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Abstract Deriving biochar from biowaste facilitates its
reuse and application for environmental protection. This
study addresses the adsorption of phenol onto food
waste–based biochar (FWC). Phenol adsorption on
FWC was affected by pyrolysis temperature, and the
highest adsorption capacity was found at a temperature
of 700 °C (FWC700). The characteristics of the biochar
including morphology, surface area, functional groups,
and elemental composition were analyzed. Additional
batch experiments were performed to evaluate the phe-
nol adsorption on FWC700 under various experimental
conditions such as contact time, initial concentration,
reaction temperature, solution pH, adsorbent dose, and
presence of competing ions. The adsorption capacity of
phenol decreased gradually from 9.79 ± 0.04 to 8.86 ±
0.06 mg/g between solution pH of 3 and 11. Copper
sulfate showed the greatest interference on phenol ad-
sorption to FWC in aqueous solution. Phenol removal at
different contact times followed pseudo-second-order
kinetics, and the Langmuir isotherm model provided
the best fit of the equilibrium data with a maximum

adsorption capacity of 14.61 ± 1.38mg/g. Adsorption of
phenol increased with increasing temperature from 15 to
35 °C, and thermodynamic analysis indicated an endo-
thermic and spontaneous nature of the adsorption pro-
cess. Biochar derived from food waste can be used as
bio-adsorbent for the removal of phenol from aqueous
solution.
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1 Introduction

Phenolic compounds, considered priority pollutants due
to their high toxicity and potential accumulation in the
environment, are present in the effluents of various
industries such as petroleum refining, leather and textile
manufacturing, wood processing, pharmaceuticals, and
oil manufacturing industries with high concentration up
to even several thousands of mg/L (Polat et al. 2006;
Calace et al. 2002; Lin and Juang 2009). Discharge of
these compounds without treatment leads to serious
threats to human health with acute and chronic symp-
toms. Phenolic compounds irritate skin, eyes, and mu-
cous membranes in humans. Anorexia, weight loss,
diarrhea, vertigo, salivation, and dark coloration of the
urine have been reported in cases of chronic exposure,
and severe cases lead to coma and respiratory arrest
(Substances and Registry 1998; Villegas et al. 2016).
Therefore, the US Environmental Protection Agency
(EPA) and the World Health Organization (WHO) set
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a limit for phenol of less than 1 μg/L in surface water
(Villegas et al. 2016; Mukherjee et al. 2007).

Various physical, chemical, and biological treatment
techniques have been developed for the removal of
phenol from aqueous solution, including membrane fil-
tration (Zagklis et al. 2015), reverse and forward osmo-
sis (Cui et al. 2016), ion exchange (Víctor-Ortega et al.
2016), electrochemical oxidation (Garcia-Segura et al.
2018), photo-catalytic degradation (Lee et al. 2018),
aerobic and anaerobic biodegradation (Papaevangelou
et al. 2016), and adsorption (Liu et al. 2010; Jain et al.
2004). Among these, adsorption is the most effective
and widely used technology for removal of phenol
because it can effectively remove various contaminants
and is convenient in design and operation. Therefore,
the USEPA recommends adsorption on activated carbon
as a best available technique for organic contaminants
including phenolic compounds, and activated carbon
has been used in practical research due to its high
adsorption capacity and mechanical stability
(Mukherjee et al. 2007; Hamdaoui and Naffrechoux
2007). However, due to the relatively high cost of acti-
vated carbon, many researchers have been interested in
developing alternative low-cost carbonaceous adsor-
bents using natural and abundant raw materials such as
switchgrass, animal manure, and sewage sludge (Regmi
et al. 2012; Idrees et al. 2018; Julcour Lebigue et al.
2010). Shin (2017) studied the adsorption characteristics
of phenol and heavy metals on biochar from Hizikia
fusiformis, and Peng et al. (2016) investigated the im-
pacts of pH, inorganic fractions, and dissolved organic
carbon on pentachlorophenol adsorption on reed
biochar. Zheng et al. (2017) studied the adsorption of
p-nitrophenols on microalgal biochar. Jung et al. (2013)
examined the thermal process to produce biochar under
the oxygen-limited condition, which allowed higher
surface area and consequently better adsorption of
endocrine disrupting compounds. Han et al. (2013) also
studied the heavy metal and phenol adsorptive proper-
ties of biochar from pyrolyzed switchgrass and woody
biomass.

