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Abstract The objectives of this study were to deter-
mine and compare the concentrations of Hg, Cd, Pb,
Zn, Cu, Ni and Se in the liver of macrourid fish as
Trachyrinchus scabrus, Nezumia sclerorhynchus and
Coelorhynchus coelorhynchus from the Mediterranean
Sea, Italy. It was also carried out to evaluate the
relationship between metal concentration and fish size
and to explore selenium/mercury molar ratio. The
highest concentrations were in T. scabrus, followed
by N. sclerorhynchus and C. coelorhynchus. In all
species, any element displayed significant correlation
between metal body burden and fish size, except Hg.
The mean selenium/mercury ratios were greater than
one in all fish species indicating that Se antidotal
effect in counteracting Hg occurred. This report rep-
resents one of the few surveys providing information
on trace metal in deep-sea fish from Mediterranean
Sea constituting, thus, an essential baseline work with
which future levels may be compared.
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1 Introduction

One of the most important forms of aquatic pollution is
represented by heavy metals, which are continuously
introduced into the environment via natural and anthro-
pogenic processes, including urban and industrial dis-
charges, agriculture, mining and combustion. Once re-
leased in the marine environment, metals are readily
adsorbed onto particulate matter and precipitate to deep-
sea floor creating a potential source of pollution. Never-
theless, the deep sea is a vast area which remains largely
unexplored in terms of its chemical contamination. At the
present time, if it is possible to have a general view of the
littoral pollution of most seas and oceans in the world,
only few results have been reported concerning the con-
tamination of the deeper part of the oceans. Monitoring
environmental impact through the accumulation of
metals by marine biota is, in fact, applied to a limited
number of studies on deep sea (Adachi et al. 2012; Arima
et al. 1979; Asante et al. 2010; Company et al. 2010;
Cronin et al. 1998; Koenig et al. 2013; Mormede and
Davies 2001a, 2001b; Oehlenschlager 2009; Siscar et al.
2014; Yamada et al. 2001), probably due to the technical
difficulty of sample collection. Scarce and often outdated
is also the knowledge of metal levels in Mediterranean
deep-sea fauna. Kress et al. (1998) working with five
deep-sea fish species from the South Eastern Mediterra-
nean Sea, report the concentrations of essential and non-
essential metals as well as other studies account for the
metal content in deep-sea fauna captured inNorth Eastern
Mediterranean Sea (Siscar et al. 2014) and in North
Western Mediterranean Sea along Catalan coast
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(Koenig et al. 2013). However, these few studies are
usually addressed to the edible muscle, while even more
scarce is the information available for liver (Company
et al. 2010; Martins et al. 2006; Mormede and Davies
2001a, 2001b; Siscar et al. 2014), an organ with a high
pollutant accumulating capacity and recommended as an
environmental indicator of water pollution (Licata et al.
2005). Marine environmental pollution is a worldwide
problem, but the Mediterranean Sea presents a more
dramatic situation due to its particular conformation of
semi-enclosed water body, entirely landlocked and sub-
ject to an intense anthropogenic impact (Angelidis et al.
2011; Damiano et al. 2011). Our group has already
reported on organochlorine compound concentrations
(Storelli et al. 2004, Storelli et al. 2007; Storelli and
Perrone 2010) as well as polybrominated diphenyl ethers
(Covaci et al. 2008) in the liver of different deep-sea fish
species from Adriatic Sea (South-Eastern Mediterranean
Sea), revealing the presence of an extensive contamina-
tion of the marine environment with hot spots of concern
(Storelli et al. 2009). On completion of this picture, the
present study, adding up an investigation on the status of
trace metals in deep fish species from the same marine
area, aims to (1) compare themetal concentrations among
different deep-sea fish, (2) investigate the relationship
between metal concentration and fish size, (3) determine
the selenium/mercury (Se/Hg) molar ratio and (4) pro-
vide information about the severity of pollution through a
comparison with literature data. To this end, we deter-
mined the levels of three non-essential metals (Hg, Cd
and Pb) and four essential metals (Zn, Cu, Se and Ni) in
the liver of different deep-sea fish belonging to the family
Macrouridae, namely Trachyrinchus scabrus, Nezumia
sclerorhynchus and Coelorhynchus coelorhynchus. This
issue is particularly relevant, not only to fill a knowledge
gap on the state of chemical contamination in Mediterra-
nean deep-sea fauna but also in consideration of the
increasing interest in deep-sea fisheries due to depleted
fish stocks of the world’s oceans (Ramirez-Llodra et al.
2011).

