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Abstract An inverse analysis method for the real-time
monitoring of pollutant diffusion is developed based on
fuzzy adaptive Kalman filter (FAKF) coupled with
weighted recursive least squares algorithm (WRLSA).
In the monitoring process, the discrete diffusion states
equation is established first. Then, the FAKF is adopted
to realize the precise monitoring of the pollution diffu-
sion states while the WRLSA is used to monitor the
pollutant source in real time. Finally, the simulations are
presented to validate the effectiveness of the technique,
which shows that this technique has wide applications in
situations with several different kinds of sources and
measurement noises. Besides, the results demonstrate
the strong robustness of this method to have great mon-
itoring performance.

Keywords Diffusion state . Fuzzy adaptive Kalman
filter . Inverse analysis . Pollutant source . Real-time
monitoring

1 Introduction

In the chemical, petrochemical, and other similar indus-
tries, many accidents may lead to leakage and diffusion of
hazardous and harmful gases. Leaks in confined or isolated
spaces will raise the concentration of gases, which causes
poisoning, fire, or explosion. Thus, it is significant to
monitor the distribution and diffusion states of gas pollut-
ants in a confined space (Wang et al. 2017a; Saidi et al.
2011; Hou et al. 2017). Effective means of pollutant mon-
itoring will provide reliable information for the elimination
of accidents.

Gaussian model, Sutton model, and some other cal-
culation models have been used to simulate the pollutant
diffusion (Lushi and Stockie 2010; Arystanbekova
2004; Sportisse 2007; Shih et al. 2007; Ma and Zhang
2016). The establishment of these models can provide
computational bases for gas diffusion and concentration
distribution. The simulation with these models need
reliable information of the pollutant source. However,
it is usually unknown in the practice. The inversion
problem is an effective numerical method to obtain the
intensity of the source term (Haas Laursen et al. 1996;
Shankar Rao 2007; Thomson et al. 2007). In general, the
information measured in the diffusion section is provid-
ed to monitor the pollutant diffusion field, which is an
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ill-posed problem. There have been some inverse anal-
ysis methods to be adopted to treat with it.

Yang et al. (2008) proposed a global optimization
method named chaos gray-coded genetic algorithm and
used it to estimate the pollution source. Khlaifi et al. (2009)
developed a method coupled the Gaussian model with
genetic algorithm to obtain the inverse results of the pol-
lution source, in which the genetic algorithm was used to
optimize the errors between measurement information and
the model outputs. Also, the Gaussian model coupled with
genetic algorithm was used to identify the source intensity
and location by Allen et al. (2007). Zhang and You (2014)
proposed a CFD-based inverse design method combining
the genetic algorithm and artificial neural network to de-
sign the aircraft cabin environment, which could reduce
57% of the computational costs. However, it needs a lot of
computational costs for the inverse analysis of the indoor
environment using genetic algorithm (Zhang and You
2014; Lu et al. 2016). Considering reducing the computa-
tional costs, Liu et al. (Liu et al. 2015) proposed an order-
reduced CFD-based genetic algorithmmethod; however, it
would lead to the decline of accuracy. Ristic et al. (2017)
introduced the Rao-Blackwell dimension reduction tech-
nique into the estimation of the hazardous source’s poste-
rior probability distribution function. It had generality to be
applied in the source parameter identification. But the
obstacle was that the proposed method cannot be used in
the real-time estimation. Tikhonov regularization is a ma-
ture method for ill-posed problem (Pazos and Bhaya 2015;
Mach et al. 2016).Ma et al. (2017) used the particle swarm
optimization algorithm to optimize the Tikhonov regular-
ization method. Then, combining the hybrid method and
Gaussian model, the parameters of a continuous point
pollutant source were estimated. Experimental results
showed that this Tikhonov-PSO regularization method
had good performance to realize the estimation of hazard-
ous source. Wei et al. (2017) combined the Tikhonov-
based matrix inversion and Bayesian model to realize the
inverse estimation of the gaseous pollutant source. How-
ever, the key problem is that whether solving the inverse
problem with the Tikhonov regularization method quickly
and effectively or not depends on the selected regulariza-
tion parameters. Usually, the regularization parameter is
unknown (Chen et al. 2016; Yang et al. 2017).

