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Abstract We examined a sediment record from Lake
Hiidenvesi in southern Finland using paleolimnological
methods to trace its limnoecological history. In our
record, beginning from the 1940s, chironomid
(Diptera) assemblages shifted from typical boreal taxa
towards mesotrophic community assemblages at ~
1960–1980 CE being finally replaced by eutrophic taxa
from the 1990s onward. The diatom (Bacillariophyceae)
assemblages reflected relatively nutrient rich conditions
throughout the record showing a further increase in
eutrophic taxa from the 1970s onward. A chironomid-
based reconstruction of late-winter hypolimnetic dis-
solved oxygen (DO) conditions suggested anoxic con-
ditions already in the 1950s, probably reflecting in-
creased inlake production due to allochthonous nutrient
inputs and related increase in biological oxygen con-
sumption. However, the reconstruction also indicated
large variability in long-term oxygen conditions that

appear typical for the basin. With regard to nutrient
status, chironomid- and diatom-based reconstructions
of total phosphorus (TP) showed a similar trend
throughout the record, although, chironomids indicated
a more straightforward eutrophication process in the
benthic habitat and seemed to reflect the intensified
human activities in the catchment more strongly than
diatoms. The DO and TP reconstructions were mostly
similar in trends compared to the measured data avail-
able since the 1970s/1980s. However, the increase in TP
during the most recent years in both reconstructions was
not visible in the monitored data. The results of our
multiproxy study emphasize the significance of includ-
ing both epilimnetic and hypolimnetic systems in water
quality assessments and provide important long-term
limnoecological information that will be useful in the
future when setting targets for restoration.
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1 Introduction

Assessments of long-term limnoecological dynamics
extending beyond the observational period are essential
for the successful implementation of lake management
acts. Paleolimnology examines the environmental his-
tory of lakes and their catchments using sedimentary
archives that preserve physical, chemical, and biological
proxy information (Smol 2009). Paleolimnology has

Water Air Soil Pollut (2017) 228: 461
https://doi.org/10.1007/s11270-017-3622-z

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11270-017-3622-z) contains
supplementary material, which is available to authorized users.

T. P. Luoto (*)
Department of Environmental Sciences, University of Helsinki,
Niemenkatu 73, FI-15140 Lahti, Finland
e-mail: tomi.luoto@helsinki.fi

M. V. Rantala
Department of Geosciences and Geography, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland

M. H. Tammelin
Department of Geography and Geology, University of Turku,
FI-20014 Turku, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11270-017-3622-z&domain=pdf
https://doi.org/10.1007/s11270-017-3622-z


proven to be very useful in assessments of limnological
reference conditions that allow the evaluation of natural
dynamics, timing of change, and targets of restoration
(Bennion et al. 2011). The most common biological
proxy sources in assessments of reference state include
diatom (Bacillariophyceae) algae and chironomid (Dip-
tera: Chironomidae) insect larvae, of which remains
preserve well in sediments and are identifiable to species
or generic level (Dixit et al. 1992; Hofmann 1988).
Diatoms and their fossil communities often readily re-
flect the nutrient development of the water column
(Anderson 1997; Kauppila and Valpola 2003), whereas
fossil chironomid midge assemblages tend to reflect
changes in the bottomwater, such as in the hypolimnetic
oxygen concentrations (Brodersen and Quinlan 2006;
Francis 2001) or deep-water nutrients (Vanni 2002).

In addition to ecological dynamics, fossil communi-
ties can be used to quantitatively reconstruct changes in
limnology via the calibration set approach. In such
reconstructions, the modern species optima in a training
set are utilized in a sediment downcore using a transfer
function, which connects the modern species optima
with the past fossil communities producing a quantita-
tive reconstruction of a particular variable. Diatoms are
commonly used to quantitatively reconstruct long-term
changes in total phosphorus (TP) (Kauppila et al. 2002)
and pH (Battarbee et al. 2010), whereas chironomids are
often used to reconstruct TP (Brooks et al. 2001) and
hypolimnetic dissolved oxygen (DO) (Quinlan and
Smol 2001). It is also possible to estimate the concen-
tration of deep-water oxygen by using the ratio between
chaoborids (Diptera: Chaoboridae) and chironomids as
an indicator of anoxia (Quinlan and Smol 2010).