2 Materials and Methods

2.1 Sample Collection

Specimens of T. scabrus (roughsnout rat-tail) (specimen
number 260, total length 32.8–49.6 cm, average
39.9 ± 5.2), N. sclerorhynchus (roughtip grenadier)

(specimen number 307, total length 15.2–29.3 cm, av-
erage 20.7 ± 4.7) and C. coelorhynchus (hollowsnout
grenadier) (specimen number 246, total length 15.5–
19.3 cm, average 17.7 ± 1.4) were caught along the
Apulian coast (about 200 km) in the Southern Adriatic
Sea (Mediterranean Sea, Italy) during two cruises con-
ducted between May and September 2009. The sam-
pling sites (Fig. 1) were selected based on the geograph-
ical features of the Adriatic Sea, which generally pre-
sents shallow waters except for a deep depression along
the Apulian coast (300–1200 m). Species choice was
based on their availability at the sampling location.
From the total number of specimens, pools were formed
(T. scabrus: no. 10; N. sclerorhynchus: no. 9;
C. coelorhynchus: no. 6) within which individual fish
were gathered as a function of their similar size
(Table 1). From fish of each pool, liver was taken,
homogenized and kept in a deep freeze at −20 °C until
chemical analysis.

2.2 Chemical Analyses

The extractive analytical procedure and the instrumental
conditions for determining metal concentrations have
been described in detail elsewhere (Barone et al.
2013). Briefly, aliquots (about 1.0–2.0 g) of the samples
were digested to a transparent solution with a mixture of
HNO3–HClO4 (8:3) for Cd, Pb, Ni, Zn and Cu determi-
nation and with a mixture of H2SO4–HNO3 (1:1) for Hg
and Se. The completely digested samples were allowed
to cool temperature and diluted with deionized water
according to the method recommended by Official Ital-
ian Agencies (GURI 1994). The content of metals was
determined by atomic absorption spectrophotometer
(Shimadzu AA 7000). Zn and Ni were analysed by
flame; Cd, Pb and Cu by using graphite furnace (high-
density tube) (GFA-7000); Hg and Se were measured by
using a hydride vapour generator (HVG-1) after reduc-
tion by NaBH4. The selenium/mercury molar ratio was
obtained by using the molecular weight (200.59 for Hg
and 78.9 for Se).

2.3 Quality Control and Assurance

& Reference tissue (Tort-2 Lobster Hepatopancreas,
National Research Council of Canada, Ottawa,
Ontario, Canada) was treated and analysed in the
same way as the samples. Results (Hg 0.28 ± 0.03;
Cd 26.2 ± 2.4; Pb 0.32 ± 0.18; Se 5.71 ± 0.56; Cu
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101 ± 13; Zn 188 ± 12; Ni 2.3 ± 0.23 μg g−1 dry
weight) were in good agreement with the certified
values (Hg 0.27 ± 0.06; Cd 26.7 ± 0.60; Pb
0.35 ± 0.13; Se 5.63 ± 0.67; Cu 106 ± 10; Zn

180 ± 6; Ni 2.5 ± 0.19 μg g−1 dry weight) and the
standard deviation were low, proving good repeat-
ability of the methods. The results for standard
reference material displayed recoveries of the

Fig. 1 Sampling site

Table 1 Number of pools and individuals and mean size ranges of deep-sea fish species selected for the study

T. scabrus N. sclerorhynchus C. coelorhynchus

No pools No individuals Mean size ranges No pools No individuals Mean size ranges No pools No individuals Mean size ranges

