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Abstract In today’s world, remediation of the environ-
mental pollutants including soil contaminations is
among the main issues and concerns considered by
environmental scientists. Vapor extraction method is
an in situ method to clean up volatile and semi-volatile
contaminants of soil especially in unsaturated areas.
Thermal enhancement to extract vapors includes differ-
ent technologies. Its purpose is to transfer heat to the
subsurface of the soil to increase the vapor pressure of
volatile organic compounds and, consequently, to in-
crease the amount of extracted VOCs. In this study,
modeling was done by using laboratory data after
screening. Validation was also done with the help of
an artificial neural network using the response surface
methodology. After training and evaluating the model, it
was found that this model determines the amount of
contaminant removal rate according to available data
and different temperatures by good measures. The cor-
relation coefficient square was equal to 0.95 in the
validation section by the neural network. This coeffi-
cient was equal to 0.99 in the original model. At the end,
a contaminant removal formula for sandy soils has been
presented. As a result, due to the proximity of the
correlation coefficient to 1, this model can be used to
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predict the removal rate of thermal enhancement in the
relevant circumstances with a slight error.

Keywords Neural network modeling - Response surface
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1 Introduction

Nowadays, contamination of soil and groundwater be-
comes a serious problem due to the lack of control of
pollutants from the source of production. Such sources
include industrial and agricultural activities (EPA 1989).
Every year, about 600 million tons of waste is produced
by industrial activities, and this is growing at an annual
rate of 10% (Ngo and Natowitz 2009). Contamination
of soil and groundwater, at concentrations higher than
the standard, will cause potential risk to health and the
environment (Wuana and Okieimen 2011).

Soil remediation is done in different physical, chem-
ical, and biological methods (Hamby 1996), and is di-
vided into two major ex situ and in situ fields (Agarwal
and Liu 2015). Soil vapor extraction is a physical in situ
method for cleaning the volatile contaminants from the
non-clay soils relying on their low evaporation tempera-
ture (EPA 2006). To improve the efficiency of the meth-
od, new initiatives have taken place and thermal enhance-
ment is one of them (Air Force Center for Environmental
Excellence 2001). Soil type and permeability, chemical
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and physical properties of contaminants, environmental
factors such as weather and hydrological conditions,
pollutant volume, transfer ability, and toxicity are some
factors affecting the level of soil contamination (Switzer
and Kosson 2007; Truex et al. 2013).

In this study, the thermal enhancement method was
used through injecting the water vapor and hot air. The
reason for selecting these two ways is that these are the
most common and widely used methods for thermal
enhancement of vapor extraction in laboratory and in-
dustrial levels (Dablow et al. 2000; Di et al. 2002).
Moreover, providing equipment and high temperatures
is too expensive and with uncertainty (Beyke and
Fleming 2005; Lowe et al. 2000).

Previously, some researches have been conducted on
vapor extraction in laboratory scales and numerical
forms. The laboratory researches include the efficiency
of the SVE method in layered soils contaminated with
TCE (Stinson 1989), the efficiency of this method in clay
soils contaminated with thinner (Gibson et al. 1993), the
influence of clay and temperature on remediation of
sandy soil contaminated with diesel (Sabour et al.
2014), thermal remediation of light and heavy petroleum
contaminations with electric heating (Beyke and Fleming
2005), and several other researches. Less attention has
been paid to numerical study and modeling. Researches
have been done to determine the mass transfer processes
with the help of a three-dimensional model of vapor
extraction (Nguyen et al. 2013). Vapor extraction data
were also analyzed to determine the mass transfer limi-
tations and predict mass flux from the source (Brusseau
et al. 2010). In this study, a comprehensive model and
formula has been presented for thermal enhancement
removal rate in contaminated sandy soils.

2 Materials and Methods

Sandy soil was selected for modeling due to its having the
highest cleaning efficiency and the lowest uncertainty
(Albergaria et al. 2008; Peng et al. 2013). The contami-
nant used to obtain data is n-alkane (C3—C;9) which is the
most common range of volatile organic contaminant in
petroleum products (Irwin et al. 2013; Li et al. 2016).

To obtain the data, the results of previous tests were
used. These results are from the “Investigating the In-
fluence of Clay & Heating in Remediation of Contam-
inated Soil from Gas-Oil by Soil Vapor Extraction”
article (Sabour et al. 2014). For the validation part of
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the modeling, data were extracted from the article
“Predicting Hydrocarbon Removal from Thermally En-
hanced Soil Vapor Extraction Systems” (Poppendieck
et al. 1999). These data were extracted using chart
analysis software 3D CAD CATIA, GRABIT toolbox
in MATLAB, and GetData Graph Digitizer. A total
amount of 67 packs of data were used for modeling.
After screening and data processing, they were used for
modeling. Screening was done using Plackett-Burman
designs. This method helps to process data and mini-
mize the errors. To apply this method, a Hadamard
matrix in MATLAB was used.