Our study site, Hiidenvesi, is a naturally clay-turbid
and currently eutrophic lake in southern Finland. A
recently initiated Hiidenvesi restoration project (2016–
2021) aims to reduce the load of suspended solids and
nutrients as well as to promote conditions for recreation.
The long-term objective for the restoration work is to
improve the ecological state of Hiidenvesi and diminish
the signs of eutrophication. Lake restoration activities,
such as the management of fish stock and the establish-
ment of sedimentation basins in the catchment, have
been performed since 1995 (Repka 2005), albeit without
consistent effectiveness monitoring.

In this study, we examine the long-term ecological
and limnological development of the lake using fossil
diatom and chironomid analyses combined with quan-
titative paleolimnological modeling. The objective is to

reconstruct changes in the planktonic and benthic com-
munities and in the surface-water nutrient and deep-
water oxygen levels of the basin in high resolution since
the initiation of intensified human activity around the
lake at the turn of the 1950s. This knowledge will be
useful when setting targets for lake restoration, especial-
ly in the case of reducing surface water nutrients and in
evaluating the usefulness of artificial bottom-water ox-
ygenation. The results of this study will also improve
understanding of lake development under increasing
anthropogenic pressure.

2 Materials and Methods

2.1 Study Site

Hiidenvesi (60° 22′ N, 23° 11′ E; 32 m a.s.l.) is a clay-
turbid lake located in southern Finland (Fig. 1). It is one
of the largest lakes in the area (30 km2), also having a
wide catchment area (935 km2). The lake is located
between the city of Lohja and the municipality of Vihti,
and it drains southwest via the Vänteenjoki River into
Lake Lohjanjärvi. Lake water quality varies notably
between the basins of Hiidenvesi, in general, the larger
basins having better limnological status than the small
and shallow basins. The study site Kiihkelyksenselkä is
the main basin of Hiidenvesi having a surface area of
10.5 km2 and amaximum depth of 33m.Adjacent to the
metropolitan area of Helsinki, the lake provides signif-
icant ecosystem services. However, the lake suffers
from serious nutrient loading derived from agriculture,
forestry, and other sources of diffuse loading. Currently,
the autumnal epi l imnet ic TP var ies in the
Kiihkelyksenselkä basin between ~ 30 and 40 μg l−1,
total nitrogen (TN) between 800 and 1400 μg l−1,
chlorophyll-a between ~ 10 and 20 μg l−1, pH between
7.0 and 7.8, and the hypolimnetic DO between ~ 4 and
6 mg l−1. Hypolimnetic DO measurements (minimum
oxygen during late summer) from the examined
Kiihkelyksenselkä basin are available since 1981 CE
and epilimnetic autumn TP since 1973 CE (Finnish
Environment Institute).

2.2 Sediments

An 18-cm sediment profile was collected in June 2015
from the Kiihkelyksenselkä basin at a water depth of
14 m using a Limnos gravity corer (Kansanen et al.
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1991). The sediments were subsampled in the field into
small plastic bags at 1 cm intervals. The sediment profile
consisted of generally homogenous gray-brown clayey
gyttja (6–12% organic matter, Mörner 1982) (Fig. 2).
The samples were stored in a cold room (+ 4 °C) for later
preparation for the paleolimnological analyses. Loss on
ignition (LOI) was used to assess the organic content of
the sediments and was determined first to avoid degra-
dation of organic material. For the LOI, samples were
first dried at 105 °C for 12 h and then ignited in an oven
at 550 °C for 4 h (Heiri et al. 2001).

2.3 Midge Analysis

Volumetric sediment samples of 5 cm3 were prepared
using standard methodology for subfossil chironomid
analysis (Brooks et al. 2007). Sediments were sieved
through a 100-μm mesh and the residue was examined
in a Bogorov sorting tray under a binocular microscope

for extraction of subfossil head capsules using fine
forceps. All specimens (typically the fourth instar lar-
vae) were permanently mounted in Euparal® on micro-
scope slides and identified under a light microscope at ×
100 to × 400 magnification. A minimum count size of
50 individuals was set (Larocque 2001). Chironomids
were identified using Brooks et al. (2007). From the
same samples, chaoborids and ceratopogonids (Diptera:
Ceratopogonidae) were also identified based on Finnish
fossil specimens (Luoto 2009; Luoto and Nevalainen
2009).