1 35 32.8 ± 0.1 1 32 15.2 ± 0.1 1 41 15.6 ± 0.2

2 29 35.2 ± 0.1 2 33 15.8 ± 0.2 2 43 16.7 ± 0.1

3 31 35.8 ± 0.1 3 34 17.4 ± 0.1 3 38 17.7 ± 0.2

4 30 37.4 ± 0.1 4 35 18.1 ± 0.1 4 40 18.1 ± 0.1

5 30 38.1 ± 0.1 5 32 20.3 ± 0.2 5 44 18.6 ± 0.1

6 27 40.3 ± 0.2 6 36 20.7 ± 0.1 6 40 19.3 ± 0.1

7 25 40.7 ± 0.1 7 35 23.6 ± 0.1

8 22 43.6 ± 0.1 8 34 25.6 ± 0.1

9 18 45.6 ± 0.1 9 36 29.3 ± 0.2

10 13 49.6 ± 0.1
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elements ranging from 91 to 104% (n = 3). The limit
of detection (LOD) (Hg 5; Cd 0.12; Pb 10; Se 1; Cu
26; Zn 24; Ni 26 ng g−1 wet weight) is defined as the
concentration corresponding to three times the stan-
dard deviation of blanks, and the standard of quan-
tification (LOQs) are the following: Hg 13; Cd 0.40;
Pb 38; Se 3.6; Cu 81; Zn 87; Ni 79 ng g−1 wet
weight. Two blank samples were analysed together
with each sample batch. Metal concentrations in
blanks were below the detection limits in all the
analyses. Blanks and calibration standard solutions
were similarly analysed as the digested sample so-
lution, and calibration curves were constructed.
Analyses were duplicated to check the reproducibil-
ity of the results. Relative standard deviations
among replicates were always less than 10%. Re-
covery tests were performed for the investigated
metals in selected samples by spiking analysed sam-
ples with aliquots of the metal standards and then
carrying out digestion. The recovery percentages
ranged from 96 to 99%. Throughout the manuscript,
metal concentrations are presented as μg g−1 wet
weight basis.

2.4 Statistical Analysis

Kruskal-Wallis test was conducted to determine whether
there were metal concentration differences as a function of
species. Simple linear regression coefficient was used to
examine the correlations between the metal load and the
length of fish and between Se/Hg ratio and fish length.
There were significant positive correlations between total
body length and weight for all species (T. scabrus:
R = 0.91, P < 0.001; N. sclerorhynchus: R = 0.87,
P < 0.002; C. coelorhynchus: R = 0.83, P < 0.04). How-
ever, to investigate the influence of size on metal accumu-
lation, the length was chosen because less subject to
fluctuation than body weight (Diaz et al. 1994). The level
of significance was set at P ≤ 0.05.

3 Results and Discussion

3.1 Between-Species Differences in Metal
Concentrations

Mean and range values for trace metals measured in the
three macrourids analysed are illustrated in Table 2.

Within the different fish species, mean Hg concentra-
tions varied from 3.45 to 16.01 μg g−1 wet weight, with
the highest levels in T. scabrus, including a surprisingly
high value of 26.18 μg g−1 wet weight in one of the
livers analysed. Mean Cd concentrations were between
0.60 and 1.78 μg g−1 wet weight, with the maximum
value in T. scabrus at 4.72 μg g−1 wet weight, while Pb
recorded mean concentrations from 0.64 to 0.81 μg g−1

wet weight, with the highest levels of 2.20 μg g−1 wet
weight in T. scabrus. Statistical analyses data showed
some significant concentration differences among the
various species tested but no systematic trend.
T. scabrus exhibited the highest concentrations of Hg
(P < 0.003) and Cd (P = 0.05), followed by
N. sclerorhynchus and C. coelorhynchus, containing
similar levels of these two elements (P > 0.05), while
for Pb contamination, image was essentially comparable
among the three species (P > 0.05). Concerning essen-
tial metals, mean Zn and Se concentrations varied from
18.22 to 119.38 μg g−1 wet weight and from 8.76 to
12.26 μg g−1 wet weight, with the highest levels asso-
ciated to T. scabrus, with values of 154.15 and
26.63 μg g−1 wet weight, respectively. Mean Cu con-
centrations varied from 9.50 to 12.33 μg g−1 wet weight,
themaximumbeing inN. sclerorhynchus at 16.79μg g−1