After screening, the first model was created with
MATLAB software with the help of a neural network
for validation. Neural network modeling was chosen in
view of the fact that since the relation between input data
and objective function is not linear, a powerful and
complex method is needed to understand this compli-
cated relationship. Artificial neural network is a train-
able method of modeling which consists of algorithms
that can be used to perform nonlinear statistical model-
ing and has the ability to implicitly detect complex
nonlinear relationships between dependent and indepen-
dent variables, the ability to detect all possible interac-
tions between predictor variables, and the availability of
multiple training algorithms (Tu 1996).

Modeling was done using a feedforward
backpropagation method and scaled conjugate gradient
algorithm. This algorithm was used due to its having less
dispersion and error compared to other algorithms. It is
worth noting that the sigmoid function of the desired
network was used due to the nature of the reviewed data.

After neural network modeling and data validation,
the final model was analyzed and a removal formula
was presented by using the response surface method
(RSM) and modeling in historical data environment.
According to Table 1 and regression coefficients obtain-
ed by data analysis, a second-order quadratic model was
obtained for removal efficiency. In this equation, the
response surface method considered the second-grade
effects and interactions of tested variables in addition to
linear effects of parameters.

3 Results and Discussion
In this study, by using a multilayer artificial neural

network, the relation between time, temperature, and
removal efficiency has been validated.
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Table 1 The sum of the squares, df (degrees of freedom), mean square, F value, and p value for different modeling functions

Source Sum of squares df Mean square F value p value Probability > F
Mean vs total 142,138.6 1 142,138.6

Linear vs mean 64,409.12 2 32,204.56 3533.469 <0.0001

2FI vs linear 307.046 1 307.046 52257 <0.0001

Quadratic vs 2FI 12.410 2 6.205 1.057 0.351

Cubic vs quadratic 267.636 4 66.909 22.087 <0.0001 Suggested
Residual 260.523 86 3.029342

Total 207,395.3 96 2160.368

As can be seen in Fig. 1, an artificial neural network
with 30 hidden layers was used. In this network, two
factors of time and temperature were used as input
factors. Seventy percent of available data was used to
train the network; 15% of data was used for validation
and the rest for test.

According to the mean squared error curve (Fig. 2),
the process of reducing the mean squared error (MSE)
lost its downward trend after epoch 9 and then it in-
creased. As a result, the process of network training for
all three curves of training, validation, and test is in its
best situation in stage 9.

The cease of the reduction error after stage 9 is due to
the data screening before modeling. The data became
uniform due to screening processes. The irrelevant data,
which contains error, have been removed before enter-
ing the modeling process. Therefore, the model reached
the best mode with the least errors after nine epochs.

In the neural network regression diagrams related to
different aspects of training, validation, and test (Fig. 3),
the accuracy of regression conducted in phases of train-
ing validation and test has been investigated. These
correlation coefficients are equal to 0.96964, 0.98969,
and 0.93453, respectively. This coefficient is equal to
0.96653 for the overall state of the model. By comparing
the correlation coefficients, two points can be realized.
First, the correlation coefficient at each stage is close to
1. Therefore, the model is accurately in compliance with
reality. Second, the proximity of the coefficients in

Fig. 1 The structure of the neural

network for estimation Input

various stages of modeling indicates that the model
has followed a consistent trend at all stages of its imple-
mentation and no error has occurred. Therefore, the
obtained values by the model are close to true values
with good approximation.

The values of RMSE, MAE, and R indicate root
mean square error, mean absolute error, and corre-
lation coefficient, respectively. Their formulas are as
follows:

RMSE = % ; i) (1)
1 1
MAE = - %, Iyl == % e (2)
i=1 n =1
i (yi_ i)2
R= |1-—=! 3)

n n 2
) < i_% Zyi)
i=1 i=1

The errors related to the model are shown in Table 2.
The lesser correlation coefficient in the test mode com-
pared to the training and validation modes is due to the
application of a variety of tests in this stage to check the
quality of the model. The lesser correlation coefficient in

Hidden

Output
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Fig. 2 Mean squared error curve

Mean Squared Error (mse)

Best Validation Performance is 14.8971 atepoch 9

the training mode compared to the validation mode is
due to large data volume and lack of network training.
However, the proximity of the correlation coefficients
and the square of the correlation coefficients to number
1 and each other shows the proper performance of the
model.