2.4 Diatom Analysis

Samples for diatom analysis were prepared following
standard procedures (Battarbee et al. 2001). Organic
matter was removed by oxidizing sediment samples
with hydrogen peroxide solution (30% H2O2), after
which a few drops of hydrochloric acid (37%HCl) were
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added to remove carbonate minerals. Coarse
minerogenic matter was removed physically by swirling
the sample solution in a beaker and decanting the diatom
suspension. The remaining sample residue was checked
for absence of diatom valves before disposal. Samples
were dried on coverslips and mounted with Naphrax®
(Brunel Microscopes Ltd., Wiltshire, UK). Diatoms
were enumerated under a light microscope at × 1000
magnification, setting the minimum counting sum at
300 diatom valves. Taxonomic determination was main-
ly based on the flora of Krammer and Lange-Bertalot
(1986, 1988, 1991a, b), with nomenclature updated
where relevant due to taxonomic refinements (Suppl. 1).

2.5 Statistical Analyses and Paleolimnological
Modeling

Sample-specific diversity for midges and diatoms was
calculated using the Hill’s (1973) N2 index, which
represents the effective number of occurrences. Princi-
pal components analysis (PCA) was used to detect the
direction of the main midge and diatom community
variance in ordination space. The PCAs were run using
square root transformed relative abundances. Subse-
quently, segmented regression analysis was used to
identify statistically significant breakpoints in the PCA
scores applying a minimum confidence level of 95%.
The selection of the best breakpoint and function type
was based on maximizing the statistical coefficient of
explanation and performing tests of significance using
the program SegReg (Oosterbaan 2011).

Past variability in minimum hypolimnetic DO (i.e.,
late-winter in the training set) was reconstructed using a
30-lake chironomid-based calibration model for south-
ern Finland ranging from anoxic to hypersaturated sites
(Luoto and Nevalainen 2011; Luoto and Salonen 2010).
The weighted averaging partial least squares (WA-PLS)
model using one WA-PLS component has a cross-
validated (leave-one-out) coefficient of determination
(r2jack) of 0.72 and a root mean squared error of predic-
tion (RMSEP) of 2.4 mg l−1. In addition to DO, chiron-
omid assemblages were used to reconstruct past changes
in TP. The TP model (Luoto 2011) uses 51 lakes across
Finland ranging from oligotrophic to hypertrophic sites
(TP = 1.5–105 μg l−1). The chironomid-based autumnal
epilimnetic TP inference model usesWA-PLS technique
with four calibration regression components, and it has
an r2jack of 0.92 and RMSEP of 6.7 μg l−1. The diatom-
based epilimnetic TP reconstructions used a 47-lake

calibration set from eastern Finland covering a TP gra-
dient of 7–122 μg l−1. The two-component WA-PLS
model with leave-one-out cross-validation has an r2jack
of 0.82 and RMSEP of 0.15 log μg l−1 (Tammelin and
Kauppila 2015). All reconstructions were performed
using the program C2 (Juggins 2007). The reconstruc-
tions were validated for their reliability by comparing
the reconstructed values against limnological measure-
ments. Locally weighted smoothing (LOESS) was ap-
plied to standardize chronological differences between
the reconstructed and measured values.

2.6 Sediment Dating

Chronological determinations were performed using
210Pb and 137Cs analysis at the Radiochronology Labo-
ratory of the Centre for Northern Studies, Laval, Québec
(Canada). The age-depth model was established using a
constant rate of unsupported 210Pb supply (CRS) model
(Appleby 2001). The 210Pb and 137Cs concentrations
remained low due to high sediment accumulation rate,
yet high enough for the construction of a tentative
chronology (Fig. 3).

3 Results

According to the LOI analysis (Fig. 2), the sediment
profile was mostly inorganic corresponding to clayey
gyttja (5.8–9.1% of organic matter). Between 17 and
13 cm, the LOI varied between 7 and 9% followed by a
decrease to the record minimum at 10 cm. Thereafter,
the LOI progressively increased showing the highest
values at the topmost sediment layers.