As a real-time state estimation technique, Kalman filter
has beenwidely used inmany fields, such as thermal states
estimation, charge states of battery, pollution states, vehicle
motion states, and so on (Tran et al. 2014; Richardson and
Howey 2015;Gao et al. 2016; Pan et al. 2017). However, it

has been demonstrated that the Kalman filter is unstable
even divergent in the state estimation. A hybrid method
coupled Kalman filter andweighted recursive least squares
algorithm could be used to simultaneously estimate the
input source and system states with the initial estimation
period of fluctuations (Chen and Hsu 2007).

In order to realize the real-time monitoring of the pol-
lution states and pollutant source stably, the diffusion state
equation is established based on the diffusion mechanism.
Then, a coupled method based on fuzzy adaptive Kalman
filter and weighted recursive least squares algorithm is
adopted to realize the simultaneously monitoring process
for pollution field and source in this paper. Besides, some
simulations are completed to verify the effectiveness and
the robustness to resist the ill-posedness of this technique.

2 Diffusion Model

2.1 Diffusion Equation of Pollution

In order to monitor the leak of gas pollutant in the
confined space, some assumptions are made as follows:

(1) If the height of the space is much higher than the
length and width, or the pollutant source is a uniform
line type along the height direction, the diffusion in the
limited space can be simplified as a two-dimensional
problem and the leak source can be simplified as a point-
like pollutant in the two-dimensional space. (2) Usually,
in a confined space, it is static and windless. (3) The
temperature field is uniform in the confined space, so the
diffusion coefficient can be assumed as a constant. (4)
There is no diffusion at the peripheral walls.

The assumptions were made to simplify the diffusion
model. In many literatures, the pollutant transport is
assumed to be governed by the atmospheric advection-
diffusion equation (Liu and Zhai 2007). In a confined
room, there is no wind and the advection term is zero.
Thus, we adopted the diffusion equation as the model of
this work. Combining the simplified assumptions, the
coordinate system is established as Fig. 1a. The
governing equation, initial and boundary conditions
are listed as follows:

∂C x; y; τð Þ
∂τ

¼ Dx
∂2C x; y; τð Þ

∂x2
þ Dy

∂2C x; y; τð Þ
∂y2

þ So τð Þδ x−A; y−Bð Þ ð1Þ
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−Dx
∂C x; y; τð Þ

∂x
¼ 0 x ¼ 0 and x ¼ Lx ð2Þ

−Dy
∂C x; y; τð Þ

∂y
¼ 0 y ¼ 0 and y ¼ Ly ð3Þ

C x; y; 0ð Þ ¼ 0 ð4Þ
whereC is the pollutant concentration;Dx andDy are the
diffusion coefficients of gas pollutant along x direction
and y direction respectively; S is the source strength of
the pollutant; (A, B) are the co-ordinates of the source.

2.2 Diffusion State Equation and Observation Equation

The diffusion section is meshed into m-1 and n-1 equal
parts along the x and y directions respectively as shown
in Fig. 1b. Each node at four corner represents a body
whose length isΔx/2 with the width ofΔy/2. Each node
at the wall long x direction represents a body whose
length isΔxwith the width ofΔy/2 while the node at the
wall long y direction represents a body whose length is

Δx/2 with the width ofΔy. Any other node represents a
body whose length is Δx with the width of Δy.

The intervals along x and y directions are as follows
respectively:

Δx ¼ Lx
m−1

ð5Þ

Δy ¼ Ly
n−1

ð6Þ

The forward difference for the time derivative is
taken to establish the discrete unsteady state equation
of the diffusion process. The pollutant concentrations at
all the nodes are adopted to be the state variables, which
are listed as a column vector to consist the state vector.
The result is shown as Eq. (7).

