims to obtain parameter information from
the monitoring data and combines the parameter prior
probability density function with the sample likelihood
function, so it is seen as a set of very flexible and
intuitive methods for the inverse problem, and applied
more and more extensively.

In the inversion of model parameters, it is often
necessary to solve the posterior estimation value or
posterior distribution of the parameters by Bayesian
statistical methods. However, when the dimension of
the model parameters is large, the numerical integration
solution process is complicated and difficult. So the
Monte Carlo method (MC) (Roberts and Casella 2004)
is used for approximate solution. And the Markov chain
Monte Carlo method (MCMC) (Metropolis et al. 1953;
Hastings 1970; Tierney and Mira 1999; Mira 2002;
Haario et al. 2001; Haario et al. 2006) is widely used
as a classical sampling method. In recent years, some
common methods of constructing Markov chains have
been developed, such as Metropolis-Hastings algorithm
(MH) (Metropolis et al. 1953; Hastings 1970), delay
rejection algorithm (DR) (Tierney and Mira 1999;
Mira 2002), adaptive Metropolis algorithm (AM)
(Haario et al. 2001), and delay rejection adaptive Me-
tropolis algorithm (DRAM) (Haario et al. 2006). The
DRAM algorithm combines the DR algorithm and the
AM algorithm, which not only ensures the local
adaptation of the Markov chain but also guarantees the
global adaptive adjustment of the chain. Wei et al.
(2016) applied the DRAM algorithm to identify the

source information after a sudden water contamination
incident. Zhang (2017) used the DRAM algorithm to
invert the parameters of the groundwater model and also
pointed out its defects. For example, the DRAM algo-
rithmwas a single-chainMCMC algorithm, and suitable
for the parameter posterior distribution to be a single-
peak case. Therefore, an improved multi-chain delay
rejection adaptive Metropolis algorithm based on Latin
hypercube sampling (Gao 2008) was proposed.

On the other hand, the results of model parameters
inversion are affected by monitoring scheme including
monitoring well position, quantity, and monitoring fre-
quency. However, the monitoring scheme is often lim-
ited by monitoring funds and other objective conditions,
leading to ill-posedness (Carrera and Neuman 1986). In
order to get an ideal model parameter inversion result, it
is necessary to optimize the monitoring scheme. Firstly,
an objective function needs to be defined to quantify the
information amount of the monitoring scheme. Some
objective functions have been developed so far, such as
signal-to-noise ratio (SNR) (Gabriela et al. 2008) and
relative entropy based on Bayesian formula (Huan and
Marzouk 2013; Lindley 1956). However, the SNR only
considers the interference effect of monitoring error on
the monitoring data. And the relative entropy does not
consider the influence of the prior distribution of param-
eters on the posterior distribution. Shannon (1948)
pointed out that information entropy was a measure of
information uncertainty. The greater the uncertainty, the
larger the information entropy. This paper combined the
Bayesian formula with information entropy (Shannon
1948; Zhang et al. 2019) to optimize the monitoring
scheme.

In the process of the optimization design of monitor-
ing scheme and the identification of pollution source, it
is necessary to repeatedly call the groundwater solute
transport model, making the calculation load very high.
However, the application of the surrogate model can
effectively reduce the calculation load. The commonly
used methods of constructing surrogate model include
polynomial regression (Knill et al. 1999) and Kriging
(Kuhnt and Steinberg 2010; Luo et al. 2019). Kriging is
an improved method of polynomial regression analysis,
and the Kriging surrogate model can be established in
MATLAB software by using the special DACE toolbox
(Lophaven et al. 2002). So the Kriging method is used
widely for constructing surrogate model.

In this paper, a two-dimensional solute transport sim-
ulation model for phreatic groundwater was established.

27 Page 2 of 17 Water Air Soil Pollut (2020) 231: 27



Under the condition of initial monitoring time and mon-
itoring frequency, the Kriging method was used to es-
tablish a surrogate model of the solute transport simula-
tion model. The optimized single-objective monitoring
scheme MP1∗ with the minimum information entropy
and the optimized multi-objective monitoring scheme
MP2∗with minimum information entropy and shortest
monitoring time were calculated respectively. Then the
improved multi-chain delay rejection adaptive Metrop-
olis algorithm was used to identify the pollution source
parameters based on the two optimized monitoring
schemes. This paper will provide reference for the iden-
tification of groundwater pollution source and the opti-
mization of monitoring schemes.

2 Study Methods

2.1 Bayesian Formula

The Bayesian formula is expressed as follows:

p αjdð Þ ¼ p djαð Þp αð Þ
p dð Þ ∝p djαð Þp αð Þ ð1Þ

Where,

& α is the unknown model parameter;
& d is the monitoring data;
& p(α| d) is the posterior probability density function

of the model parameter;
& p(α) is the prior probability density function of the

model parameter;
& p(d| α) is the conditional probability density

function;
& p(d) = ∫ p(d| α)p(α) dα is the normalized integral

constant, also called appearance probability of mon-
itoring data d.

Assuming that

& The number of the unknown parameters in the mod-
el is m, namely α = (α1, α2,⋯,αm);

& The environmental hydraulic model parameters are
all distributed in a specific range;

& Each parameter obeys uniform distribution;
& α1, α2, ⋯, αm are mutually independent.