Owing to the low 210Pb and 137Cs concentrations, we
were able to construct only a tentative age-depth model
(Fig. 3). Based on the CRS model, the core extends ~
70 years back in time representing a bottom age that
dates to the late 1940s. However, as the model repre-
sents large estimation errors, the chronology should be
considered with caution. Nonetheless, the initiation of
the 137Cs peak at 8 cm that corresponds to the Chernobyl
accident in 1986 fits well with the 210Pb chronology. In
lakes in southern Finland, Chernobyl fallout typically
marks the only clear 137Cs peak (Ojala et al. 2017),
hence suggesting that the age-depth model is realistic.
Linear time-depth relationship provides a high sediment
accumulation rate of 2.5 mm per year, which explains
the low 210Pb and 137Cs concentrations.
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The midge assemblages in the sediment core
consistedmostly of chironomids and chaoborids (Fig. 4).
A total of 29 chironomid taxa were identified from the
samples. In general, the chironomid flux (head capsules
per volumetric sample) increased towards the present.
Of the non-chironomid midges, Chaoborus flavicans
was abundant throughout the core, whereas Bezzia-type
ceratopogonids occurred only in the surface sediment.
Of the chironomids, Tanytarsus glabrescens-type was
abundant in the lower part of the core (~ 1945–1970
CE). Sergentia was common in the 1960s and 1970s,
when also T. mendax-type had its maximum

abundances. In the later part of the core, Procladius
thrived from the 1990s to 2000, after which
T. glabrescens-type again increased in abundance and
Chironomus plumosus-type appeared in the record.
Midge diversity, measured as N2, showed an increasing
trend throughout the record with the highest diversity
reached at the most recent sample (Fig. 4).

In all, 146 different diatom taxa from 32 genera were
identified from the samples (Suppl. 1). Planktonic taxa
dominated the diatom assemblages (Fig. 5), with high
abundance of Aulacoseira granulata, Aulacoseira
ambigua, and Aulacoseira subarctica. A. subarctica-
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type II (lower mantle height/valve diameter ratio) was
the most common taxon in the lower part of the sedi-
ment profile (~ 1945–1985 CE) but began to decline,
thereafter, and was largely replaced by a more slender
morphotype in the upper part of the core. A. ambigua,
Aulacoseira islandica, and Fragilaria crotonensis
displayed a slight increase from the 1970s onwards,
and Stephanodiscus medius and Asterionella formosa
showed their highest abundances since the 1980s. The
benthic community was rich in species but low in num-
bers, with species of Fragilaria sensu lato (e.g.,
Staurosirella pinnata, Pseudostaurosira brevistriata)
as the most abundant. Planktonic diatom diversity was
slightly elevated between the 1960s and 2000 CE, with
the lowest diversity recorded in the most recent sample
(Fig. 5). In the benthic community, diatom diversity
declined gradually since the 1960s.

The midge PCA axis 1 scores (Fig. 6) were negative
in the bottom and top parts of the sediment sequence and
mostly positive in between. Highest axis 2 scores oc-
curred around the 1980s. The diatom PCA axis 1 scores
(Fig. 6) remained negative until the 1980s but shifted
thereafter into positive scores showing a clear direction-
al succession. The highest diatom axis 1 score occurred
in the surface sediment sample. According to the

segmented regression analysis, a significant breakpoint
in the midge PCA axis 1 scores occurred at 1963 CE and
in the axis 2 scores at 1976 CE. No significant
breakpoint was found in the diatom axis 1 scores but
in the axis 2 scores, a breakpoint occurred at 1991 CE.

The chironomid-based hypolimnetic DO reconstruc-
tion varied from anoxic to well-oxygenated conditions
(Fig. 7). The highest DO (8.3 mg l−1) was reached
already at the lowermost sediments, but the conditions
turned into oxygen deficiency and anoxia during the
1950–1960s. In the 1960s, the oxygen conditions im-
proved and remained elevated until the 1980s. In the
1990s, the oxygen state again deteriorated with anoxia
occurring in the first half of the 1990s. The twenty-first
century was characterized by consecutive increases and
decreases in hypolimnetic DO. When comparing the
trends between the DO reconstruction and the measured
DO since the 1980s (Fig. 7), they show rather similar
features despite representing different seasons (late win-
ter vs. late summer).

The chironomid-based reconstruction of TP (Fig. 8)
showed a general development from oligo-mesotrophic
conditions between ~ 1945 and 1975 CE to mesotrophy
between ~ 1980 and 2010 CE, finally reaching eutrophy
at the present. The diatom-TP inferences did not show a
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clear eutrophication process. Nevertheless, the trend is
otherwise very similar to the chironomid-based recon-
struction with elevated values in the oldest and most
recent samples as well as during the 1980s. Despite the
differences, there was a significant correlation (R = 0.55,
r2 = 0.30, p < 0.019) between the chironomid- and
diatom-based TP reconstructions. In comparison to the
measured data available since the 1970s (Fig. 8), the
chironomid- and diatom-based TP trends showed close
correspondence, with the exception that the measured

TP did not record a recent increase that was particularly
clear in the chironomid-based reconstruction.