Ckþ1 ¼ ΦCk þ ΨSo
k ð7Þ

where Ck is concentration column vector at kth time
step; So

k is the strength of leaked pollutant at kth time
step; Φ ∈Rmn ×mn is the state transition matrix; Ψ ∈
Rmn× n is the input matrix. The specific forms are as
follows:

Ck ¼ Ck
1;1;C

k
1;2;⋯;Ck

1;n;C
k
2;1;C

k
2;2;⋯;Ck

2;n;⋯;Ck
m;1;C

k
m;2;⋯;Ck

m;n

h i T

Φ ¼

ϕ1 ϕ2 0 0 ⋯ ⋯ 0
ϕ3 ϕ1 ϕ3 0 ⋱ ⋮ ⋮
0 ϕ3 ϕ1 ⋱ ⋱ ⋱ ⋮
0 0 ϕ3 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋱ 0 ϕ3 ϕ1 ϕ3

0 ⋯ ⋯ 0 0 ϕ2 ϕ1

2666666664

3777777775
mn�mn

Ψ ¼

0
⋮
Δτ

ΔxΔy
⋮
0

2666664

3777775
mn�1

ϕ1 ¼

1−2a−2b 2a 0 0 ⋯ ⋯ 0
a 1−2a−2b a ⋱ ⋱ ⋮ ⋮
0 a ⋱ ⋱ ⋱ ⋱ ⋮
0 0 ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋮ ⋱ ⋱ a ⋱ a
0 ⋯ ⋯ 0 0 2a 1−2a−2b

2666666664

3777777775
n�n

ϕ2 ¼
2b 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 2b

2664
3775
n�n

; ϕ3 ¼
b 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 b

2664
3775
n�n

; a ¼ DxΔτ

Δxð Þ2 ; b ¼ DyΔτ

Δyð Þ2

In the equations above, Δτ is the time interval;

Ck
i; j is the pollutant concentration at node (i, j) at

kth time step; the superscript T denotes the trans-
pose of a vector.
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Putting f sensors in the diffusion section, the obser-
vation vector is composed of measured pollution infor-
mation by sensors at kth time step. The discrete-time
observation equation is as follows:

Zk ¼ HCk ð8Þ

where H ∈ Rf × mn is the measurement matrix.
If there are system process noises and measurement

noises, the state equation and the observation equation
change into Eq. (9).

Ckþ1 ¼ ΦCk þ Ψ So
k þ wk

� � ð9aÞ

Zk ¼ HCk þ vk ð9bÞ

where wk ¼ wk
1;w

k
2;⋯;wk

n

� � T and vk ¼ vk1; v
k
2;⋯; vkf

h i T

are the process noises and measurement noises
vectors respectively. Both of the noises are consid-
ered as Gauss white noises with zero mean, which
means that the noise is a sequence of serially
uncorrelated random variables with zero mean
and finite variance. The covariance of these noises
are Q and R respectively, namely,

wk ¼ Qωk ¼
σ2
q 0 ⋯ 0

0 σ2q ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 σ2q

26664
37775

ω1

ω2

⋮
ωn

2664
3775

vk ¼ Rωk ¼
σ2
r 0 ⋯ 0

0 σ2r ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 σ2r

26664
37775

ω1

ω2

⋮
ω f

2664
3775

where, σq and σr are the standard deviations of process and
measurement noises respectively; ωi i ¼ 1; 2;⋯; f or nð Þ
is the random number within the interval [− 2.576, 2.576]
obeying the standard normal distribution.

3 The Real-time Monitoring Technique

It has been demonstrated that Kalman filter is
unstable even divergent (Alifanov et al. 1981;
Wang et al. 2017b). With respect to the instability
of Kalman filter, fuzzy inference is introduced to
adjust the covariance of process noises adaptively
using the residual renewal array. Using the mea-
surement information, the pollution states can be
monitored using fuzzy adaptive Kalman filter
while the pollutant source strength can be simul-
taneously acquired by WRLSA. The flowchart of
the real-time monitoring technique is shown as
Fig. 2.

x
y

(1,1) (1, j) (1, m)

(i,1)
(i, j)

(i, m)

(n,1) (n, j) (n, m)

x

y

o

ss1

ss2
ss3

ss4

ss5

(a) simplified diffusion model (b)  mesh division and nodes

0 Lx

Ly

So

Fig. 1 Simplified diffusion model and mesh division

238 Page 4 of 14 Water Air Soil Pollut (2018) 229: 238



The details of fuzzy adaptive Kalman filter are shown
as follows.