Recently, abuse of food has caused the generation
of excessive amounts of food waste (FW), which has
become a serious concern in many countries. FW gen-
erally contains high moisture and protein-rich organic
matter, which can easily become rotten in ambient con-
ditions and cause odor and leachate problems. This
makes collection and transportation difficult and ad-
versely affects the environment if the FW is landfilled

(Lee et al. 2009; Kim and Kim 2010). In South Korea,
about 13,000 tons of FW is generated each day, which
corresponds to approximately 27% of the total solid
waste. Landfilling of FW has been banned in South
Korea since 2005. More than 90% of the FW is recycled
as feedstock for animals, fertilizer, and other uses, in-
cluding biogas generation in anaerobic digesters, with
proportions of 41.6%, 32.0%, and 16.8%, respectively,
even though use for animal feed has been prohibited in
the EU (MOE 2017; Kim and Kim 2010). As an abun-
dant raw material, FW can also be used to produce
biochar via thermochemical conversion. Gupta et al.
(2018) prepared biochar from food and wood wastes
as an additive for carbon sequestration in cement mortar,
and Rago et al. (2018) assessed the potential of biochar
production from food wastes as a biofuel. Only the
above two studies have been reported using biochar
derived from food waste, and as far as we know, food
waste–based biochar has never been applied for the
removal of contaminants from aqueous solutions.

Therefore, in this study, local food waste–based bio-
char (FWC) was prepared and applied to investigate its
ability for phenol removal from aqueous solution. The
FWCwas synthesized at various temperatures and char-
acterized via scanning electron microscopy, BET sur-
face area, Fourier-transform infrared spectroscopy, and
elemental analysis. The phenol adsorption ability of
FWC was evaluated under various experimental condi-
tions, such as contact time, initial concentration, reaction
temperature, solution pH, adsorbent dose, and presence
of competing ions. Kinetic, isotherm, and thermody-
namic adsorption model analyses were also conducted
to understand the phenol adsorption characteristics of
the FWC.

2 Materials and Methods

2.1 Preparation of Adsorbent

The FW used in this study was obtained from a food
waste treatment plant located in Seoul, South Korea.
The pre-treatment process for the FW is described else-
where (Kim et al. 2018a). Briefly, the water contained in
the FW was squeezed out by a screw press, and the
material was dried further using a steam boiler at
150 °C. After grinding the dried FW, foreign substances
were removed sequentially by a magnetic separator and
a trommel separator.
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To obtain biochar from the FW, the parent materials
were carbonized at various temperatures (300, 500, 700,
and 900 °C) under a flow of nitrogen. Then, the FW–
derived biochar was treated with 0.1 N HNO3 at 25 °C
for 1 week. After that, the FWC was rinsed with deion-
ized water and dried at 60 °C for 12 h using a vacuum
oven. The dried FWC was stored in a desiccator for
further use. Commercial activated carbon for compara-
tive study of adsorption capacity was supplied by a local
company, Kaya Carbon Company. The activated carbon
with a grain size of 1.18–2.36 mm was used without
further cleaning.