4 Discussion

4.1 Ecological Dynamics

The fossil chironomid assemblages (Fig. 4) in
Hiidenvesi were rather typical for a clay-turbid
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nutrient-rich lake in the area (Luoto and Ojala 2014,
2017; Luoto and Raunio 2011; Salonen et al.1993). In
addition to chironomids, Chaoborus flavicans, which
prefers turbid and productive lakes (Liljendahl-
Nurminen et al. 2002), was common throughout the
sediment profile. Subsequently, the chaoborus/
chironomid ratio, which indicates the presence of anoxia
(Quinlan and Smol 2010), provided evidence that
hypolimnetic oxygen deficiency has occurred in the
basin since the 1940s. To thrive, Chaoborus requires
an anoxic lake bottom, where it can hide during the day
avoiding visual predation by fish and, when the night
falls, it rises up the water column to feed on zooplankton
(Liljendahl-Nurminen 2006).

The most distinct change in the chironomid commu-
nities was the increase in mesotrophic chironomid taxa,
such as Procladius, Tanytarsus mendax-type, and
Sergentia, at the mid-part of the stratigraphy (1960–
2000 CE). In the more recent period, the most signifi-
cant change was the appearance of the typical eutrophy
indicating species Chironomus plumosus-type
(Kansanen 1985; Salonen et al. 1993), which also toler-
ates oxygen deficiency, into the stratigraphy in the
1990s. A distinct diversity threshold was also crossed
in the midge communities during the 1990s displayed as

a sudden increase in diversity (Fig. 4). This is a typical
development in a eutrophication process, as the number
of benthic invertebrate species increases alongside nu-
trient enrichment due to increased habitat availability
(Wiederholm 1980). However, when lakes become hy-
pertrophic and permanently anoxic, the diversity natu-
rally decreases (Bryce and Hobart 1972).

The diatom diversity showed a decrease in benthic
diatom life forms and a simultaneous increase in the
planktonic diversity since the 1970s (Fig. 5). This shift
in the diatom communities could indicate increased
turbidity in the water column related to increased phy-
toplankton production and sediment flux from the catch-
ment, reducing light availability to benthic growth.
Overall, the diatom communities (Fig. 5) of the basin
have been dominated by planktonic taxa, which require
water column turbulence to linger in the euphotic zone.
The abundant Aulacoseira granulata and Aulacoseira
ambigua are typical for eutrophic lakes (Lotter 2001;
Meriläinen et al. 2003; Miettinen 2003), and
Aulacoseira subarctica is commonly affiliated with me-
sotrophic waters (Gibson et al. 2003). The presence of
eutrophic Stephanodiscaceae species (e .g. ,
Cyclostephanos dubius) provides further indication for
high productivity (Miettinen 2003; Punning et al. 2008),
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Fig. 8 Chironomid- and diatom-inferred total phosphorus (TP) from the Hiidenvesi sediment profile compared against measured TP since
the 1970s. The trend lines use LOESS smoothing (span 0.4)
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whereas the small fragilarioids of the benthic commu-
nity tolerate unstable environmental conditions and re-
duced light availability (Anderson 2000; Luoto et al.
2012), hence reflecting the turbid waters of Hiidenvesi.

The changes related to the eutrophication process were
relatively small in scale and less clear-cut in diatoms in
comparison to the development in the chironomid com-
munities. Unlike in a previous paleolimnological assess-
ment from the shallow Kirkkojärvenselkä basin of
Hiidenvesi (Weckström et al. 2011), we found no evi-
dence of a recent increase in small-sized eutrophy-prefer-
ring cyclotelloid species in the deeper Aulacoseira-dom-
inated Kiihtelyksenselkä basin, most probably due to the
differences in the depths of the basins and associated
divergence in the physical characteristics of the water
column. The success of planktonic diatom taxa is strong-
ly dependent on changes in thermal stratification and
mixing regimes that are tightly coupled to external nutri-
ent fluxes and further regulate internal nutrient cycling in
lakes. The high abundance of heavyAulacoseira taxa and
low numbers of small cyclotelloids, such as Cyclotella
stelligera, in the upper parts of the studied sediment
profile hence suggests efficient convective mixing in
the Kiihkelyksenselkä basin of Hiidenvesi over the past
decades.