wet weight, while Ni with mean concentrations ranging
from 4.51 to 12.55 μg g−1 wet weight exhibited the
highest levels of 16.95 in one sample of T. scabrus.
According to statistical analysis, there were significant
differences between Ni concentrations (P < 0.03). On
the contrary, Zn and Cu displayed comparable levels in
T. scabrus and N. sclerorhynchus (P > 0.05) but higher
than those in the other macrourid fish (P = 0.05), while
any difference in terms of Se burden was observed
among the species tested (P > 0.05). An assortment of
synergistic factors can be at the origin of the metal
concentration differences between fish species collected
in the same marine area. Among them, it is unquestion-
able the importance of the diet: animal feeding on crus-
taceans and molluscs appears to retain higher Cd con-
centrations (Bustamante et al. 1998) than piscivorous
biota that accumulate preferentially Hg (Havelková
et al. 2008; Roméo et al. 1999; Storelli et al. 1998), as
well as a crustacean-based diet determines an enrich-
ment of Cu (Vas 1991). In our case, the three species
tested show, in general, similar feeding habits having a
benthopelagic diet (Carrassón and Matallanas 2002). In
this framework, it would appear that feeding habits are
not central in the metal load variation among the species
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considered. Stergiou and Karpouzi (2002) indicate, in-
stead, that for most Mediterranean species including
T. scabrus and C. coelorhynchus, trophic level increases
with increasing fish body size. T. scabrus, in particular,
seems to exhibit changes in its diet in relation to length,
with larger-sized individuals including also fish in their
feeding pattern. The greatest size range of T. scabrus
and the lowest of C. coelorhynchus coupled with onto-
genetic diet shifts offer a plausible explanation about the
interspecific metal variations here recorded. This seem
to be particularly true in regard to Hg which exhibits a
differential load in relation to size/mass; a tendency also
firmed up by the significant effect of length on Hg levels
encountered in the present study and discussed below.
An important increase in fish size linked with depth has
been also noted in various deep-sea organisms of Med-
iterranean Sea, including T. trachyrinchus and
C. coelorhynchus supporting the general Bbigger-
deeper^ phenomenon (Massuti et al. 1995; Rotllant
et al. 2002). This direct proportionality is of crucial
importance in consideration of the vertical Hg distribu-
tion with a pronounced increase in concentrations with
increasing depth (Choy et al. 2009; Koenig et al. 2013).
This mercury-depth-size inclination could be a supple-
mentary possible justification for the lower concentra-
tions of Hg encountered in C. coelorhynchus smaller
size samples than in the other two macrourid fish. How-
ever, the interspecies variability can be linked to numer-
ous others factors as food behaviour, i.e. a high uptake
rate as a consequence of higher feeding rate for some
species with respect to others, differences in fish growth
cycle, sex, physiological state and/or species-specific
metabolic activity. In this latter regard, the accumulation
of essential metals in liver is likely correlated to its
function in metabolism. Zn and Cu play a pivotal role

in the enzymatic processes and relatively high levels are
necessary to maintain these biological functions. Addi-
tionally, it is generally believed that marine organisms
are actively capable of regulating internal concentrations
up to thresholds above which regulations break down
and net accumulation of the metals occur. In our case,
the prominent Zn content and the relatively higher Cu
values in T. scabrus and N. sclerorhynchus than
C. coelorhynchus could indicate an elevated uptake
consequent to major physiological needs, a disrupted
metal metabolism, or might be a result of the activity of
metallothioneins, proteins that can be binded to Cu and
Zn, thus reducing their toxicity and allowing the hepatic
tissue to concentrate them at elevated levels. Although
metallothioneins were not investigated in the present
study, the significant correlations between Cu and Zn
observed in T. scabrus (R = 0.64, P < 0.05) and
N. sclerorhynchus (R = 0.79, P = 0.01), but not in
C. coelorhynchus, provide clues for the presence of
metallothionein-mediated Cu and Zn detoxification
processes. On the other hand, Siscar et al. (2014) in
deep-sea fish found significant correlations between
metallothioneins and Cu and Zn confirming the key role
of these proteins in handling essential metals. However,
further studies are needed to understand the accumula-
tion and detoxification strategies in these deep-sea fish.

