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Abstract Principal component analysis (PCA) was per-
formed on chemical data of two sediment cores from an
urban freshwater lake in Copenhagen, Denmark. X-ray
fluorescence (XRF) core scanning provided the under-
lying datasets on 13 variables (Si, K, Ca, Ti, Cr, Mn, Fe,
Ni, Cu, Zn, Rb, Cd, and Pb). Principal component
analysis helped to trace geochemical patterns and tem-
poral trends in lake sedimentation. The PCA models
explained more than 80 % of the original variation in
the datasets using only two or three principal compo-
nents. The first principal component (PC1) was mostly
associated with geogenic elements (Si, K, Fe, Rb) and
characterized the content of minerogenic material in the
sediment. In the case of both cores, PC2 was a good
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descriptor emphasized as the contamination component.
It showed strong linkages with heavy metals (Cu, Zn,
Pb), disclosing changing heavy-metal contamination
trends across different depths. The sediments featured
a temporal association with contaminant dominance.
Lead contamination was superseded by zinc within the
compound pattern which was linked to changing con-
tamination sources over time. Principal component anal-
ysis was useful to visualize and interpret geochemical
XRF data while being a straightforward method to ex-
tract contamination patterns in the data associated with
temporal elemental trends in lake sediments.

Keywords Urban lake sediment - Contamination -
Heavy metals - XRF - PCA

1 Introduction

Urban environments feature strong imprints of human
activity. They are centers of industrial growth and eco-
nomical production, wherefrom contaminants like
heavy metals are intensively emitted since the beginning
of'the Industrial Age (Crutzen 2002; Lyons and Harmon
2012). In recent times, this contamination is constantly
surveyed by air quality monitoring programs
(Ellermann et al. 2012), and it is decreasing in many
industrialized countries (von Storch et al. 2003). In
contrast, past environmental burdens can only be indi-
rectly assessed. Particularly, lake sediment strata have
proven to be a useful tool for contamination investiga-
tions as they serve as final sinks for these contaminants
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in aquatic environments and thus function as historical
archives (Haworth and Lund 1984; Last and Smol
2004). Both urban and remote lacustrine locations con-
tain distinct anthropogenic impacts (Renberg 1986;
Chillrud et al. 1999; Walraven et al. 2014).

X-ray fluorescence (XRF) core scanning has become
widely used to assess sedimentary element levels, espe-
cially since the early 2000s (Croudace et al. 2006). It
provides an effective technique to generate large
datasets covering major and trace elements (Weltje and
Tjallingii 2008; Comero et al. 2011; Lowenmark et al.
2011). On the one hand, iron (Fe), titanium (Ti), and
silicon (Si) as well as alkali metals such as rubidium
(Rb) and potassium (K) are prominent in clay minerals.
They serve as ideal scavenger for heavy metals due to
their large relative surface areas (Eisma and Irion 1988).
On the other hand, elements like copper (Cu), zinc (Zn),
lead (Pb), chromium (Cr), nickel (Ni), and cadmium
(Cd) characterize anthropogenic imprints. They are
mainly emitted by high temperature processes such as
fossil fuel combustion and as part of material preserva-
tion applications (Nriagu 1979). Manganese (Mn) has
redox-sensitive properties that can mark interactions at
the water-sediment interface (Hallberg 1991; Davison
1993). Calcium (Ca) can be considered a salinity indi-
cator, as it is the fifth most abundant element in seawater
and could reveal occurrence of carbonate precipitation
in the sediment columns.

Fig. 1 Maps showing (a) North-
Western Europe, (b) Copenhagen
City center, and (c) the coring
sites in the lake of the Botanical
Garden of Copenhagen
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For associated data interpretation, applications of
multivariate statistics have proven to be a beneficial tool
to apply on records in order to e.g. group variables of
similar characteristics and properties (Selig and Leipe
2008; Templ et al. 2008; Hansson et al. 2013). Principal
component analysis (PCA) is a powerful method used in
chemometrics which provides an overview of complex
multivariate data, revealing relations between variables
and samples (Bro and Smilde 2014). Its application on
environmental data is well documented revealing basic
relationships in element data and providing data associ-
ation and dimension reduction (Zitko 1994; Zupan et al.
2000; Passos et al. 2010; Gredilla et al. 2012).
Furthermore, it serves for pattern recognition, for outlier
detection, and for data classification and trend delinea-
tion (Wold et al. 1987; Olsen et al. 2010; Comero et al.
2011; Quinn and Keough 2013).