According to the PCAs, it appears that chironomids
have responded, in addition to the primary environmen-
tal driver (axis 1), to secondary environmental gradients
(axis 2), whereas the secondary gradients have had only
a minute influence on the diatom communities (Fig. 6).
Based on the analysis, chironomids appear to have
returned in the 2000s to a previous ecological state that
prevailed during the 1940–1950s, i.e., in the initial part
of the record. Yet, the species composition is rather
different, possibly suggesting an alternative stable state
(cf. Hobbs et al. 2012). This community shift is proba-
bly due to the lake restoration efforts during the recent
years that have improved the hypolimnetic conditions of
the basin (measured DO in Fig. 7), while no clear
declines in nutrient concentrations have occurred
(Fig. 8). Consequently, the diatom communities show
a distinct progressive succession towards a new ecolog-
ical state. This is also verified by the breakpoint analy-
sis, which did not identify a significant threshold for the
diatom PCA axis 1 scores. The significant breakpoint in
the primarymidge PCA axis scores occurred at 1963 CE
when several nutrient-preferring chironomids, such as
Tanytarsus mendax-type (Ekrem et al. 1999), increased
in the assemblages. Although midge responses to

oxygen and nutrients have independent signals owing
to taxa-specific environmental requirements (Brodersen
et al. 2008; Eggermont and Heiri 2012), they also co-
variate as taxa preferring low oxygen conditions tend to
prefer increased nutrient conditions (Brodersen and
Quinlan 2006). Nonetheless, the current results can
separate the development of the ecological lake status
between hypolimnetic and epilimnetic waters and sug-
gest that in future assessments of ecological lake status,
both surface and bottom water habitats need to be
examined.

4.2 Limnological Development

The chironomid-based reconstruction of hypolimnetic
DO showed low-oxygen conditions already between ~
1950–1975 CE (Fig. 7). This suggests that agricultural
activities, even before the initiation of intensified farm-
ing (Hietala-Koivu 2002), had caused bottom water
oxygen deficiency and anoxia due to the increased
transport of nutrients and their effects on biological
oxygen consumption following increased catchment
erosion (forest clearance for cultivation). In conjunction
with the present results, chironomid fauna in the very
shallow Kirkkojärvenselkä basin, examined in a previ-
ous paleolimnological survey (Weckström et al. 2011),
suggested deteriorated oxygen conditions since the
1950s. In agreement with the measured minimum DO,
the reconstruction showed improved oxygen conditions
in the basin during the 1980s that was followed by
significant oscillations in the values from the 1990s
onwards. Although the reconstructed and measured
trends were similar, there were differences in the values.
This is most likely due to seasonal differences, since the
oxygen calibration model is based on late-winter mea-
surements, whereas the instrumentally measured mini-
mum DO at the basin occurs during the late-summer
(August).

Both the reconstructed and observed conditions at the
present (O2 ~ 6 mg l−1) suggest that there has been
improvement in the oxygen state since the poor condi-
tions of the 1990s. The current oxygen concentrations
are rather typical for a baseline condition of a clay-turbid
lake with intermediate human influence in the catch-
ment (Luoto and Nevalainen 2011). The overall large
variability in DO throughout the record and the apparent
lack of a connection with the variations in the pelagic
nutrient concentrations underscores the importance of
other environmental controls, such as yearly variation in
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water column mixing, on hypolimnetic oxygen status.
The impacts of the ongoing climate change may also
affect the oxygen state through increased catchment
erosion, longer ice-free period, and higher biological
productivity. Generally, increased erosion and biologi-
cal production may have a deteriorating, while the di-
minished ice-cover an improving, impact on oxygen
state (Adrian et al. 2009; Foley et al. 2012).

Although the chironomid- and diatom-based TP re-
constructions had similar trends and the values showed
significant correlation, the changes were larger in the
chironomid record compared to diatoms (Fig. 8). Re-
gardless that both calibration models are based on
epilimnetic TP, the differences in the model outputs
could be due to habitat characteristics, since as benthic
invertebrates, chironomids utilize bottom water phos-
phorus for growth and development (Aagaard 1982).
Typically, there is more phosphorus available at the
hypolimnion compared to the epilimnion (Salonen
et al. 1984), which could explain the higher values in
the chironomid-based reconstruction in the most recent
part of the record.