3.2 Relationship between Metal Content and Fish Body
Length

As mentioned above, fish size is an important parameter
when discussing metals’ accumulation (Canli and Atli
2003; Farkas et al. 2003; Noël et al. 2013; Storelli et al.
2006). In the present study, statistically reliable and
robust correlations were encountered between length

Table 2 Range and mean ± standard deviation of metal concentrations (μg g−1 wet weight) and Se/Hg molar ratios

T. scabrus N. sclerorhynchus C. coelorhynchus

Hg 16.01 ± 7.07 (7.19–26.18) 6.04 ± 5.14 (1.87–16.27) 3.45 ± 1.45 (1.18–5.15)

Cd 1.78 ± 1.31 (0.67–4.72) 0.92 ± 0.50 (0.38–2.04) 0.60 ± 0.14 (0.40–0.81)

Pb 0.81 ± 0.69 (0.26–2.20) 0.64 ± 0.31 (0.27–1.34) 0.75 ± 0.22 (0.45–1.02)

Cu 9.89 ± 2.42 (6.32–14.35) 12.33 ± 3.26 (6.15–16.79) 9.50 ± 0.21 (7.99–10.50)

Ni 12.55 ± 2.90 (6.71–16.95) 6.80 ± 2.12 (4.37–10.36) 4.51 ± 0.57 (3.71–5.30)

Zn 119.38 ± 26.31 (80.75–154.15) 105.84 ± 29.48 (75.41–150.55) 18.22 ± 1.79 (15.85–20.73)

Se 12.26 ± 5.71 (6.21–26.63) 11.80 ± 3.94 (5.78–19.55) 8.76 ± 1.46 (6.90–11.00)

Se:Hg 1.95 ± 1.06 (1.28–4.92) 4.97 ± 3.19 (2.35–12.11) 6.51 ± 4.65 (3.41–16.37)
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and Hg concentrations in all the three macrourid species
(T. scabrus R = 0.75, P < 0.02; N. sclerorhynchus
R = 0.69, P < 0.04; C. coelorhynchus R = 0.81,
P = 0.05) (Fig. 2), with the lowest statistical significance
in C. coelorhynchus probably due to the narrow number
of pools tested, while no body length-dependent accu-
mulation was observed for Cd and Pb. Concerning
essential metals, heterogeneous slopes were noted. In
particular, some relationships between fish length and
Zn and Cu content, although did not reach significance,
have negative trends as observed in N. sclerorhynchus
(Zn R = −0.47, Cu R = −0.46, P > 0.05) and
C. coelorhynchus (Zn R = −0.52, Cu R = −0.24
P > 0.05), but not in T. scabrus for which no relation-
ships was observed. Se showed a slight but not signifi-
cant tendency to increase with increased body length in
all the three species, while Ni did not display any body
length-dependent accumulation. To the best of our
knowledge, there are no reports of changes in metal
hepatic concentrations correlated with size in deep-sea
fauna, except for a study reporting a strong positive
correlation between body length and hepatic Hg and
Cd concentrations in N. aequalis and Lepidion eques
from Atlantic Ocean (Mormede and Davies 2001a).
Understanding the changes in metal hepatic concentra-
tions correlated with size ultimately requires data from
several different deep-sea fish species before patterns
can be established. However, in general terms, size-
dependent concentrations here described are, generally,
supported in literature. Positive correlation between Hg
hepatic content and marine organism size has been well
demonstrated (Barone et al. 2013; Canli and Atli 2003),
while the results for Cd and Pb are often contradictory,
as some observe a length-related accumulation (Agah
et al. 2009), others absence of any correlation (Stange
et al. 1996) and still others a metal tendency to decrease
with increased body length (Khezri et al. 2014).