In this study, PCA implementation on 13 variables of
XRF core scanning from a lake in the center of
Copenhagen is presented in order to detect features
and nature of heavy metal contamination in an urban
environment. A number of cores were retrieved from
lakes in the former defense work system and cores from
one site, the Botanical Garden, proved to be particularly
well preserved (Fig. 1). The lake and its sediments from
the heart of Copenhagen were therefore chosen as in-
vestigation site as it could provide detailed information
since its establishment in the seventeenth century. The
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Danish capital has been a center for trading in Baltic
region since the Middle Ages and was therefore exposed
to a large variety of power and goods at an early stage.
Since a historical contamination reconstruction is
intended, underlying chemical patterns are highlighted
and linked to their sources.

2 Material and Methods

Two sediment strata were retrieved from the central part
of lake within the Botanical Garden of Copenhagen,
Denmark (55° 41 10 N, 12° 34 28 E). The cores
BH27 (145 cm long) and BH28 (138 cm long) were
taken circa 30 m from each other using a rod-operated
piston corer (Livingstone 1955; Smol 2008). The corer
consisted of a tube sealed with a piston which was
attached to an extension rod. This construction was
lowered through the water column onto the sediment
surface. Subsequently, the tube was penetrated through
the sediment column until a coarse, sandy bottom was
reached. The coring was done in winter 2011, and
sediment recovery was achieved through holes in the
ice-covered lake. The examined water body once
belonged to a late medieval moat as part of the
defense-wall system established around AD 1650 and
surrounding the old town (Skaarup et al. 1998). It was
turned into a lake by partial terrain leveling along with
urban expansion since the mid-nineteenth century.
There is no historical or sedimentological data indicat-
ing that the lake has been dredged, but the establishment
of the Botanical Garden between 1872 and 1874
(Skaarup et al. 1998) appears to have induced an elevat-
ed input of minerogenic material leaving behind a chro-
nological time-marker (see later). Today, the freshwater
lake has a surface area of approximately 7000 m* and a
maximum water depth of about 2 m. Lake-water tem-
perature varies with air temperature, so that the water
body’s surface even freezes in winter time.

The cores were permanently stored at 4 °C. The
sediment tubes were split in halves and analyzed at the
Department of Geological Sciences at Stockholm
University, Stockholm, Sweden, using an Itrax™ X-
ray fluorescence (XRF) core scanner (COX Analytical
Systems 2011). This nondestructive technique provided
datasets of major elements and trace elements as well as
line-scan images and radiographs (XRG; line-scanned)
of the sediment cores (Croudace et al. 2006). Therefore,
the core halves were covered with a thin polyethylene

film. The XRF-core scanner was used in combination
with a 3 kW molybdenum (Mo) tube operating at 55 kV
and 50 mA. Especially, elements of environmental in-
terest were detected in this way due to their relatively
low detection limits (Croudace et al. 2006). The mea-
surements were acquired at a 1000-pum increment with
an exposure time of 200 ms.

The obtained datasets were auto-scaled by
subtracting the overall average (X ) from each variable
and dividing by the standard deviation (o) which result-
ed in datasets with a new mean of zero (x, ) and a
standard deviation of 1 (¢,) (Eq. 1). This form of data
rescaling provided intercomparable objects of all vari-
ables for all associated cores on the one hand and
removed the influence of extreme values on the PCA
results on the other hand (Zitko 1994; Quinn and
Keough 2013; Bro and Smilde 2014).

xX—X

=%, =0; 0, =1 (1)

Light intensity was calculated as well in order to
facilitate the detection of matrix differences in the sed-
iment columns. From the monochromatic radiograph
images, a maximum of 256 shades of gray were read
by automatically allocating one value between 0 (for
black) and 255 (for white) to every pixel.

Variable selection for the principal component anal-
ysis was based on environmental interest and geochem-
ical properties. Here, multivariate statistical methods
have some significant advantages over univariate tech-
niques as they account for a group of variables that
influence the data variability jointly (Bortvka et al.
2005). Even though environmental, geochemical data
usually contains strong correlations, PCA contributes
with its exploratory approach and decreases the data
dimensionality while retaining most of the original in-
formation. On the basis of chosen variables, e.g., chem-
ical elements, PCA provided their weights gathered in
compound variables, the principal components (PC)
which best explained the data variation (Bro and
Smilde 2014). These components are independent in
their contribution to the explained variation as they are
orthogonal (Bro and Smilde 2014). The first PC ex-
plained the largest variation in the datasets in a certain
multidimensional direction and every subsequent com-
ponent accounted for additional information. A scree
plot showed how much of the original variance in the
dataset was explained by each PC. From this point on,
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Fig. 2 Radiograph image (XRG)
and auto-scaled data for light XRG
intensity by depth for cores (a)
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Light intensity XRG Light intensity
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BH27 and (b) BH28. Value 0 0
marks the scaled data average
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the number of principal components was chosen which
shall retain in the PCA model. On this basis, a score plot
was developed which structured the representation of
the original samples in the new multidimensional space,
whereas the loadings plot highlighted the contribution
of the variables to the principal components. In general,
high loadings of elements express their importance for
the PC. Score and loadings plots always have to be
interpreted together. Avoiding consideration of textural
differences in the PCA models fundamentally increased
the description of it (Reid and Spencer 2009).