As can be seen, the neural network model based
on experimental data has the least error and accept-
able correlation coefficient. The low error rate and
the difference between predicted and actual data is
due to the measurement errors in the laboratory,
uncertainties related to contaminants, and the move-
ment and accumulation of contaminants in the soil
matrix.

After validation by the neural network model, anoth-
er modeling was performed using response surface
methodology. In this analysis, the obtained results of
all the effects governing the issue including the first-
grade effects, the second-grade effects, and interaction
of two influencing factors were considered to reach an
overall judgment about the significance of factors.

In Fig. 4, the process of efficiency changes with
respect to time is shown. As can be seen, with the
passage of time, the efficiency increased. The reason
for this increase is that, with the passage of time, the
contact area between the air and water vapor and con-
taminant increases. Consequently, the vapor pressure
increases and the contaminant state changing from lig-
uid to gas increases.

@ Springer

15 Epochs

In Fig. 5, the process of efficiency changes with
respect to temperature is shown. In this diagram, as
expected, the removal rate increased with increasing of
the temperature. Obviously, this increase is due to in-
crease of vapor pressure and the proximity of the
injected vapor and air temperature to the evaporation
temperature of volatiles.

For better understanding, in Fig. 6, the actual values
and the values provided by the model are shown in a
diagram. In this diagram, the vertical axis shows the
values predicted by the model and the horizontal axis
indicates the values observed in the tests. Since the data
concentration is on the fitted line, this means that values
estimated by the model are close to laboratory values.
The proximity of the obtained points to the axis Y = X
shows high adequacy of the model.

In order to check the validity of the model, the
correlation coefficient (R?), analysis of variance is in-
vestigated. In this section, the model competency is
approved given the amount of p value <0.05. The pos-
sible value for each parameter can be seen. The results
of the variance analysis in investigating the removal rate
are shown in Table 3.

As can be seen, the possibility of a model regression
equation is less than 0.0001 and smaller than 0.05
(considering the confidence level of 0.95). This shows
that the second-order quadratic model complies with
laboratory results. Regarding the regression equation,
the low rate of p value (o <0.5) shows that the results
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Fig. 3 Neural network regression diagram

are not random. The amount of p value (less than 0.5)
indicates that the parameters are significant. According
to the table above, the F value (test statistic) is equal to
2205.991. Therefore, it confirms the competency of the

Table 2 Calculated errors for neural network model

Output ~= 1*Target + 1.5
4
(=}

Output ~=0.98"Target + 0.57

MSE RMSE R R? MAE
Training 29.973 5.475 0.970 0.940 -
Validation ~ 14.897  3.859 0990 0979 -
Test 64212  8.013 0935 0873 -
All - 5.730 0967 0931 4256

Validation: R=0.98969
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All: R=0.96653

model. It also indicates that the model is significant and
there is the possibility of a slight incompetence of the
model. The F value for lack of fit is equal to 3.208121.
This amount is appropriate since the p value is equal to
0.0953. This shows that the possibility of incompetence
occurrence is 0.09%. According to the results of the data
analysis in the variance analysis table, each of the fac-
tors and their interactions affect the test results.

The correlation coefficient R? is an indicator to ex-
press the precision of regression and relation between
the experimental data and predicted responses. High
level of correlation coefficient (close to 1) is desirable.
High level of R? indicates that, in fitted models, the
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Fig. 4 Efficiency changes with respect to time

predicted and experimental responses have adapted well
to each other. In results analysis, the correlation coeffi-
cients are as below (Table 4):

Figure 7 is related to two-dimensional contour, and
Fig. 8 indicates the three-dimensional surfaces of the
model. As shown, the pollutant removal efficiency in-
creases as temperatures and time increase. According to
the contour and surface diagram, it can be realized that
the removal rate is more sensitive to temperature factor.
Actually, temperature is more effective in the removal
rate compared to time. Therefore, higher removal effi-
ciency can be achieved by increasing the temperature
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Fig. 5 Efficiency changes with respect to temperature
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Fig. 6 Predicted and observed values in the model

(compared to time). In surfaces, it can be observed that
the surface towards the axis of temperature is slightly
curved. This reflects the greater impact of temperature
on the removal efficiency.