Contrasting findings are also reported for Se, with pos-
itive correlation reported for bluefish (Burger et al.
2013) and no consistent size pattern for large predators
as skipjack tuna (Kojadinovic et al. 2007) and marine
mammals (Ikemoto et al. 2004; Seixas et al. 2007).
Conversely, there is a general consensus about the ten-
dency for Zn and Cu concentrations to decrease with
increases in body size. This trend, commonly encoun-
tered in hepatic tissue of various marine organisms
including elasmobranch fish, such as torpedinid
(Barone et al. 2013) and sharks (Cornish et al. 2007;
Endo et al. 2008), teleost fish (Canli and Atli 2003) and
marine mammals (Endo et al. 2007), is generally as-
cribed to different metabolic rates of accumulation and
depuration of essential metals between smallest, rapidly
growing animals, with respect to the oldest, showing a
decline of metabolic activity. Concerning Ni, the very
few published data reported negative correlations be-
tween hepatic levels and fish length (Mohamma
dnabizadeh et al. 2014).

3.3 Se/Hg Molar Ratios

One of the most important detoxification strategies ob-
served in marine and terrestrial organisms (Decataldo
et al. 2004; Martoja and Berry 1980; Nigro et al. 2002)
relies on the insolubilization of metals as mineral con-
cretions. An example is represented by Hg and Se,
which form a complex, known as tiemannite, which is
stored as inert concretions in organism hepatocytes. The
interactions between these two elements, leading to
ameliorate the toxic effects of Hg, have become one of
the strongest and most general examples of interactions
between a heavy metal and a micronutrient. The mech-
anisms contributing to this protective effect are still not
well understood because generally, Se is thought to
sequester Hg and reduce the bioavailability in organisms
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(Sormo et al. 2011), but the results from other studies are
often contradictory and suggest that supplemental Se
performs a protective action against Hg toxicity by
balancing the loss and sequestration of Se by Hg
(Dang and Wang 2011). However, regardless of the
elaborate mechanism ruling the interactions between
these two elements, it has been asserted that an excess
of Se protects against Hg toxicity, and that Se/Hg molar
ratios exceeding 1 are largely protective for adverse Hg
effects (Peterson et al. 2009a, b; Ralston 2008). In the
fish in question, clear and significant intra- and interspe-
cific differences in Se/Hg ratio were displayed and with
C. coelorhynchus having the highest values (Se/
Hg = 3.41–16.37, average = 6.51), followed by
N. sclerorhynchus (Se/Hg = 2.35–12.11, average = 4.97)
and T. scabrus (Se/Hg = 1.28–4.92, average = 1.95)
(P < 0.001) (Table 1). As might be expected
C. coelorhynchus, a smaller species, having the lower
levels of Hg showed higher Se/Hg ratios than did larger
species such as T. scabrus containing higher levels of
Hg. This trend is the result of the fact that selenium is
homeostatically regulated in the body, while Hg levels
are not regulated but increase proportionally with fish
size. Se/Hg molar ratio was, in fact, significantly nega-
tively correlated with length in all the three species
(N. sclerorhynchus R = −0.76, P < 0.002;
C. coelorhynchus R = −0.87, P < 0.003), although in
T. scabrus (R = −0.37, P > 0.05), such a negative
correlation did not appear of statistical significance. This
negative trend means that as the fish get bigger and Hg
levels increase, the ratio decreases and the potential
protective effect of Se decreases. However, in the fish
in question, the values were all above 1, indicating that
an antidotal effect of Se in counteracting Hg occurred,
although it is interesting to note that in T. scabrus,
almost equimolar ratios were observed in many cases,
suggesting that they had less Se available to protect
against Hg toxicity.

3.4 Comparison with Literature Data

A geographic comparison about trace element content in
the examined species is difficult because few data are
available in deep-sea fish liver. However, as can be seen
in Table 3, Hg levels detected here are extremely higher
than those published for deep-sea fauna from Atlantic
Ocean (Company et al. 2010; Martins et al. 2006;
Mormede and Davies 2001a, 2001b), but they are in
good agreement with concentrations reported for fish of