In contrast to the diatom-based epilimnetic TP values
that indicate mesotrophy already during the 1940s, the
chironomid-based TP reconstruction showed oligo-
mesotrophic conditions and a slightly decreasing trend
in the initial part of the record with minimum values in
the mid 1970s. The minimum TP is also reflected in the
measured data representing the water quality conditions
of the basin in the summer of 1974 CE. During the
1980s, the basin shifted to a mesotrophic state, however,
with temporarily lower summer nutrient conditions dur-
ing the early 1990s. According to the chironomid-based
reconstruction, there has been a rapid recent increase
towards more nutrient-rich conditions. Although visible
also in the diatom-based reconstruction, this recent nu-
trient enrichment was not, however, seen in the mea-
sured data, probably owing to the fact that it represents a
snapshot in time (single measurement) compared to the
longer integrated period in the proxy-based data.

Microbial activity and degradation processes of set-
tled material in upper sediment layers are typically more
intensive in surface sediments than in deeper (historical)
sediments (Wetzel 2001) that could potentially influence
paleolimnological interpretations. However, the sedi-
ment profile consisted of mostly inorganic homogenic
material and no distinct difference was observed in the
sediment quality that could indicate possible problems.
Generally, the best means to verify paleolimnological

reconstructions is to compare them against instrumental
data (Battarbee et al. 2012). In our study, the reconstruc-
tions appear realistic, not only based on the trends but
also according to the inferred values. For example, the
chironomid-inferred DO for the surface sample was
5.7 mg l−1, whereas the measured was 5.5 mg l−1 fitting
well within the models RMSEP. In the diatom-based TP
reconstruction, the reconstructed value for the present
was 33 μg l−1, whereas the measured epilimnetic TP
value was 39 μg l−1, also showing good correspon-
dence. However, the chironomid-based TP of 53 μg l−1

is closer to the modern measured hypolimnetic TP of
59 μg l−1 than the epilimnetic measurement, further
suggesting that our interpretation on the influence of
habitat characteristics on the inferences is correct. Al-
though it is clear that chironomids and chaoborids re-
spond to both nutrients and oxygen (Lencioni et al.
2008; Small et al. 2011), it can be spurious to simulta-
neously reconstruct both variables using the transfer
function approach since it may not be clear how the
chironomid-environment relationships change in time.
In this study, the results demonstrate that both
chironomid-based reconstructions were logical and re-
alistic, at least during the observational period during
which the instrumental verification of the reconstruc-
tions was possible.

5 Conclusions

The results of this paleolimnological study show con-
sistent changes in the development of the nutrient and
oxygen status of Hiidenvesi that were mostly compara-
ble to the measured limnological data of the observa-
tional period. The lake benthos has changed since the
1940s: first into a mesotrophic community in the 1960s
and later in the 1990s into a eutrophic community.
Similarly, the diatom communities show a clear direc-
tional shift with increases in the abundances of species
typically related to the eutrophication process since the
1970s. In general, the basin appears to have remained
relatively mildly nutrient stressed for a turbid lake in the
early part of the record, although the diatom-based TP
reconstruction suggested mesotrophic epilimnion al-
ready during the 1940s. From the end of the 1970s to
the late 1980s and again since the mid-1990s, the lake
has developed into a more productive system, the most
recent years reflecting a significant increase in nutrient
conditions especially in the benthic habitat. The
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presence of Chaoborus throughout the record provides
indications that a persistent low-oxygen refugia has
prevailed in the hypolimnion. The chironomid-based
reconstruction of hypolimnetic DO displayed cyclic
fluctuations over the study period, largely irrespective
of the nutrient development.

Although this study shows signs of recent eutrophi-
cation, it can also be seen from the results that, in
comparison to a pristine boreal lake, the lake has been
elevated in nutrients already since the beginning of the
record at the 1940s. Similarly, it is also evidenced by the
results that the basin has suffered from anoxia during the
entire studied period. This research cannot define the
actual reference state of the lake, since the record does
not extend back in time before human disturbances in
the ecosystem. The results of this study can, however,
act as applicable guidelines for future preservation, con-
servation, and restoration efforts following that the lake
and catchment conditions during the 1940s, prior to
intensified farming, most probably represent a more
realistic target state than conditions prior to any anthro-
pogenic influence. This study also underlines the impor-
tance of separating the epilimnetic and hypolimnetic
water bodies in long-term limnoecological assessments.
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