P
kþ1

¼ ΦPkΦT þ ΓQkþ1Γ T ð10Þ

Skþ1 ¼ HP
kþ1

HT þ R ð11Þ

Kkþ1 ¼ P
kþ1

HT Skþ1
� �−1 ð12Þ

Pkþ1 ¼ I−Kkþ1H
� �

P
kþ1

ð13Þ

Cbkþ1 ¼ I−Kkþ1H
� �

ΦCbk þ ΨSbk
o

� �þ Kkþ1Zkþ1 ð14Þ

ekþ1 ¼ Z
kþ1

Z
kþ1

� �T

ð15Þ

ekþ1
c ¼ ekþ1−ek ð16Þ

Qkþ1 ¼ FIU ekþ1; ekþ1
c

� � ð17Þ

where P and P are the covariance matrixes of the
priori states estimation error and the posteriori
states estimation error respectively; Qk + 1 is the
updated estimation of process noise covariance. K
is the Kalman gain; I is a unit matrix; S is the
residual variance; Ŝo is the estimation of unknown
input So; Ĉ denotes the monitored pollution states;
FIU(va1,va2) means the fuzzy inference unit (FIU)
with the input variables of va1 and va2.

The detailed process of fuzzy inference unit is shown
as Fig. 3 (Wang et al. 2017b, 2018).

From the above process, the pollution states can be
reconstructed. The detail process of WRLSA is as fol-
lows:

Bkþ1 ¼ H ΦMk þ I
� �

Ψ ð18Þ

Z
kþ1

¼ Zkþ1−H ΦCbk þ ΨSbko� 	
þ Bkþ1Sbko ð19Þ

Mkþ1 ¼ I−Kkþ1H
� �

ΦMk þ I
� � ð20Þ

Kkþ1
b ¼ γ−1Pk

b Bkþ1
� �T

Bkþ1γ−1Pk
b Bkþ1
� �T þ Skþ1

h i−1ð21Þ

initial conditions

k=1

measurement information

Kalman filter weighted 

recursive least 

squares algorithm
fuzzy inference unit

monitored pollution state and pollutant source

output

k=k+1

ek+1, ec
k+1 Qk+1

k

SO

k+1

Fig. 2 Flowchart of the real-time
monitoring technique based on
FAKF
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Pkþ1
b ¼ I−Kkþ1

b Bkþ1
� �

γ−1Pk
b ð22Þ

Sbkþ1
o ¼ Sbko þ Kkþ1

b Z
kþ1

−Bkþ1Sbko� �
ð23Þ

where B and M are sensitivity matrices; Pbis the error
covariance of the input estimation;Kb is the correction
gain; γ is the weighting factor in WRLSA, which varies
from 0 to 1. Coupled with fuzzy adaptive Kalman filter,
the WRLSA process can be used to obtain the inverse
analysis of pollutant source.

4 Numerical Simulation and Discussion

4.1 Calculation of Pollution Diffusion Process

A 2.4 × 3m2 two-dimensional section is taken as the
example. The diffusion coefficients Dx and Dy are as-
sumed as the same, which are 0.12 × 10‐3m2/s. Taking
the position of the pollutant source as (1.12 m, 1.50 m)
with the source strength of 15 g/s lasting for 1500s. Five
pollutant sensors ss1-ss5 are placed as shown in Fig. 1a,
which are on the midpoints of the trisections and the

geometric center respectively. To verify the effective-
ness of the diffusion state equation, different numbers of
meshes are adopted to calculate the diffusion states. A
proper mesh number is chosen with the consideration of
both mesh independent verification and computer time.
Under this condition, the measured pollution informa-
tion using these sensors are shown as Fig. 4.