the deep waters of the North-western Mediterranean Sea
(Siscar et al. 2014). With regard to Cd, the detected
levels in our study are generally comparable with those
reported for other deep-sea fish fromMediterranean Sea
(Siscar et al. 2014), higher than those encountered in
N. aequalis and L. eques from Atlantic Ocean
(Mormede and Davies 2001b) but lower with respect
to concentrations registered in different deep-fish sam-
pled in Rockall Trough area–Atlantic Ocean (Mormede
and Davies 2001b) and near the Atlantic hydrothermal
vents, areas with particularly metal-enriched waters
(Company et al. 2010). For Pb, values encountered in
the present study are lower than those noted in
C. mediterraneus from North-western Mediterranean
Sea (Siscar et al. 2014) but higher than those registered
in species sampled in the Rockall Trough off Scotland
(Mormede and Davies 2001a, 2001b). As regards Se, it
is impossible to compare the results obtained in this
study due to the lack of literature data, while for Ni,
our concentrations are much higher than those detected
in fish from NW Mediterranean Sea (Siscar et al. 2014)
and in deep fauna living near hydrothermal vents in the
Mid-Atlantic Ridge off Azores (Company et al. 2010).
Concerning Cu and Zn, a pronounced interspecific het-
erogeneity can be discerned which is an expected find-
ing, because these metals are homeostatically regulated
in a species-dependent manner. However, in samples of
T. scabrus and N. sclerorhynchus analysed, Zn reaches
values extremely high when compared with those re-
ported for deep fauna from Mediterranean and non-
Mediterranean regions, except for a case (see Antimora
rostratus). Also for Cu, although in a more moderate
measure with respect to Zn, the concentrations were
variable among species, with our levels generally higher
than those previously reported for other deep-sea fish
from different marine areas. From the little data avail-
able for comparison emerges that metal concentrations
in our study are generally higher than the levels encoun-
tered in fish from Atlantic Ocean, especially for Hg,
confirming the strong presence of this element in Med-
iterranean deep-sea biota (Koenig et al. 2013; Siscar
et al. 2014). Concerning Ni, the presence of high levels
observed in fish examined, especially where data from
Eastern and Western Mediterranean Sea are compared,
seems to be more delicate to understand. The wide
fluvial system composed by Po river, its tributaries and
a series of secondary rivers can partly contribute to the
high levels of some metals, including Ni, observed in
this sub-basin of the Mediterranean sea (Tankere et al.
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2000). Consistent amounts of this element, on the other
hand, have also been reported in different studies exam-
ining water and sediment quality as well as biota of the
Adriatic Sea (Barone et al. 2013; Dinelli et al. 1996;
Franzellitti et al. 2004), supporting the idea of a regional
background value. This issue should be deepened con-
sidering the several physicochemical factors of water
which are known to modify nickel toxicity to fish. For
example, acute lethality of Ni increases with decreasing
water pH and decreases as hardness, alkalinity and total
suspended solids increase (Hoang et al. 2004). Howev-
er, further studies are also needed due to the marked
toxicity of this element to fishes, including surfacing,
rapid mouth and opercular movements and, prior to
death, convulsions and loss of equilibrium (Svecevičius
2010).

4 Conclusion

This study fills a gap by providing information on
trace metal concentrations in the liver of three
macrourid fish from the Adriatic Sea (Mediterranean
Sea, Italy). In addition, it brings results on relation-
ship of metals with fish length and explores Se/Hg
molar ratio. Overall, the bioaccumulation of the stud-
ied trace metals differs among fish species in relation
to various variables as size, diet and depth habitat.
With regard to concentration vs. fish size, the corre-
lation patterns here described generally reflect what
was encountered in literature. Concerning Se/Hg mo-
lar ratio, the values obtained, all greater than one,
suggest that Se is capable to counter the Hg toxicity,
although T. scabrus shows almost equimolar ratios
indicating a potential hazard for this species. From
the comparison with literature data emerges that
metal levels in the present study are high, especially
for Hg, adding weight to the idea that the Mediter-
ranean region is a hot spot of concern for this
element. Intriguing are also Ni data, and a further
characterization of its concentration in a wider range
of deep-sea species would be the next step for future
biomonitoring assessments. As a final consideration,
research on this topic remains a necessary basic
work in order to provide a better understanding
either of the possible metal impact on the health of
these deep-sea fish or the contamination of the Med-
iterranean deep-sea environment.T
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