2.2 Characterization

A field emission scanning electron microscope
(FESEM, S-4700, Hitachi, Japan) was used to obtain
microscopic images of the biochar. Brunauer, Emmet,
and Teller (BET) surface area was measured using an
Autosorb-iQ 2ST/MP analyzer (Quantachrome, USA)
at 77.35 K. Fourier-transform infrared spectroscopy
(FTIR) was performed on a Nicolet iS10 spectrometer
(Thermo Scientific, USA). The contents of C, H, N, and
S were measured using a 2400 Series II CHNS/O ele-
mental analyzer (PerkinElmer, USA). To determine the
pH, biochar and deionized water were mixed at a ratio of
1:5, the mixture was stirred for 1 h, and then pH was
measured using a pH meter (Seven-Multi S40, Mettler
Toledo, Switzerland).

2.3 Adsorption Study

Adsorption experiments were conducted in triplicate
under batch conditions to evaluate the adsorbent ability
of FWC for phenol. Phenol standard solution (1000 μg/
mL in water) was purchased from AccuStandard® and
diluted with deionized water for the experiments. All
experiments were carried out in a 50 mL conical tube
and shaken using a shaking incubator (SHAK116, Vison
Scientific Co., Korea) at 100 rpm. First, the influence of
the activation temperature of the FWC on phenol re-
moval was evaluated. A mass of 0.1 g of each adsorbent
(5 g/L) was added to a conical tube containing 20 mL of
10 mg/L phenol solution. After 24 h of reaction, the
phenol solution was separated from the adsorbent using
filter paper (no. 1822-047, Whatman, USA), and the
residual phenol concentration was analyzed via standard
methods of UV/visible spectroscopy at 510 nm using a
spectrophotometer (Optizen POPQX,Mecasys, Korea).

Other adsorption experiments were carried out using
the FWC activated at 700 °C (FWC700). Contact time
experiments were conducted during 15, 30, 60, 120,
180, 360, 720, and 1440 min (initial phenol concentra-
tions of 10 and 50 mg/L, biochar dose of 3.33 g/L), and
reaction temperature experiments were carried out at 15,
25, and 35 °C during the same time intervals (initial
phenol concentration of 50 mg/L, biochar dose of
3.33 g/L). Initial concentration tests were performed at
phenol concentrations of 10–200 mg/L (biochar dose of
3.33 g/L, contact time of 24 h). To assess adsorption
performance in environmental relevant water, a synthet-
ic water was prepared by dissolving the following re-
agent grade chemicals to deionized water: 252 mg/L
NaHCO3, 147 mg/L CaCl2, 124 mg/L MgSO4·7H2O,
95 mg/L Na2SiO3·9H2O, 12 mg/L NaNO3, 2.2 mg/L
NaF, 0.18 mg/L NaH2PO4·H2O. For the pH test, 0.1 M
HCl and 0.1 M NaOH were used to adjust the pH of the
solution to 3, 5, 7, 9, and 11 (initial phenol concentration
of 50 mg/L, biochar dose of 3.33 g/L, contact time of
24 h). Adsorbent dose experiments were carried out
using 0.1, 0.2, 0.3, 0.4, and 0.5 g of biochar with
30 mL of 50 mg/L phenol solution for 24 h. The effect
of competing ions on phenol adsorption was investigat-
ed in the presence of 1 and 10 mM NaHCO3, NaNO3,
Na2HPO4, CaCO3, CuSO4, and MgSO4 solutions, re-
spectively (initial phenol of concentration 50 mg/L,
biochar dose of 3.33 g/L, contact time of 24 h).
Bisphenol A (BPA, ≥ 99% purity) is purchased from
Sigma Aldrich and diluted with deionized water for
the experiments. BPA concentration was analyzed using
a high-performance liquid chromatograph (LC-20AT,
Shimadzu, Japan) equipped with a C-18 column (dC18
Column, Atlantis) and an UV−vis detector (SPD-
M20A, Shimadzu, Japan) at the mobile phase (60%
acetonitrile and 40% water) flow rate of 1.0 mL/min
and injection volume of 20 μL.