It is shown in Fig. 4 that the pollutant concentrations
at the sensors grow up with the increase of diffusion
time. For the different distances between the pollutant
source and each sensor, the sensitivities of the sensors
are diverse. It is common that there is little delay and
inertia when the distance from the sensor to the source is
short. The sensor ss3 is the closest to the pollutant
source. Once the pollutant source released, the pollutant
diffused in the confined room. The ss3 could monitor
the pollution quickly. In this case, the response time is
almost simultaneous with the source. When the pollut-
ant diffused to the places of the sensors, the sensors
could response to the pollution. It is obvious that the
ss2 is the fastest in the other sensors. For the quantitative
expression, the response time of ss2 is about 50 s while
the response time of ss4 is about 120 s. The response
times of ss1 and ss5 are following with the ss4. Due to
the same distances from ss1 and ss5 to the source, the

ek+1

Fuzzification
Fuzzy 

Rules
Defuzzification Qk+1

ec
k+1

diag[σq
k+1]

Fig. 3 The fuzzy inference unit
of process noise covariance
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measured pollution states at ss1 and ss5 are equal. The
longer the distance from a sensor to the source is, the
less the pollution concentration is and the longer the
response time is.

Figure 5 shows the pollution states distribution in the
diffusion section at different times. It can be found that
the polluted part is become wider with the increase of

time. And the maximum concentration is at the place of
the pollutant source. The maximum pollutant concen-
trations are 98.33, 107.56, and 112.95 g/m3 at 500,
1000, and 1500 s separately. However, the pollutant
concentration drops rapidly along the radial direction
and the descent rate is becoming lower.When the time is
500 s, the pollutant hardly spreads to the walls around.

(a)τ=500s (b)τ=1000s 

(c)τ=1500s

Fig. 5 The pollution diffusion state at different times
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When the time is 1000 and 1500 s, Fig. 5b, c show that
the concentrations at the walls around are becoming
higher.

4.2 Pollution States and Source Monitoring

In a real accident, the leakage source might be different
types and complex. However, the complex source term
could be regarded as the combinations of different kinds
of simple sources. Two typical kinds of the pollutant
sources are assumed to simulate the pollution diffusion,
which are shown as Eq. (24).

So1 ¼
0:05τ 0s≤τ < 500sð Þ
25−0:05 τ−500ð Þ 500s≤τ < 1000sð Þ
0 1000s≤τ ≤1500sð Þ

8<:
ð24aÞ

So2 ¼ 25sin 2πτ=2000ð Þ 0s≤τ < 1000sð Þ
0 1000s≤τ ≤1500sð Þ



ð24bÞ

In the simulation, the triangle source is used to sim-
ulate the source with constant change rate while the
sinusoidal source is adopted to simulate the source with
variable change rate. The measured pollution informa-
tion is assumed to be acquired by Eq. (25), which
contains the measurement noises.

Zk ¼ HCk þ vk ¼ Zk
exa þ vk ð25Þ

where the exact pollution values Zk
exa are calculated by

the Eq. (8).
In order to evaluate the monitoring performance, the

relative root mean square error of the monitored pollut-
ant source η is defined as Eq. (26).

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

k¼1
ESko
� �2s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

k¼1
Sko
� �2s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

k¼1
Sko−Ŝ̂

k
o

� 	2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

k¼1
Sko
� �2s

ð26Þ

where, the L is the length of time steps, ESko is the
monitoring error of the pollutant source at kth step.

Using the above technique, the pollutant source and
pollution states can be monitored in real time. For sim-
ulations, the initial values of these parameters are set as

follows:P0 = diag [100],P0
b ¼ diag 107

� �
,M0 = [0], and

γ = 0.875. The standard deviation of measurement
noises is adopted as σr=0.01. The monitoring results of
the pollutant sources are shown as Fig. 6.

Figure 6 shows that both kinds of pollutant leak
source can be well monitored in real time. For triangle
source, there are little fluctuations when the pollutant
source changes sharply at 500 and 1000 s. The same
phenomenon occurs when the sinusoidal source changes
suddenly at 1000 s. However, the fluctuations disappear
in a short time and the monitoring results agree well
with the exact ones. The relative root mean square errors
of these monitoring results are 2.89 and 2.49%when the
sources are triangle and sinusoidal respectively.