So the prior probability density function of model
parameter αi can be defined as follows:

p αið Þ ¼
1

Bi−Ai
; αi∈ Ai;Bi½ �

0; others

(
ð2Þ

And the total prior distribution p(α)can be expressed
as follows:

p αð Þ ¼ ∏
m

i¼1
p αið Þ ð3Þ

& The monitoring data in the model is recorded as
d = (d1, d2, ..., dn);

& F(α) indicates the calculated values of model under
the condition of parameters α, and ε = d −
F(a) represents the error;

& ε = (ε1, ε2, ..., εn) obeys normal distribution with the
mean of 0;

& ε1, ε2, ..., εn are mutually independent.

So the conditional probability density function can be
expressed as follows:

p djαð Þ ¼ 1

2πð Þn=2jC εð Þj1=2
exp −

1

2
d−F αð Þð ÞTC εð Þ−1 d−F αð Þð Þ

� �
;

ð4Þ
where,

C εð Þ ¼
σ2
1 0 … 0
0 σ2

2 … 0
⋮ ⋮ ⋮ ⋮
0 0 … σ2

n

2
664

3
775;

& ∣C(ε)∣is the determinant of matrix C(ε);
& C(ε)−1is the inverse matrix of matrix C(ε);
& σi > 0(i = 1, 2,⋯, n).

Combining the above functions (1), (2), (3), and (4),
the posterior probability density function p(α| d) of α
can be expressed as follows:

p αjdð Þ ¼
∏
m

i¼1
p αið Þ

p dð Þ 2πð Þn=2jC εð Þj1=2
exp −

1

2
d−F αð Þð ÞTC εð Þ−1 d−F αð Þð Þ

� �

¼ λexp −
1

2
d−F αð Þð ÞTC εð Þ−1 d−F αð Þð Þ

� �

ð5Þ
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where λ ¼
∏
m

i¼1
p αið Þ

p dð Þ 2πð Þn=2jC εð Þj1=2 is a fixed value, and inde-

pendent of parameters α.
Equation (5) can be viewed as a function about

parameters α under the condition that the measured
value is fixed. Since it was difficult to draw the explicit
expression of Eq. (5) by a numerical integral method,
the Markov Chain Monte Carlo method was employed
to solve the equation.

2.2 Optimization Design of Monitoring Scheme Based
on Bayesian Formula and Information Entropy

The optimization design of the monitoring schemes
mainly includes the optimization of the number, posi-
tions of the monitoring wells, and monitoring frequency.
Under the condition of single well monitoring, both
position D (D indicates the serial number of the moni-
toring wells) and monitoring time interval Δt of the
monitoring wells will be optimized simultaneously.

Assume that

& The initial monitoring time is t1 (fixed value);
& Monitoring scheme MP = (D,Δt);
& Monitoring data is still recorded as d

The Bayesian formula can be rewritten as follows:

p αjd;D;Δtð Þ ¼ p αjD;Δtð Þp djα;D;Δtð Þ
∫p αjD;Δtð Þp djα;D;Δtð Þdα ð6Þ

The prior distribution p(α|D,Δt) suggests a prelim-
inary set of unknown parameters α, and is not affected
by D and Δt. So p(α|D,Δt)can be written as p(α).
Equation (6) becomes the following:

p αjd;D;Δtð Þ ¼ p αð Þp djα;D;Δtð Þ
∫p αð Þp djα;D;Δtð Þdα ð7Þ

where ∫p(α)p(d|α,D,Δt)dα indicates the probability of
monitoring value d obtained on the condition of position
number of D and the monitoring time interval ofΔt. So
it can be denoted as p(d|D,Δt) in the following format:

p djD;Δtð Þ ¼ ∫p αð Þp djα;D;Δtð Þdα ð8Þ

Assuming that the probability density function of
one-dimensional continuous random variable Θ is f(θ),
the information entropy (Shannon 1948) of Θ in the
interval [a, b] can be defined as follows:

H Θð Þ ¼ −∫ba f θð Þln f θð Þdθ ð9Þ

So we can use the monitoring data d gotten at the
positionD to back-calculate the unknown parameters α,
and then the posterior probability density function p(α|
d,D,Δt) can be obtained. The information entropy of
the posterior distributionα can be similarly expressed as
follows:

H D;Δt; dð Þ ¼ −∫p αjd;D;Δtð Þln p αjd;D;Δtð Þdα ð10Þ

The left side of Eq. (10) contains monitoring data d,
which could not be really obtained before the optimiza-
tion design of the monitoring schemes. So d could be
considered as a random variable, and the probability
density function of d can be expressed as p(d|D,Δt).
In order to obtain a function only containing variable D
and Δt, both sides of Eq. (10) are multiplied by p(d|
D,Δt), then integrated by d. And the expectation of
information entropy H(D,Δt, d) can be written as fol-
lows:

E H D;Δt; dð Þð Þ
¼ −∫ ∫p αjd;D;Δtð Þlnp αjd;D;Δtð Þdα� �

p djD;Δtð Þdd
¼ −∬p αjd;D;Δtð Þp djD;Δtð Þlnp αjd;D;Δtð Þdαdd

ð11Þ
where E(H(D,Δt, d)) is only affected by D andΔt, and
is a continuous function onD andΔt. Therefore,E(H(D,
Δt, d)) can be expressed as E(D,Δt). And the optimal
monitoring scheme MP∗ can be gotten by calculating
the minimum value of E(D,Δt). According to the con-
cept of information entropy, we can use the monitoring
value d∗ from monitoring scheme MP∗to back-calculate
the unknown parametersα. At this time, the information
entropy of the posterior distribution of α is the smallest,
indicating that the uncertainty of α is also minimal, and
the inversion effect is optimal.