3 Results and Discussion

3.1 Activation with Different Temperature

Food waste–based biochar (FWC) was pyrolyzed over a
wide range of temperatures to determine effective heat
treatment conditions for phenol removal. Phenol adsorp-
tion on FWC increased gradually with pyrolysis tem-
perature up to 700 °C and decreased slightly at 900 °C
(Fig. 1). The plateau formation by pyrolysis temperature
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was related with three main steps of biomass pyrolysis:
(1st step) biomass→water + unreacted residue; (2nd
step) unreacted residue→ (volatile + gases)1 + (char)1;
(3rd step) (char)1 → (volatile + gases)2 + (char)2
(Demirbas 2004; Li et al. 2017). Moisture and some
volatile were removed in the initial step, whereas pri-
mary biochar occurred in the second step. Biochars
produced at moderate temperature (500–700 °C) during
the primary carbonization process (< 700 °C) have been
reported to have higher adsorption capacity for organic
contaminants than biochars generated at relatively low
temperature (300 °C) (Vithanage et al. 2016; Ahmad
et al. 2012; Chen and Chen 2009) because the carbon-
ization degree and aromaticity of biochar become higher
by increasing temperature. In the last step, however,
chemical rearrangement occurs due to additional heat
treatment; thus, collapse of the structure blocks pores
and the reactivity of the biochar is reduced (Li et al.
2017; Demirbas 2004). Based on the phenol adsorption
results, the FWC pyrolyzed at 700 °C (FWC700) was
used for further adsorption tests and characterizations.

3.2 Characteristics of Biochar

The scanning electron microscopy (SEM) image of
FWC700 exhibited the development of a void-porous
structure on the surface (Fig. 2a). The specific surface
area of the FWC700 calculated via BET fitting (Fig. 2b)
was 110.98 m2/g, which is within the common range of
biochar derived from various biowastes, such as tea
waste (342.22 m2/g) (Vithanage et al. 2016), rice straw
(50.62 m2/g) (Li et al. 2017), manure waste (60.0 m2/g)
(Idrees et al. 2018), and sewage sludge (125 m2/g)
(Julcour Lebigue et al. 2010). The pore structure and

large surface area were generated through the evapora-
tion of volatile components (2nd step of the pyrolysis
process), which provides enlarged adsorption sites for
contaminant.

Surface functional groups of FWC700 were probed
via FTIR analysis (Fig. 2c). The broad peak at
3368 cm−1 in the spectrum represents the presence of
the O−H stretching vibration of alcohols, phenols, and
carboxylic acid groups (Vithanage et al. 2016; Dong
et al. 2013). The bands at 2926 cm−1 and 2854 cm−1

were assigned to the aliphatic −CH2 stretching vibra-
tion, and the peak at 1629 cm−1 represents C=O and
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Fig. 1 Effect of activation temperature of food waste-based bio-
char on phenol removal (initial phenol concentration of 10 mg/L,
biochar dose of 5 g/L, contact time of 24 h)

Fig. 2 Characteristics of FWC700. a SEM image. bBET fitting. c
FTIR spectrum
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C=C stretching in aromatic rings (Ahmad et al. 2012;
Yang et al. 2018). The peaks at 1340 cm−1 and
1041 cm−1 correspond to the stretching vibration of
methyl C−H and the oxygenated functional group of O
−H, respectively (Baoliang Chen et al. 2008). The peak
at 824 cm−1 of the FWC700 was assigned to aromatic C
−H groups, which indicates the condensation of the
biochar structure (Dong et al. 2013; Yang et al. 2018).

Elemental analysis of the FWC700 was conducted,
and the results are presented in Table 1. The C content of
the sample was 57.11 wt%, and the H and N contents
were 2.27wt% and 5.42wt%, respectively. The S content
was negligibly low. The aromaticity of biochar is gener-
ally evaluated by the molar ratio of H/C, for which a
value lower than 0.3 indicates a highly condensed aro-
matic ring system and a value greater than 0.8 means a
non-condensed structure (Cely et al. 2014). As examples,
the H/C value of granular sludge biochar was 0.23 (Kim
et al. 2018b) and that of biochar derived from rice straw
was 0.88 (Li et al. 2017). The H/C molar ratio of
FWC700 was 0.52, which is between these common
values of biochar. The pH of FWC700 was 6.40 due to
the sufficient rinsing process after modification.