Based on the mentioned points, the second-order
polynomial overall model is as follows:

Removal rate = —5.70387—0.4284 x Time
-+ 0.0099119 x Temp + 0.009613
x Time x Temp + 0.002131
x Time*—0.00199 x Temp’ (4)

After simplifying and eliminating the parameters
with lower effect coefficient, with the assumption that
t represents the time measured by day passes from the
start of the extraction, T represents the temperature
measured by Celsius scale, and “R.R” represents the
removal rate, the formula will be as follows:

R.R = —5.703-0.428¢ 4+ 0.01T(1 + t)

+0.002(£~T%)t=45,T>65 (5)

4 Conclusion

In this study, the remediation process of the sandy soils
contaminated with n-alkanes (C;3—C;9) has been
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Table 3 Analysis of variance (ANOVA)

Source Sum of squares df Mean square F value p value Probability > F
Model 64,728.57 5 12,945.71 2205.991 <0.0001 Significant
A—time 3.937 1 3.937 0.671 0.415

B—temp. 3.433 1 3.433 0.585 0.446

AB 2.174 1 2.174 0.370 0.544

A2 0.149 1 0.149 0.025 0.874

B2 1.021 1 1.021 0.174 0.678

Residual 528.159 90 5.868

Lack of fit 518.649 85 6.102 3.208 0.095 Not significant
Pure error 9.510 5 1.902

Cor total 65,256.73 95

modeled based on the thermal optimization of vapor
extraction through injecting the water vapor and
pumping hot air. A neural network with 30 hidden layers
and 15 epochs has been obtained to evaluate the data.
This neural network provided a good and accurate pre-
diction of time and removal efficiency.

The aim of the neural network was to validate data to
prevent over-fitting. For this purpose, the existing data
were divided into three categories: training, validation,
and test. The mean error is equal to 4.2556, and the root
mean square error is equal to 5.7303. It indicates the
slight dispersion of modeling values around the actual
values. The low rate of mean absolute error and root

Table 4 Error rates

Std. dev.” 2.422 R-squared 0.992
Mean 38.479 Adj. R-squared® 0.991
CV. %° 6.296 Pred R-squared® 0.991
PRESS® 595.273 Adeq. precision” 164.917

*Root mean square error

® Adjusted R? (a type of R? including the number of factors of the
model)

®The coefficient of variation (rate of changes not explained or
residual changes of data as a percentage of average response
variable)

4Predicted R-squared

¢ The sum of squared prediction error (a measure for predicting the
responses to a new test)

f Adequacy of precision (derived by dividing the difference be-
tween the largest and smallest predicted responses by the average
standard deviation of expected responses); the higher values of this
statistic are more ideal, and values higher than 4 usually show a
good performance of the model in the prediction phase. Number
164.917 indicates the proper design and lack of disturbance

mean square error indicates that the error rate is very
low. It also shows that the observed values are very close
to the predicted values. The high rate of the correlation
coefficient and R? confirms the same issue. Moreover,
the removal rate presented by the model is equal to
laboratory and actual values with a slight error. The
general correlation coefficient of the model is equal to
0.967, and the correlation coefficient square is approx-
imately 0.931. This is very close to 1 and indicates the
proximity of the actual and calculated values.
According to the contour and surface diagrams and
response surface diagrams related to parameter interac-
tion, it can be concluded that, in all interactions, the
removal rate increases by increasing the temperature

7 RemovalRate

L+
A Tume
Fig. 7 Contour diagram of temperature and time reaction on the
removal efficiency
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Fig. 8 The surface describing the temperature and time reaction
on the removal efficiency

and time. By increasing the temperature, the vapor
pressure of volatile organic compounds in the soil in-
creases. Therefore, evaporation and state changing from
liquid to gas increase in unit of time. Time increases the
duration of contact between air and vapor pumped to the
injection wells and contamination. Therefore, it in-
creases the contaminant removal rate. Consequently,
this model can be used to predict the optimization rate
of cleaning sandy soils through the vapor extraction
method.

The effect of time factor on removal efficiency rate
will have a more severe slope after about 80 days;
therefore, it will be more effective. The reason is that,
after passing this period from the beginning of the
removal, the vapor pressure of volatile substances will
be so that the state change will occur and the volatile
substances will be extracted. For that reason, after
80 days, the removal rate and efficiency will increase.

@ Springer

The slope of the effect of temperature on the removal of
contaminant will decrease after almost 100 °C. The
reason is that, as temperatures rise over 100 °C, the soil
moisture evaporates and a significant amount of mois-
ture in the soil is absorbed. Consequently, the contami-
nants that need to be solved in the water will not be
absorbed and removed; hence, the removal efficiency
will be reduced.
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