The solving algorithm of Eq. (11) is very complicat-
ed, and it is difficult to obtain the expression. This paper
will get the approximate result by using Monte Carlo
method (Huan and Marzouk 2013; Zhang et al. 2019).
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2.3 Improved Multi-chain Delay Rejection Adaptive
Metropolis Algorithm Based on Latin Hypercube
Sampling

2.3.1 Improved Multi-chain Delay Rejection Adaptive
Metropolis Algorithm

Delayed rejection adaptive Metropolis algorithm
(DRAM) was first proposed by Haario and others in
2006. The specific steps of the algorithm can be
found in Haario et al. (2006). However, the single-
chain DRAM algorithm easily causes the inversion
result local convergence or no convergence (Zhang
2017). This paper proposes an improved multi-chain
delay rejection adaptive Metropolis algorithm (multi-
chain DRAM) based on Latin hypercube sampling.
Latin hypercube sampling is a multi-dimensional hi-
erarchical random sampling method with good dis-
persion uniformity and representation. The specific
algorithm of Latin hypercube sampling is shown in
the literature (Gao 2008).

Specific steps of the improved multi-chain DRAM
algorithm based on Latin hypercube sampling are as
follows:

& q sets of initial samples are randomly extracted from
the prior ranges of model parameters by the Latin
hypercube sampling method.

& Taking the q sets of samples as initial points in step
(1), q parallel Markov Chains are generated by the
DRAM algorithm.

& Convergence judgment. If the Markov chain sat-
isfies the Gelman-Rubin convergence criterion
(Gelman and Rubin 1992), the calculation termi-
nates, otherwise the parallel sequence continues to
evolve.

& The averages of the calculated results of q Markov
Chains are taken as the final results.

2.3.2 Convergence Judgment of Improved Multi-chain
DRAM Algorithm

In this study, the convergence of the last 50% sampling
process by the multi-chain DRAM algorithm is guided by
the Gelman-Rubin convergence diagnosis method

(Gelman and Rubin 1992). The convergence indicator is
as follows:

R̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g−1
g

þ qþ 1

q
⋅
Bi

Wi

s

where

& R̂i i ¼ 1; 2;⋯;mð Þ is the judgment indicator of the
ith parameter;

& g is half the length of the Markov chain length in the
multi-chain Metropolis algorithm;

& q is the number of Markov chains used for the
judgment;

& Bi is the variance of the means of the last 50%
samples in the qMarkov chains of the ith parameter;

& Wi is the average of the variance of the last 50%
samples in the qMarkov chains of the ith parameter.

when R̂i < 1:2, the Markov chain converges; While
when R̂i≥1:2, the Markov chain does not converge.

2.4 Kriging Surrogate Model and Sampling Method

In order to reduce the calculation load generated by
repeatedly calling the groundwater solute transport nu-
merical simulation model during the optimization de-
sign of the monitoring scheme and the parameter inver-
sion process, the Krigingmethod (Lophaven et al. 2002)
is used to construct the surrogate model of the numerical
simulation model.

Both the establishment of the surrogate model and the
selection of the initial samples of the improved DRAM
algorithm need to adopt a certain sampling method to
extract some samples. In the process of constructing the
surrogate model, in order to ensure that the surrogate
model can capture the trend of the object function, and
the samples could be evenly distributed in the entire space
of the prior distribution, the optimal Latin hypercube sam-
pling method (Hickernell 1998) with centralization L2
deviation (CL2) as the optimizing index is used to extract
samples. The improved DRAM algorithm is a multi-chain
MCMC algorithm. The initial samples could be randomly
extracted within the parameter prior distribution range by
Latin hypercube sampling method (Kuhnt and Steinberg
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2010), which could reduce the impact of randomly
selecting samples on the inversion results.

3 Example Application

3.1 Model Establishment and Problem Overview

3.1.1 Model Establishment

Assuming that the study area was a rectangular area with
1000 m in length and 600 m in width, and the aquifer
was a sandy aquifer with a thickness of 35m (Table 1 for
hydrogeological parameters), both the western bound-
ary Γ1 and the eastern boundary Γ3 were the given head
boundary. The eastern head was 25 m, and the western
head was 30 m. Both the northern boundary Γ2 and the
southern boundary Γ4 were the impermeable boundary.

A total of 58 monitoring wells were set up in the study
area. The initial concentration of aquifer pollutant was
zero. Pollutant x was found downstream of the study area
on a certain day. The pollution source was initially deter-
mined in a certain upstream region S (a priori range). And
the pollutant was continuously and constantly injected into
the aquifer in the form of a water injection well (200 m3/
day) over a period of time. So the groundwater flow can
be generalized as a two-dimensional homogeneous isotro-
pic unsteady flow flowing from west to east. The sche-
matic diagram of the study area is shown in Fig. 1.