3.3 Phenol Adsorption Experiments

3.3.1 Effect of Contact Time

The phenol adsorption by FWC700 as a function of
contact time is provided in Fig. 3. At the low phenol
concentration of 10 mg/L, adsorption was completed
within 30 min and equilibrium was reached because
no additional phenol was present in the aqueous solu-
tion. The adsorbed phenol did not become detached
until 24 h of contact time. Uptake of phenol at the high
concentration (50 mg/L) occurred rapidly during the
initial period of reaction time and reached 10.91 ±
0.13 mg/g at 3 h. The rapid adsorption was due to
the large number of active sites remaining on the
adsorbent surface at this stage (Idrees et al. 2018;

Vikrant et al. 2018). Phenol uptake on FWC700 gradu-
ally increased further to 12.63 ± 0.16 mg/g at 24 h.

3.3.2 Effect of Initial Concentration

The effect of initial concentration on adsorption of phe-
nol was evaluated, as shown in Fig. 4. The adsorption

Table 1 Basic properties of the food waste–based biochar
(FWC700)

C (wt%) H (wt%) N (wt%) S (wt%) pH (−) Surface area
(m2/g)

57.11 2.27 5.42 nd 6.40 110.98
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Fig. 3 Effect of contact time on phenol removal with FWC700
(initial phenol concentrations of 10 and 50 mg/L, biochar dose of
3.33 g/L)
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3.33 g/L, contact time of 24 h)
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amount increased with increasing initial phenol concen-
tration from 10 to 200 mg/L because the driving force
between adsorbate and adsorbent increases as the initial
concentration increases (Idrees et al. 2018; Lee et al.
2016). At the lowest concentration of 10 mg/L, phenol
was adsorbed completely to the adsorbent dose of
3.33 g/L and the adsorption amount of phenol was
calculated as 3.00 ± 0.01 mg/g. The adsorption amount
increased to 12.80 ± 0.40 mg/g at the initial phenol
concentration of 65 mg/L and increased further to
14.39 ± 1.34 mg/g at the highest concentration of
200 mg/L. The removal ratio of phenol decreased from
86.01 to 23.99% with increasing concentration from 25
to 200mg/L. In addition, phenol adsorption experiments
were also carried out in synthetic water to assess the
performance of EFC700 in environmental relevant wa-
ter. The adsorption of phenol increased with increasing
initial concentration and reached to 4.34 ± 0.90 mg/g
with the initial phenol concentration of 100 mg/L. This
value was one-third of the result obtained from using
deionized water because coexisting ions in synthetic
water can interfere with the adsorption of phenol onto
FWC700.

3.3.3 Effect of Reaction Temperature

The effect of reaction temperature on the adsorption of
phenol by FWC700 was investigated at 15 °C, 25 °C,
and 35 °C, and the adsorption amounts of FWC700
according to reaction time are shown in Fig. 5. The
results indicated that phenol adsorption was increased
by higher temperature, and the adsorption amount
reached 9.74 ± 0.62 mg/g at 15 °C and 13.49 ±
0.40 mg/g at 35 °C after 24 h of reaction. Therefore,

the phenol adsorption reaction onto FWC700 was en-
dothermic in nature, which was ascribed to the increase
of diffusion of adsorbate molecules across the internal
pores of the adsorbent with increasing temperature.
Similar endothermic reactions were observed for naph-
thalene and 1,3-dinitrobenzene adsorption on biomass-
derived biochars (Chen et al. 2012).