3 Results

The deposits of the lake within the Botanical Garden of
Copenhagen are muddy. In both cores, two distinct
layers are interstratified in the sediment columns, re-
ferred to as M1 and M2, indicating changes in the
accumulation regime (Fig. 2; XRG panels). Both sub-
strates were visually recognized by a change in material
color from grayish-/brownish-green to yellowish-/
greenish-gray. For BH27, M1 occurred between 61
and 71 cm, whereas M2 appeared between 89 and
99 cm. In core BH28, these layers did not appear quite
as thick with M1 between 62 and 71 cm and M2 at
around 86.5 cm.

@ Springer

Textural changes were also identified on the basis of
light intensity as it is a direct function of material den-
sity. Light intensity was determined by the individual
radiograph images. Figure 2 shows these radiographs
and the related auto-scaled light intensity for core BH27
and BH28. Auto-scaled light intensity values steadily
increased from the bottom to the top of core BH27
(Fig. 2a). This course is interrupted by a distinct de-
crease between 99- and 92-cm depth. At around 38-cm
depth, values shift from measurement mean to 1.6 o and
continued at this level until core surface. In the case of
BH28 (Fig. 2b), auto-scaled light intensity revealed a
distinct maximum at 86.5 cm. Strongly varying material
density differences were recognized up to a depth of
68 cm. From there on, values steadily increased to the
sediment surface.

Figure 3 depicts the auto-scaled element data for core
BH27 over depth. Silicon, K, Ti, Fe, and Rb values
showed a major deviation from their overall progression
at the core bottom as well as at the depths between 89
and 99 cm. This tendency was also obvious in the Cd
trend to a moderate degree.

Auto-scaled element data for core BH28 over depth
is depicted in Fig. 4. Also for this core, Si, K, Ti, Fe, and
Rb values showed a major shift from their overall course
at the core bottom as well as at the depths between 83
and 89 cm. This tendency was associated with a de-
crease in Cr values at these depths.
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Fig. 3 Auto-scaled data of XRF measurements over depth for core BH27. Value 0 marks the scaled data average, whereas every fick mark

represents one standard deviation

The primary objective of the study was to examine
whether PCA could help to visualize changing contam-
ination patterns over core depth. Therefore, an initial
PCA on the entire core (full core model) was run to
identify the textural changes on elemental basis that also
became visible in the light intensity data. Furthermore,
general contaminant features should be accentuated.

Si Ca
0 0

Cr

Fe

Subsequently, a second PCA (top core model) was
carried out covering only the top part of the cores in
order to avoid the influence with markedly textural
differences on the PCA result. The distinction of these
core sections was based on the element and light inten-
sity profiles, the lower parts of the core sections were
then excluded, and the data columns were auto-scaled
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Fig. 4 Auto-scaled data of XRF measurements over depth for core BH28. Value ) marks the scaled data average, whereas every fick mark

represents one standard deviation
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without these data (Wold et al. 1987; Quinn and Keough
2013). This way, more homogenous core segments were
considered. The fop core PCA model was calculated
afterward which covered the same variables only for
the upper, homogenous part of the cores.

Principal component 1 of the top core model of BH27
already accounted for 60 % of the datasets variations,
whereas PC1 of the full core model captured 46 %. The
explained variance for PC2 increased from the full core
model to the top core model as well, from 18 to 20 %,
respectively. At least three principal components would
be required in order to reach about 80 % explanation for
the full core model, whereas only two were required in
the top core model.