The coordinate systemwas established with the south-
west corner as the coordinate origin, and the numerical
model of groundwater flow was established according to
the hydrogeological conditions of the study area:

∂
∂x

K H−Bð Þ ∂H
∂x

� �
þ ∂

∂y
K H−Bð Þ ∂H

∂y

� �
þ w ¼ μ

∂H
∂t

x; yð Þ∈Ω; t≥0

H x; y; tð Þjt¼0 ¼ H0 x; yð Þ x; yð Þ∈Ω; t ¼ 0
H x; y; tð ÞjΓ 1;Γ 3

¼ H1 x; y; tð Þ x; yð Þ∈Γ 1;Γ 3; t≥0
∂H
∂τ

				
Γ 2;Γ4

¼ 0 x; yð Þ∈Γ 2;Γ 4; t≥0

8>>>>>><
>>>>>>:

where K is the permeability coefficient, m/day: H is the
water level, m: B is the aquifer floor elevation, m:w is the
sources and sinks items: μ is the specific yield,
dimensionless: Ω is the scope of the study area: H0(x, y)
is the initial water level, m: H1 is the known head on the
first boundary, m: Γ1, Γ3 are the given head boundaries
with Dirichlet boundary condition: Γ2, Γ4 are the imper-
vious boundaries with Neumann boundary condition: τ is
the outer normal direction for the Neumann boundary.

A numerical model of groundwater solute transport
can be established based on the numerical model of
groundwater flow. The boundaries of the simulated area
can be generalized as follows: Γ1 was the zero concen-
tration boundary with Dirichlet boundary condition; Γ3

was the convective diffusion flux boundary with
Cauchy boundary condition; Γ2 and Γ4 were the zero
diffusion flux boundaries with Neumann boundary con-
dition. The solute transport model in the study area is as
follows:

n
∂c
∂t

¼ ∂
∂x

nDx
∂c
∂x


 �
þ ∂

∂y
nDy

∂c
∂y


 �
−

∂
∂x

vxcð Þ− ∂
∂y

vyc
� 
þ CinjQinj x; yð Þ∈Ω; t≥0

c x; y; tð Þjt¼0 ¼ 0 x; yð Þ∈Ω; t ¼ 0
c x; y; tð ÞjΓ1

¼ 0 x; yð Þ∈Γ 1; t > 0

D
∂c
∂τ

				
Γ 2;Γ 4

¼ 0 x; yð Þ∈Γ 2;Γ 4; t > 0

−nDx
∂c
∂x

þ cvx


 �				
Γ 3

¼ f x; y; tð Þ x; yð Þ∈Γ 3; t > 0

8>>>>>>>>>>><
>>>>>>>>>>>:

where Dx and Dy are the components of the hydrody-
namic diffusion coefficient in the x and y directions, m2/
day: vx and vy are the percolation velocities of ground-
water in the x and y directions respectively, m/day: n is
the porosity of the aquifer medium, dimensionless: c is
the mass concentration of the pollutant, mg/L: Qinj is the
amount of liquid injected into the aquifer, m3/day:Cinj is
the concentration of the pollutant entering the aquifer,
mg/L: f(x, y, t) indicates the solute mass passing through
a unit area of flow sections in unit time only under the
action of the hydrodynamic dispersion.

Table 1 Known hydrological parameters in the study area

Parameters Longitudinal dispersion
Dx/m

Transverse dispersion
Dy/m

Permeability coefficient
K/(m day−1)

Effective porosityn

Value 20 5 20 0.25

Parameters Specific yield μ Aquifer level H/m Aquifer floor elevation B/m

Value 0.15 35 0
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The established groundwater flow and solute
transport models were calculated by GMS (Ground-
water Modeling System) software. In order to ensure
that each grid center corresponded to a potential
pollution source position, the study area was divided
into 150 rows and 250 columns, and the basic cell
side length is 4 m.

3.1.2 Problem Overview

For the potential pollution source parameter ranges,
it was required to optimize the monitoring schemes
using the existing 58 candidate monitoring wells.
The optimized schemes contained single-objective
and multi-objective monitoring schemes. The
single-objective monitoring scheme was optimized
with the minimum posterior distribution information
entropy, and the multi-objective monitoring scheme
was optimized with the minimum information entro-
py and the shortest monitoring time. Then the pol-
lution source parameters, including the position of

the pollution source, the start and stop time of emis-
sion pollutant, and the mass concentration of the
pollutants, were identified based on the optimized
schemes. That is, the unknown parameters of the
pollution source α = (XS, YS, T1, T2,QS) were solved,
where (XS, YS) is the position of the pollution source,
m; T1 and T2 are the start and stop time of emission
pollutant, d; QS is the mass concentration of the
pollutant, mg/L.

3.1.3 Parameter Prior Range

The initial time was determined as a certain time when
no pollution occurred. At this time, t = 0. Assuming that
the prior distributions of the above five parameters
α = (XS, YS, T1, T2,QS) were evenly distributed, the prior
ranges of the five parameters were as follows:

80m ≤ XS ≤ 200m, 260 m ≤ YS ≤ 380 m, 10th day ≤
T1 ≤ 15th day, 25th day ≤ T2 ≤ 30th day, 3, 000 mg/L ≤
QS ≤ 3, 500 mg/L.

Fig. 1 Sketch of example model
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3.2 Establishment of the Kriging Surrogate Model

Fifty sets of samples of α were evenly extracted from
the prior distribution by using the optimal Latin hyper-
cube sampling method. The samples were taken as the
input dataset of the Kriging surrogate model (at this
time,CL2(Φ50, 5) = 0.0054). Fifty sets of samples are
shown in Table 2.

Establishing the Kriging surrogate model for 58 can-
didate monitoring wells respectively.