3.3.4 Effect of Solution pH

The adsorption of phenolic compounds from aqueous
solution onto carbonaceous adsorbents is generally de-
pendent on the solution pH, which affects the degree of
ionization and speciation of the adsorbate (Zheng et al.
2017; Shin 2017). Phenol removal by FWC700 as a
function of solution pH is illustrated in Fig. 6. The
results showed that phenol adsorption decreased gradu-
ally from 9.79 ± 0.04 to 8.86 ± 0.06 mg/g as the solution
pH increased from 3 to 10. This reduction was attributed
to the continuous ionization of the phenol molecules and
the increase in electrostatic repulsions with increase of
pH. Similar behaviors have been reported for the ad-
sorption of phenol onto biochar from H. fusiformis and
rice husk ash (Shin 2017; Mahvi et al. 2004),
respectively.

3.3.5 Effect of Adsorbent Dose

The effect of adsorbent dose on the removal of phenol
by FWC700 was studied by varying the amount of
adsorbent from 0.1g (3.33 g/L) to 0.5 g (16.67 g/L).
The results of the adsorption amount and removal ratio
of 50 mg/L phenol in 30 mL of solution are shown in
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Fig. 7. The adsorption amount of phenol decreased with
increasing adsorbent dose. At 3.33 g/L, the adsorption
amount was 9.91 ± 0.52mg/g, but the amount decreased
sharply to 5.02 ± 0.06 mg/g at 6.67 g/L. The adsorption
amount decreased to 3.79 ± 0.04 mg/g at 10 g/L of
adsorbent dose and decreased further to 2.40 ±
0.00 mg/g at 16.67 g/L. The removal ratio increased
with increasing adsorbent dose. The removal ratio was
66.10% at the adsorbent dose of 3.33 g/L but increased
to 75.34% at 10 g/L. The ratio exceeded 80% at the
adsorbent dose of 16.67 g/L.

3.3.6 Presence of Competing Ions

The effect of competing ions on phenol adsorption was
evaluated with NaHCO3, NaNO3, Na2HPO4, CaCO3,
CuSO4, and MgSO4 salts, and the adsorption amount of
phenol decreased with increasing molar concentration
of each salt from 0 to 10 mM (Fig. 8). The adsorption of
phenol was decreased by 1 mM salts in the order of
NaNO3, Na2HPO4, NaHCO3, MgSO4, CaCO3, and
CuSO4, but it was decreased in the order of NaNO3,
NaHCO3, MgSO4, CaCO3, Na2HPO4, and CuSO4 at
10 mM. Industrial wastewaters containing phenol usu-
ally also include a variety of interfering ions that can
affect the adsorption of phenol to carbon materials (T. Y.
Kim et al. 2010; Lazo-Cannata et al. 2011; Arafat et al.
1999). Adsorption can be enhanced at low salt concen-
trations by charge neutralization and the salts-out effect,
but it can be diminished at high concentrations due to
the formation of water clusters on surface functional
groups such as carboxylic acids. The reduction of phe-
nol adsorption with increasing salt concentration was
well explained by the latter water adsorption effect. At

both the 1 and 10 mM salt concentrations, CuSO4 hin-
dered phenol adsorption the most in our experimental
condition. This occurred because both copper and sulfate
ions can compete with the adsorption of phenol on carbon
materials (Honfi et al. 2016; Varghese et al. 2004).

3.3.7 Bisphenol A Adsorption Test

Bisphenol A (BPA) is a commonly encountered endo-
crine disrupting chemicals and has been studied by
several researchers as a representative harmful phenolic
compound in aqueous solution (Javed et al. 2018; Zhang
et al. 2018). Here, the adsorption of BPA on FWC700
was also evaluated for comparison with phenol, since
both compounds have different properties such as mo-
lecular weight, solubility, and partition coefficient (Ou
et al. 2016; Xie et al. 2012). As shown in Fig. 9, the
adsorption amount increased with increasing initial BPA
concentration. The adsorption amount increased to
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12.67 ± 0.01 mg/g at the initial BPA concentration of
50 mg/L, which was slightly higher than phenol (12.27
± 0.14 mg/g) under the same conditions. Due to the low
solubility of BPA, it was incomparable at higher
concentrations.