The first PC of the full core model of BH28 captured
only 40 %, whereas PC1 of the fop core model
accounted for 47 %. Principle component 2 captured
26 % in the full core model and 29 % after data restric-
tion. Again, the explanatory strength was increased from
the full core model to the top core model. If the full core
model should reach an equivalent acquisition as the fop

3)
o
-1 L L L L L L L L L L L L L
Si K Ca Ti Cr Mn Fe Ni Cu Zn Rb Cd Pb
o
O
o
1 L L L L L L L L L L L L L
Si K Ca Ti Cr Mn Fe Ni Cu Zn Rb Cd Pb
1
®
(6]
o
-1 1 1 1 1 1 1 1 1 1 1 1 1 1

Si K Ca Ti Cr Mn Fe Ni Cu Zn Rb Cd Pb

core model, at least three principal components would
be required as well.

The loadings for the chosen chemical variables
with the principal components are presented in
Fig. 5. For both cores, BH27 (Fig. 5a) and BH28
(Fig. 5b), the first PC was strongly related to ele-
ments referring to clay minerals like Si, K, Ti, Fe, and
Rb. In general, relations were strengthened from the
full core to the top core models. In the case of BH27,
minerogenic elements reached mean loadings of 0.91
in the full core model and 0.96 in the top core model.
Cadmium also showed strong relations to this PC,
although rather considered a contamination indicator
instead. For BH28, clay mineral-related elements had
a mean loading of 0.88 for the full core model and
only 0.82 for the top core model. The full core model
of BH27 described the contaminants with the use of
the first three PCs. This was decreased to two prin-
cipal components in the fop core model. Strongest
loadings were acquired for Cu, Zn, and Pb with an
average of 0.82.

(b)

PC1

1 P L L L L L L P L L

Si K Ca Ti Cr Mn Fe Ni Cu Zn Rb Cd Pb

pPC2

1 1 1 1 1 1 1 1 1

| |
Si K Ca Ti Cr Mn Fe Ni Cu Zn Rb Cd Pb
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Fig.5 Loadings of variables (weights) with the first three principal components for fiull core and top core PCA models of (a) core BH27 and

(b) core BH28
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The PCA models for BH28 always enclosed contam-
inants in the second principal component, although
shifting from positive to negative loadings and vice
versa. The image appeared mirrored and accounted to
a switch of algebraic signs from the full core to the top
core PCA model of this dataset due to associated outlier
removal (Bro et al. 2008). Disregarding this arbitrariness
in sign conventions (Bro et al. 2008), the amplitude of
the loadings increased for Cu, Zn, and Pb. In addition, it
covered a relatively high negative loading for Cd with
—0.81.

Figure 6 compiles the loadings for PC1 and PC2 of
core (a) BH27 and (b) BH28 over depth. Layer of
textural difference was recognized by high positive
standard deviations for the full core model of core
BH27. They extended over 10 cm from 89 to 99 cm
reaching values above 3 o (PCI1). This part was also
recognized in the auto-scaled element data of the full
core as well (Fig. 3). Below this part, several other
depths (e.g., 123—135 cm) could be addressed the same
way. In general, a decreasing trend for PC1 was obvious
from the core bottom to the sediment surface which was
interrupted by the responded M2 section and a layer
with elevated values around 63-cm core depth (M1).
The textural variation also became obvious in PC2. Its
course started at around —2 o and drastically increased
to the mean at 130 cm. Interrupted by M2, this level was
kept until around 60 cm. Here from, PC2 values in-
creased to a maximum of 1.4 ¢ at 31.5 cm. The mea-
surements returned to the mean level all the way up to
the sediment surface. The continuing analysis

comprised depths from 0 to 85 cm only in order to avoid
the influence of the described elevated values on the fop
core PCA model.

In the case of BH28, the first principal component
features a distinct maximum at 86.5 cm with 4.6 ¢
which could be traced at PC2 as well. Principal compo-
nent 2 of the full core model had negative loadings of the
associated elements (see Fig. 5b) and therefore associ-
ated negative scores. In general, the depicted inverse
scores were linked to concentration maxima. Values
arranged along 1 o until they start to increase at around
68 cm to their minimum at 30.5 cm with —2.2 o. These
measurements reached their mean again until the sedi-
ment surface. The depths from 0 to 80 cm were included
for the top core model of BH28.

4 Discussion

The datasets being analyzed in detail comprised two
cores of sediments from the lake of the Botanical
Garden of Copenhagen. The rod-operated piston corer
was penetrated as deep as possible into the sediment
until a coarse, sandy bottom was reached. This signified
that the complete strata covering lacustrine accumula-
tions were retrieved.