The 50 sets of parameters in Table 2 were taken
into the GMS software to obtain the daily pollutant
mass concentrations of 58 candidate monitoring
wells respectively within [450th day, 649th day].
The daily pollutant mass concentrations were seen
as the output dataset of the Kriging surrogate
models. Then the 50 sets of input and output dataset
as the training samples were taken into MATLAB
software. And the Kriging surrogate model of each
monitoring well was trained by the DACE toolbox
in the MATLAB software.

In order to test the accuracy of the Kriging sur-
rogate models of 58 monitoring wells, 10 sets of

parameters in the prior distributions of α in Table 3
were evenly extracted again by using the Latin hy-
percube sampling method, which were taken as the
input values of the test samples. Then the 10 sets of
parameters were taken into the GMS software to
obtain the daily pollutant mass concentrations of
58 candidate monitoring wells respectively within
[450th day, 649th day]. The daily pollutant mass
concentrations were seen as the output values of
the test samples, which were recorded as yi, out, and
yi, out = (yi, 1, yi, 2,⋯, yi, 2000), where i = 1, 2, ⋯, 58
indicated the ith candidate monitoring well. Then the
10 sets of input values of the test samples were taken
into the Kriging surrogate model to obtain output

values, which were recorded as ŷi;out, and

ŷi;out ¼ ŷi;1; ŷi;2;⋯; ŷi;2000Þ
�

,where i = 1, 2, ⋯, 58 in-

dicated the ith candidate monitoring well.
Taking the 58th monitoring well as an example, the

output values of the test samples by numerical model
were taken as the abscissa, and the output values of the
Kriging surrogate model were taken as the ordinate. The
comparison between the output values of the surrogate
model and the test samples is plotted in Fig. 2. Figure 2
shows that the output values are concentrated in y = x,
which indicates that the surrogate model can be a good
substitute for the numerical model.

Then the coefficient of determination, the mean ab-
solute error, and the root mean square error were used to
further test and evaluate the accuracy of the surrogate
models, as shown in Table 4.

(1). Coefficient of determination (R2):

Ri
2 ¼ 1−

∑
2000

j¼1
yi; j−ŷi; j

� �2

∑
2000

j¼1
yi; j−yi

� �2
; i ¼ 1; 2;⋯; 58;

where yi ¼
∑
2000

j¼1
yi; j

2000 represents the mean of the numerical
model output values.

(2). Mean absolute error (MAE):

MAEi ¼
∑
2000

j¼1
jyi; j−ŷi; jj

2000
; i ¼ 1; 2;⋯; 58;

Table 2 Fifty sets of training input dataset obtained from the prior
distribution

Serial number Xs Ys T1 T2 Qs

1 128.6 358.2 10.7 27.9 3290.9

2 98.1 309.9 14.9 28.9 3236.3

3 192.0 355.0 10.5 25.7 3402.0

4 112.2 297.1 12.9 28.4 3146.5

5 133.9 284.1 13.8 25.5 3334.3

… … … … … …

50 121.8 317.4 10.1 28.6 3284.8

Table 3 Ten sets of testing input dataset obtained from the prior
distribution

Serial number Xs Ys T1 T2 Qs

1 132.8 331.5 14.4 29.4 3400.4

2 88.7 369.5 13.7 28.7 3309.5

3 178.8 341.8 11.7 29.9 3186.3

4 161.9 301.1 14.9 25.2 3295.5

5 148.4 364.7 10.8 25.8 3245.7

… … … … … …

10 125.8 270.6 13.3 28.5 3125.4
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(3). Root mean square error (RMSE):

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
2000

j¼1
yi; j−ŷi; j

� �2

2000−1

vuuut
; i ¼ 1; 2;⋯; 58:

It can be seen from the dataset in Table 4 that the
Kriging surrogate model has higher prediction accuracy,
indicating that the surrogate model can be a good sub-
stitute for the numerical model.

3.3 Optimization of Monitoring Schemes

3.3.1 Single-Objective Optimization Model Based
on the Minimum Information Entropy

The value ranges of the parameters in the study area
were described in Section 3.1.3. The first monitoring
was set at time t1 = 450th day, and the monitoring was a
total of 10 times. The interval between two adjacent
monitoring was recorded as Δt, which is a positive
integer, and 1 day ≤Δt ≤ 20 days. That is, the pollution

source identification task was completed before the
630th day. The purpose of this section was to select
the optimal monitoring scheme MP1∗ = (D∗,Δt∗) from
the 58 candidate monitoring well positions D and 20
monitoring intervals Δt. Therefore, the value ranges of
the monitoring scheme (D,Δt) can be written as follows:

Ω ¼ 1≤D≤58; 1day≤Δt≤20days; and D andΔt
are positive integers respectively

( )
:

It can be seen from Section 2.2 that the optimal
monitoring scheme based on the minimum information
entropy can be generalized to the minimum value of
function (11), namely:

E MP1*
� 
 ¼ min

D;Δtð Þ∈Ω
E D;Δtð Þ ð12Þ

The posterior probability density function in function
(11) is given by Eq. (5), and the covariance matrix C(ε) in
Eq. (5) needs to be given. In the optimization design of
monitoring schemes by using theKriging surrogatemodel,

Fig. 2 Output comparison
between the Kriging surrogate
model and numerical model

Table 4 R2, MAE, and RMSE of the Kriging surrogate models for the 58 monitoring wells

Serial number 1 2 3 … 58 Mean

R2 0.9798 0.9166 0.9947 … 0.9981 0.9804

MAE 0.0024 0.0007 0.0082 … 0.1606 0.1177

RMSE 0.0051 0.0014 0.0147 … 0.2178 0.1551
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there must be error uncertainty in the surrogate models and
measurement.