3.4 Adsorption Model Study

3.4.1 Kinetic Adsorption Models

The adsorption data provided in Fig. 3 as a function of
contact time with 50 mg/L initial phenol concentration
were analyzed to determine the kinetic model parame-
ters using pseudo-first-order (Eq. (1)) and pseudo-
second-order (Eq. (2)) kinetic models:

qt ¼ qe 1−e−k1t
� � ð1Þ

qt ¼
k2q2e t

1þ k2qet
ð2Þ

where qt and qe are the adsorbed amount of phenol at
time t and equilibrium time and k1 and k2 are the ad-
sorption rate constants of each model, respectively.

Based on the model fittings and the parameters pro-
vided in Fig. 10 and Table 2, both kinetic models
could describe the adsorption data with a high coef-
ficient of determination (R2). The pseudo-second-
order model had the optimal fitting (R2 = 0.964,
sum of squared errors (SSE) = 3.284), indicating that
chemisorption was involved in the phenol adsorption
by FWC700. Similar kinetic adsorption properties of
phenolic compounds have been reported for several
biochars derived from paper sludge/wheat husk,
Hizikia fusiformis, and microalgae (Shin 2017;
Zheng et al. 2017; Kalderis et al. 2017).

3.4.2 Adsorption Isotherms

Nonlinear forms of the Freundlich (Eq. (3)) and
Langmuir (Eq. (4)) isotherm models were
employed to analyze the adsorption data as a func-
tion of initial phenol concentration, as provided in
Fig. 4:

qe ¼ K FC1=n
e ð3Þ

qe ¼
QmKLCe

1þ KLCe
ð4Þ

where Ce is the equilibrium concentration of phenol
in the aqueous solution, KF and 1/n are the
Freundlich constant related to the adsorption capac-
ity and the adsorption intensity, and Qm and KL are
the maximum adsorption capacity of biochar and
the Langmuir constant related to the affinity of the
binding site, respectively. The model fitting is pre-
sented in Fig. 11 and the model parameters are
provided in Table 3. The higher R2 and lower SSE
of the Langmuir model indicated that it was suitable
for describing the equilibrium data, suggesting that
phenol adsorption onto FWC700 occurred by a
homogeneous monolayer adsorption process. The
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Fig. 10 Kinetics of phenol adsorption on FWC700 as fitted by
pseudo-first-order and pseudo-second-order models. Model pa-
rameters are provided in Table 2

Table 2 Kinetic parameters obtained from the pseudo-first-order and pseudo-second-order kinetics models

Pseudo-first-order model Pseudo-second-order model

k1 (/h) qe (mg/g) R2 (−) SSE† (−) k2 (L/mg) qe (g/mg/h) R2 (−) SSE† (−)

0.864 ± 0.132 11.736 ± 0.489 0.953 4.718 0.091 ± 0.019 12.914 ± 0.530 0.964 3.284

† SSE: Sum of squared errors
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dimensionless separation factor (RL) of the Langmuir-
type adsorption process is defined as follows:

RL ¼ 1

1þ KLC0
ð5Þ

where C0 is the initial phenol concentration in the solu-
tion. The RL values calculated from the various initial
phenol concentrations (10–200 mg/L) were in the range
of 0.016 to 0.248. Values between 0 and 1 indicate a
favorable adsorption nature of phenol onto biochar
(Bekkouche et al. 2012; Zhou et al. 2018). The

Langmuir maximum adsorption capacity (Qm) of phenol
onto FWC700 was 14.61 ± 1.38 mg/g, which corre-
sponds to the lower part of the general range of reported
phenol adsorption values for biochars of 14.04 mg/g to
83.88 mg/g (Shin 2017; Zhou et al. 2018; Karakoyun
et al. 2011; Liu and Zhang 2011). Commercial activated
carbon, most widely used adsorbent for the removal of
organic contaminants, was also compared with
FWC700 under the same experimental condition, and
Langmuir maximum adsorption capacity of the activat-
ed carbon for phenol was 67.19 ± 4.90 mg/g. Thus,
further studies are needed to improve the adsorption
capacity of food waste–derived biochar.