In order to present the performance of the monitoring
method, the pollutant monitoring errors of different
kinds of sources and their probability density functions
(pdf) are shown as Fig. 7. The probability density func-
tions of the errors are acquired by kernel smoothing
density estimation.
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Fig. 6 Pollutant leak source monitoring results
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It can be found that the monitoring errors’ range of
triangle source is larger than that of sinusoidal source.

The errors are positive and stable when the pollutant
source is becoming larger of triangle source. They
change suddenly with the revulsion of the source and
then become negative. In the last period when the leak-
age is stopped, the errors are nearly zero. The monitor-
ing errors of sinusoidal source decrease from position to
negative continuously with the variation of the source.
When the source drops to zero, the monitoring errors
suddenly vibrates and goes quiet later.

The Fig. 7b shows that distribution interval of mon-
itoring errors of sinusoidal source is broader than that of
triangle source neglecting a small part. However, the
probability density function of the errors near zero of
sinusoidal source is much larger than that of triangle
source, which means that a substantial part of the errors
is close to zero. For the error away from zero, the values

of the probability density function for triangle source are
greater than those of sinusoidal source.

To evaluate the monitoring performance further, the
monitored pollutant concentrations at the origin and the
geometric center under different source terms are exhib-
ited in Figs. 8 and 9.

Figures 8 and 9 present the exact and monitored
pollution states at the points (0, 0) and (Lx/2, Ly/2) with
different kinds of sources. The EC in the figure means
the monitoring error, which is the difference between the
exact and monitored ones, defined as follows:

EC ¼ Cexa−Cmon ð27Þ

Figure 8a shows that the monitored results at the
origin and the geometric center agree well with the exact
ones. Three variation periods of the pollutant source are
presented on the change of the concentration at geomet-
ric center. For the reason that there is a long distance
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Fig. 7 Pollutant source monitoring performance analysis
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Fig. 8 Monitoring results at the origin and geometric center with
the triangle source
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between the origin and source point, the concentration at
the origin is very light. States monitoring errors are
shown in Fig. 8b. Themonitoring errors at the geometric
center fluctuate frequently while the monitoring errors at

the origin change smoothly. This is due to the different
distances. A longer diffusion distance results in a greater
inertia which acts as a filter to the noises of the pollutant
source. Almost all the pollution concentration monitor-
ing errors are in the interval [− 0.025, 0.025]. However,
this range is small enough to guarantee the precise
monitoring of the pollution states. The same phenome-
non occurs when the pollutant source is sinusoidal. The
integral of sinusoidal source in time domain is greater
than that of triangle source, which results in the higher
pollution concentration under sinusoidal source. The
same with triangle source, the monitoring results are
accurate enough for the applications in practice. The
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Fig. 9 Monitoring results at the origin and geometric center with
the sinusoidal source
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Fig. 10 Pollutant source monitoring results with different mea-
surement noises

Table 1 The relative root mean square error under different
measurement noises

σr 0.01 0.05 0.10 0.50

η 2.89% 2.91% 3.04% 5.91%
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Fig. 11 Analysis of pollutant source monitoring errors
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(a)τ=500s, σr=0.05                  (b) τ=500s, σr=0.10

(c) τ=500s, σr=0.50                    (d) τ=1000s, σr=0.05

(e) τ=1000s, σr=0.10                    (f) τ=1000s, σr=0.50

(g) τ=1500s, σr=0.05                    (h) τ=1500s, σr=0.10

(i) τ=1500s, σr=0.50 

Fig. 12 States monitoring errors at different times with variable measurement noises
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results show that no matter which kind of the pollutant
source is, the proposed technique can exhibit wonderful
performance to realize the real-time monitoring of the
pollution states.

4.3 Effect ofMeasurement Noises onMonitored Results

Noises are inevitable in measurement system. To inves-
tigate the effects of measurement noises on monitored
results, the standard deviations of measurement noises
of the sensors are taken as σr = 0.05, 0.10, and 0.50
separately. The pollutant source monitoring results are
shown in Fig. 10.