Assuming that

& The error ε
0
i of the Kriging surrogate models for the

ith (i = 1, 2, ⋯, 58) monitoring well satisfies normal

distribution N 0; σ
0
i

� �2

 �

, the mean value

E ε
0
i

� �
¼ 0, a n d me an s q u a r e d e v i a t i o n

σ
0
i ¼ RMSEi;

& The measurement error ε'' satisfies normal distribu-
tionN(0, (σ'')2) , the mean value E(ε'') = 0 , and mean
square deviation σ'' = 0.01;

& ε'i and ε'' are completely independent of each other.

The global error ε�i ¼ ε
0
i þ ε

″
for the ith (i = 1, 2,⋯,

58) monitoring well satisfies normal distribution

N 0; σ
0
i

� �2
þ σ

″
� �2


 �
. According to this, C(ε) in

Eqs. (4) and (5) can be determined.
The information entropy of all monitoring schemes can

be obtained according to function (11). Because the values
ofD andΔtwere all positive integers, theminimum value
of objective function E(D,Δt) was obtained, and
min

D;Δtð Þ∈Ω
E D;Δtð Þ ¼ 12:16. So the optimal monitoring

schemeMP1∗ = (37, 20). That is, the best monitoring well
was no.37, and the best monitoring intervals wasΔt = 20
days.

In order to verify the optimization design effect of the
monitoring schemes based on Bayesian formula and infor-
mation entropy, another 9 monitoring schemes were ran-
domly selected from Ω = {1 ≤D ≤ 58, 1 day ≤Δt ≤ 20
days, and D and Δt were positive integers respectively}.
MP1∗ and the other new 9 monitoring schemes were
represented by the symbol (Di,Δti) (i = 1, 2,⋯, 10). Then
the 10 monitoring schemes were evaluated by the infor-
mation entropy E(D,Δt) and the mean relative errors
MRE(D,Δt) of inversion results as indicators. However,
it was unfair to evaluate the inversion results of the mon-
itoring schemes by using a certain set of “the true values of
parameters”. So 20 sets of parameter values in the prior
distributions of α were randomly and uniformly extracted
by using Latin hypercube sampling method. The parame-
ter values were recorded as “the true values of parameters”
(Table 6), which was written as χ = [χ(j, k)]20 × 5. Corre-
sponding to the 10 monitoring schemes, 20 groups of “ the

true values of parameters” generated 200 groups of con-
centration monitoring values through Kriging surrogate
models. Then the parametersα could be inversed by using
the generated monitoring values and the improved DRAM
algorithm (the number of parallel chain was 10). The
length of each Markov chain is 34,000. When the length
of the Markov chain is 30,000, the convergence judgment

indexes of 5 parameters were R̂i < 1:2 i ¼ 1; 2;⋯; 5ð Þ.
In order to ensure the accuracy of inversion results, only
the last 4000 samples after a stabilization trend were used
for posterior statistics, and the parameter posterior mean
estimation M Di;Δtið Þ of 20 sets of “the true values of

parameters χ” can be calculated. M Di;Δtið Þ was recorded
asM Di;Δtið Þ ¼ M Di;Δtið Þ j; kð Þ� �

20�5
. Then the true values

of parameters in Table 6 were brought into MRE(Di,Δti).
The expression was as follows:

MRE Di;Δtið Þ ¼ ∑
20

j¼1
∑
5

k¼1
jM Di;Δtið Þ j; kð Þ−χ j; kð Þ

χ j; kð Þ

" #
=100 ð13Þ

MRE(Di,Δti) of the 10 monitoring schemes were
obtained by function (13). The results are shown in
Table 5.

MRE(Di,Δti) and E(Di,Δti) in Table 5 are fitted
linearly, and they show a good positive linear relation-
ship, which can be written as

MRE(D, Δt) = 0.0072E(D, Δt) − 0.0345 (R2 =
0.9101), and shown in Fig. 3.

It can be seen from Fig. 3 and Table 5 that MRE(D,
Δt) and E(D,Δt) show a good positive linear relation-
ship, which indicates E(D,Δt) is an effective measure of
the accuracy of the parameter inversion results. The
smaller the E(D,Δt), the higher the accuracy of the

Table 5 E(Di,Δti)and MRE(Di,Δti) of 10 monitoring schemes

i (Di,Δti) E(Di,Δti) MRE(Di,Δti)

1 (37, 20) 12.16 0.060

2 (23, 8) 17.13 0.086

3 (33, 10) 16.65 0.082

4 (50, 11) 12.88 0.053

5 (46, 15) 15.90 0.077

6 (3, 12) 17.23 0.089

7 (11, 6) 13.98 0.059

8 (38, 7) 17.61 0.093

9 (28, 12) 16.77 0.089

10 (41, 17) 16.41 0.088
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parameter inversion. But when E(D,Δt) gets the mini-
mum, MRE(D,Δt) is not the minimum. For example,
E(D1,Δt1)=12.16 is less than E(D4,Δt4)=12.88, but
MRE(D1, Δt1)=0.060 is greater than MRE(D4,
Δt

4
)=0.053. The main reason is that although 20 sets

of “ the true values of parameters” in Table 6 are uni-
formly extracted from the prior distributions of α as far
as possible by using Latin hypercube sampling method,
the amount of “the true values of parameters” is rela-
tively few, and it is impossible to make the values of
parameters evenly distributed within the prior range in the
true sense. The information entropy is solved by the Monte
Carlomethod (MCmethod). TheLatin hypercube sampling
method is used to extract 40,000 samples in the parameter
prior ranges. So it is more reliable to take the minimum
value ofE(MP) as the index to select the optimalmonitoring

scheme. The minimum value of MRE(MP) cannot be used
as the index to select the optimal monitoring scheme.