3.4.3 Adsorption Thermodynamics

The experimental data as a function of reaction temper-
ature presented in Fig. 5 were used to obtain thermody-
namic adsorption parameters of phenol on FWC700.
Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy
(ΔS0) were determined by the following equations:

Ke ¼ aqe
Ce

ð6Þ

ln Keð Þ ¼ ΔS0

R
−
ΔH0

RT
ð7Þ

ΔG0 ¼ ΔH0−TΔS0 ð8Þ
where Ke and a are the dimensionless distribution coef-
ficient and adsorbent dose (g/L), respectively, R is the
universal gas constant (= 8.314 J/mol/K), and T is the
absolute temperature of solution. A plot of ln(Ke) versus
1/T using Eq. (7) is shown in Fig. 12, and the thermo-
dynamic parameters calculated from Eq. (8) are present-
ed in Table 4. The positive enthalpy (ΔH0) value repre-
sents an endothermic nature of phenol adsorption to
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Fig. 11 Equilibrium model analyses with the Freundlich and
Langmuir isotherms. a FWC700. b commercial activated carbon.
Model parameters are provided in Table 3
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Table 3 Equilibrium adsorption parameters obtained from Freundlich and Langmuir isotherms: (a) FWC700, (b) commercial activated
carbon

Type Freundlich isotherm Langmuir isotherm

KF (L/g) 1/n (−) R2 (−) SSE (−) KL (L/mg) Qm (mg/g) R2 (−) SSE (−)

(a) 8.16 ± 1.25 0.12 ± 0.04 0.865 13.943 0.30 ± 0.16 14.61 ± 1.38 0.937 13.344

(b) 21.52 ± 1.70 0.46 ± 0.04 0.979 44.004 0.58 ± 0.11 67.19 ± 4.90 0.984 33.706



FWC700, which is consistent with the result of the
reaction temperature experiment. Additionally, the ΔH0

value can be used to distinguish between physical ad-
sorption (< 25 kJ/mol) and chemisorption (> 40 kJ/mol)
processes (Vithanage et al. 2016; Liu et al. 2015; Polat
et al. 2006). The calculated enthalpy (ΔH0) value for
FWC700 was 54.402 kJ/mol, which indicates that the
adsorption of phenol was close to chemisorption, agree-
ing with the result of the pseudo-second-order kinetic
adsorption model. The positive entropy (ΔS0) value
indicates increased randomness at the interface between
the solid and the solution during the adsorption process.
The negative Gibbs free energy (ΔG0) values in the
experiment conditions suggest a spontaneous nature of
phenol adsorption to biochar. This endothermic and
spontaneous thermodynamic adsorption nature of phe-
nolic compounds was also found for adsorption onto
magnetic biochar (Zhou et al. 2018) and paper sludge/
wheat husk biochar (Kalderis et al. 2017).

4 Conclusion

Food waste–based biochars were successfully synthe-
sized under various pyrolysis temperatures. The biochar

synthesized at 700 °C (FWC700) had a high specific
surface area with a void-porous structure on the surface
and the highest phenol adsorption capacity. The adsorp-
tion capacity of phenol decreased with increasing solu-
tion pH between 3 and 11 and was affected by the
presence of competing ions such as those from copper
sulfate. A homogeneous and favorable adsorption na-
ture of phenol through the FWC surface with coopera-
tive chemisorption characteristics was found. Thermo-
dynamic parameters suggested endothermic and spon-
taneous adsorption of phenol to biochar. Therefore,
biochar derived from food wastes is expected to be
useful as an alternative low-cost carbonaceous adsor-
bent for water treatment processes.
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