It can be demonstrated form Fig. 10 that the source
monitoring results keep accurate correspondence with
the exact source. There are some deviations of the
monitoring results with the growth of the measurement
noises. The larger the noises are, the greater the devia-
tions are. However, the monitoring results can reflect the
pollutant source variation with a high accuracy. Table 1
lists the relative root mean square errors of the monitor-
ing results of the pollutant source under different mea-
surement noises. It shows that the errors are becoming
larger with the increase of the noises. However, the
increase rate of the relative root mean square error is
much less than that of the measurement noise. The
standard deviation of measurement noises σr is 0.01
with the η of 2.89% while the σr is 0.50 with the η of
5.91%, which demonstrates that this monitoring tech-
nique has strong robustness.

To analyze the distribution of monitoring errors, the
values of the pollutant source monitoring errors are
calculated and shown in Fig. 11a. Figure 11b shows
the statistical results of the probability density function
for source monitoring errors under different measure-
ment noises.

Figure 11a shows that the monitoring errors symmet-
rically distribute around zero. The amplitudes of the
errors increase with the growth of measurement noises.
The probability density functions also show the same
trend. The distribution interval of the monitoring errors
has the positive relationship with the measurement
noises. When the measurement noise is 0.05, the prob-
ability density function of errors which are near the zero
is the greatest. With σr of 0.50, the probability density
function of the monitoring errors which are near the zero
is the smallest. The bandwidth of the probability density
function with σr of 0.50 almost reaches to [− 3.3].

However, the most parts are in the range [− 1.1], where
the errors intervals with σr of 0.05 and 0.10 are.

Figure 12 shows the field of pollutant concentration
monitoring errors at different times when the measure-
ment noise increases.

It can be found form Fig. 12 that the main state
monitoring errors go through the time-domain process
Bpositive errors-negative errors near zero errors,^ which
the pollutant source monitoring errors also develop
along with. The reason for this phenomena is that in
the first 500 s, the pollutant source is continuously going
up, and the inertia makes the real-time monitoring re-
sults less than the exact ones. In the following 500 s, the
pollutant source drops and the source and states moni-
toring errors are almost negative. In the last 500 s, the
source strength is zero and the pollutant diffuses to
uniform in the field.

When it is at the same time, the states monitoring
errors increase with the growth of measurement noise,
which is correspondence with pollutant source monitor-
ing results. The state monitoring error at the source is the
greatest in the error field. The farther the distance to the
source is, the closer to zero the error is. When it is
1500 s, the state monitoring error is the least in the time
domain.

5 Conclusions

A real-time monitoring technique for pollutant source
and its diffusion states is developed using fuzzy adaptive
Kalman filter. The simulations show that this technique
can be used to deal with the monitoring of different
kinds of pollutant sources. It shows high accuracy in
the monitoring process. When the measurement noises
increase, the monitoring results deviate from the exact
ones. However, the monitoring errors are small enough,
which demonstrates that this monitoring technique has
strong robustness to resist the noises.

Nomenclature: e, ec, inputs of fuzzy inference unit; f, number of
measurement points; C, pollutant concentration; Dx,Dy, diffusion

coefficients; EC, concentration monitoring error; ESo, pollutant
source monitoring error; Lx,Ly, length and width; So, pollutant
source strength; Bb, sensitive matrix of WRLSA;H, measurement
matrix; I, unit matrix; K, gain matrix of Kalman filter; Kb, gain
matrix of WRLSA;M, sensitive matrix of WRLSA; P, covariance
of state estimation errors; Pb, error covariance of source estima-
tion; Q, process noise covariance; R, measurement noise
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covariance; S, residual variance; Z, output vector; Z̄ , sequence of
measurement residual.

Greek Symbols: γ, weighting factor; σq, standard deviation of
process noises; σr, standard deviation of measurement noises; τ,
time; Ф, state transition matrix; Ψ, input matrix.

Superscripts: ^, monitored result in equations; T, transpose of a
vector or a matrix; k, the kth time step.

Subscripts: exa, exact result; mon, monitored result
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