In summary, the smaller the information entropy E(D,
Δt), the smaller the uncertainty of the parameter posterior
distribution, and the higher accuracy the inversion result. It
fully verifies that the monitoring well optimization design
method based on Bayesian formula and information entro-
py can be a good method for parameter inversion.

3.3.2 Multi-objective Optimization Model Based
on Minimum Information Entropy and Minimum
Monitoring Time

It not only needs to optimize the monitoring scheme with
minimize information entropy but also requires the moni-
toring scheme to be the least time-consuming in order to
find the pollution source as soon as possible. So the trade-
off between information entropy and time-consuming of
monitoring scheme should be considered. Assuming that
the monitoring number of times was still set as 10, the
multi-objective optimization model was established with
the minimum information entropy and the shortest moni-
toring time. And the mathematical formula is as follows:

Objective 1: minimum information entropy

min
D;Δtð Þ∈Ω

E D;Δtð Þ ð14Þ

Fig. 3 The fitting diagram of the
relationship between E(D,Δt)
and MRE(D,Δt)

Table 6 Twenty sets of true values of parameters obtained from
the prior distribution

Serial number Xs Ys T1 T2 Qs

1 111.99 277.54 13.54 27.00 3485.45

2 88.55 300.65 14.53 29.14 3359.33

3 176.69 313.84 14.31 29.88 3228.53

4 195.77 306.27 10.48 27.14 3084.93

5 183.68 285.82 13.32 28.92 3313.37

… … … … … …

20 121.53 368.70 12.27 28.27 3047.30
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Objective 2: shortest monitoring time

min
Δt∈ 1;20½ �;positive inegers

T ¼ 10−1ð Þ �Δt ¼ 9Δt ð15Þ

Generally speaking, the optimal solution of multi-
objective optimization problem is not unique. The opti-
mal solution set consists of the solutions whose reduc-
tion must be at the cost of increasing the value of
other objective functions. The optimal solution set is
called Pareto domain. The continuous multi-
objective optimization problem can be solved by
using the non-dominated sorting genetic algorithm
with elite strategy (NSGA-II) (Deb et al. 2002). Since
the values of D and Δt in the multi-objective optimi-
zation model are all positive integers, this paper used
exhaustive method to get D∗ with minimum informa-
tion entropy under 20 kinds of Δt. The above 20
combinations of D∗ and Δt are Pareto domains. The
Pareto front is shown in Fig. 4.

If the time-consuming of monitoring scheme must be
less than or equal to 20 days, the optimal monitoring
schemeMP2∗was calculated as follows: the best monitor-
ing well was no.37, and the best monitoring intervals was
Δt= 2 days, and the time-consuming T= 18 days. At this
time, E(MP2∗) = 13.59.

3.4 Identification of Pollution Source Based
on Optimized Monitoring Schemes

Taking the true values of the first set of parameters in
Table 6 (XS = 111.99, YS = 277.54 ,T1 = 13.54, T2 =
27.00) as an example, the pollution source was iden-
tified by using the single-objective and multi-
ob j e c t i v e op t im i z ed mon i t o r i ng s chemes
respectively.

3.4.1 Identification of Pollution Source Based
on Single-Objective Optimized Scheme

Both the monitoring values obtained by single-objective
optimized monitoring scheme MP1∗ and the improved
DRAM algorithm (10 chains in total) were used to invert
pollution source parameters. In the parameter inversion
process, the length of each Markov chain was 34,000,
amongwhich the length of the non-adaptiveMarkov chain
was 4000 and the length of the adaptiveMarkov chain was
30,000. The ergodicmean plots ofmodel parameters based
onMP1∗ are shownwith the solid lines in Fig. 5.When the
length of Markov chain was 30,000, the convergence
judgment indexes of 5 parameters were

R̂i < 1:2 i ¼ 1; 2;⋯; 5ð Þ, and all the Markov chains of
all parameters converged. Then the previous unstable
30,000Markov chains results were excluded. Only the last
4000 stable results were used to perform the posterior
statistical analysis. The results are shown in Table 7.

Fig. 4 Pareto front of the
objective function

27 Page 12 of 17 Water Air Soil Pollut (2020) 231: 27



3.4.2 Identification of Pollution Source Based
on Multi-objective Optimized Scheme

Both the monitoring values obtained by multi-objective
optimized monitoring scheme MP2∗ and the improved

DRAM algorithm (10 chains in total) were used to
invert pollution source parameters. In the inversion pro-
cess, the Markov chain condition was set in the same
way as in Section 3.4.1. The ergodic mean plots of
model parameters based on MP2∗ are shown with the

Fig. 5 Ergodic mean plots of model parameters based on MP1∗ and MP2∗
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dotted line in Fig. 5, and the posterior statistical results
are shown in Table 7.

It can be seen from Table 7 that the mean relative
errors of the posterior mean of 5 parameters by MP1∗

and MP2∗ are 3.06% and 5.87% respectively. The pre-
cision of parameter inversion by MP1∗ is higher than
that by MP2∗, such as the inversion positions of the
pollution source shown in Fig. 6. This is mainly due to
E(MP1∗) = 11.90 < E(MP2∗) = 13.35. Moreover, when
we observe pollutant concentrations at the no.37 moni-
toring well by forward simulation from the inversion
pollution sources by MP1* and MP2*, we can see that
the monitoring concentration residue between the pol-
lution source by MP1* and the truth pollution source is
less than that by MP2*. The comparison is shown in
Fig. 7. It is further verified that the smaller the informa-
tion entropy of the monitoring scheme, the smaller the

uncertainty of the parameter posterior distribution, and
the higher accuracy the inversion result.

Compared with the inversion results based on MP1*,
the mean value of the relative errors of the posterior
mean of 5 parameters increases by 2.81% by MP2*, but
the monitoring time is shortened from 180 to 18 days.
Therefore, the multi-objective optimized monitoring
scheme is of more practical significance for the rapid
identification of pollution source.

3.5 Sensitivity Analysis

As can be seen from Table 7, the relative errors of the
posterior mean of parameters XS, YS, T1, and T2 byMP1∗

are all small, but not QS. And the relative errors of the
posterior mean of the parameter XS and QS by MP2∗ are
large. This is mainly due to the different sensitivities of

Table 7 Posterior statistical results of model parameters based on MP1∗ and MP2∗, and the convergence judgment indicators R̂i

True value of
parameter α

Monitoring scheme MP1∗ Monitoring scheme MP2∗

Posterior

mean α

Relative error
of posterior
mean %

Posterior

median α̂

Relative error
of posterior
median %

R̂i Posterior

mean α

Relative error
of posterior
mean %

Posterior

median α̂

Relative error
of posterior
median %

R̂i

XS = 111.99 109.59 2.14 107.85 3.70 1.04 129.25 15.41 130.05 16.13 1.09

YS = 277.54 287.07 3.43 288.93 4.10 1.06 281.29 1.35 281.97 1.59 1.07

T1 = 13.54 13.16 2.83 13.07 3.45 1.04 12.85 5.08 12.73 5.97 1.06

T2 = 27.00 27.25 0.91 27.00 0.01 1.06 27.49 1.83 27.56 2.08 1.05

QS = 3485.45 3276.11 6.01 3284.46 5.77 1.15 3288.35 5.66 3274.68 6.05 1.11

Mean 3.06 3.41 5.87 6.36

Fig. 6 Inversion positions of
pollution source by MP1* and
MP2*
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each parameter to the monitoring mass concentration
values.

In order to avoid the defect that the local sensitivity
analysis method does not consider the influence of the
interaction between different parameters on the output
results, the global sensitivity analysis method (Sobol’
method) (Lenhart et al. 2002) and the Kriging surrogate
model were used to obtain the first-order sensitivity
coefficients of parameters α to the 10 monitoring
datasets by MP1∗ and MP2∗ respectively. The results
are shown in Table 8. According to the parameter sen-
sitivity classification (Table 9) (Lenhart et al. 2002), the
parameters XS, YS, T1, and T2 by MP1∗ are medium
sensitive parameters or sensitive parameters to the mon-
itoring values, but QS is an insensitive parameter. Sim-
ilarly, the parameters YS, T1, and T2 by MP2∗ are medi-
um sensitive parameters or sensitive parameters, but XS

and QS are insensitive parameters.

4 Conclusion

The surrogate model of the numerical simulation model
with high accuracy could be established by using the
optimal Latin hypercube sampling and Kriging method.
And the surrogate model could get the similar input-
output relationship to the numerical simulation model
with a small amount of calculation. So the surrogate

model can significantly reduce the calculation load gen-
erated by repeatedly calling the groundwater solute
transport numerical simulation model in the process of
monitoring scheme optimization design and pollution
source identification.

The mean relative errors of the parameter inversion
results and the information entropy of the parameter
posterior distribution show a good positive linear rela-
tionship, which indicates that information entropy is an
effective measure of the accuracy of the inversion re-
sults. The smaller the information entropy, the higher the
accuracy of the inversion results. The monitoring well
optimization design method based on Bayesian formula
and information entropy is an effective method to deter-
mine the monitoring scheme of groundwater pollution.

Compared with the single-objective optimized mon-
itoring scheme, although the multi-objective optimized
monitoring scheme can increase the error of the inver-
sion results, it can significantly shorten the monitoring
time. The multi-objective optimized monitoring scheme
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Fig. 7 Comparison of pollutant
concentrations observed at the
no.37 monitoring well from the
inversion pollution sources by
MP1* and MP2*

Table 8 The first-order sensitivity coefficients of α

parameter XS YS T1 T2 QS

MP1∗ 0.080 0.490 0.187 0.194 0.014

MP2∗ 0.025 0.562 0.188 0.182 0.015
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is of more practical significance for the rapid identifica-
tion of pollution sources.

Multi-chain DRAM algorithm based on Latin hyper-
cube sampling could avoid Markov chains falling into
local optimum or the problem of difficulty in conver-
gence. The algorithm could greatly enhance the accura-
cy of the parameter inversion results.
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