Even though the two sediment cores featured macro-
scopic differences as seen on the XRG images (Fig. 2),
their PCA models revealed similar patterns when
highlighting clay minerals by the first principal compo-
nent and heavy metal contamination by the second one

Fig. 6 Principal component (a) (b)
scores by depth for the full core PC1 PC2 PC1 PC2
model of (a) BH27 and (b) BH28 4 2 0 44 2 0 2 4|4 20 2 4 4 2 0 2 4
0 T T T T T T T T T T T T 0
20 | 1F 11+ 1t 420
40 1F 11+ 1t H 40
E 60 + 1 F B - =1 F - 60 /E\
C3 C
<
£ 80 4+ . H 4+ 480 £
(5] [
a a)
100 | 1F 11+ 1t - 100
120 | 1F 11+ 1t 4120
140 | 1F 11+ 1t - 140
1 1 1 1 1 1 1 1 1 1 1 1
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(Fig. 5). However, variable behavior depicted in calcu-
lated loadings appeared to be different when considering
each individual core. The individual explanation of the
PCs varied for the models although the variables
showed the same tendencies. This was due to different
sedimentological features as depicted in light intensity
(Fig. 2; XRG panels). The full core models highlighted
textural variation and covered all depths and their asso-
ciated measurements. The fop core model had the ad-
vantage to be restricted on the basis of dimensions and
maintained a high level of explained variance as they
contained a homogenous core section only. It was im-
portant to carry out an initial PCA on the full datasets as
it revealed differences that immoderately shifted the
model’s depiction and facilitated in reducing the dimen-
sionality even more. Along with this, density features of
the investigated material as represented by light intensi-
ty help to restrict the model and improve its explanatory
strength.

The thickness of the minerogenic layers (M1 and
M2) could easily lead to an overestimation or underes-
timation of variables due to their associated chemical
properties. Here, especially M2 stood out due to high
values for PC1. Therefore, it was necessary to reduce the
number of considered objects for further analysis. Other
studies showed that a normalization of the data to a
lithogenic element (Lowenmark et al. 2011) or to grain
size (Reid and Spencer 2009) improved model recovery.
Results for ideal normalization elements like aluminum
(Al) were neglected due to the utilization of Mo tube in

the XRF analysis. Light elements in particular could be
biased by absorption effect of water along with the use
of a polyethylene film covering the core during the
measurement (Kido et al. 2006; Tjallingii et al.
2007). In addition, surface roughness and density could
affect XRF analysis (Croudace et al. 2006). In order to
minimize these effects, the PCA result was instead
controlled by choosing only the homogenous top sec-
tions of the sediments in the fop core PCA models on the
basis of element and light intensity data. For
comparison, Reid and Spencer (2009) gained similar
loading recovery when normalizing their environmental
data by the fine sediment fraction (<63 pum).

A distinct trend over depth was visible when looking
at the score plot in combination with the loadings plot
for the top core model of core BH27 (Fig. 7). Samples
starting from the M2 layer, around 85 cm, showed a
tendency toward the natural component. This process
climaxed in the depths around 60 to 70 cm and is related
to the M1 layer samples. Lead dominated the pattern in
depths above this level. At around 35 cm, this trend
appeared to be superimposed by other contaminants,
namely Cu and Zn. The sediment surface (020 cm)
was dominated by the influence of redox-sensitive Mn
which marked the water-sediment boundary.

A similar picture to Fig. 7 was drawn from the fop
core model of BH28 (Fig. 8). Depths from 60 to 70 cm
were directly associated with the first component (PC1),
while subsequent samples started to be dominated by
the second component (PC2). Heavy metals like Cu, Zn,

(a) (b)
3 ! ! ! ! ! 1 ' '
! ! ! ! ! Cu,r+Zn Pb,
T |
! ! ! ! ! Ca,
T S ] Mn )
9 : ] ! ! Depth (cm) 9 CN|+ Si
< : : : : r hy
e, : : L e e 0to<10 > 0 tcd
T O e @ 10t0<20 | T O g
Ny : : : ! Ny Fe ———=#
R ) | | <, 20t0<30 | & K Rb'
o . . . . o I
) e f...s" ,,,,,,, 30 to <40
° F ) . 40 to <50
} } 50 to <60
T T e ® 60to <70
i ® 70to <80 !
: ® 8010 <90 i
3 i i i i i -1 |
-3 -2 -1 0 1 2 3 - 0

Fig. 7 The top core PCA model of core BH27 including (a) score and (b) loadings plot

PC1 (59.7 %)
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and Pb had high levels especially between 30 and
50 cm. Sediment surface depths could only be associat-
ed with redox-sensitive Mn to a minor degree.

Explanatory power of the PCAs was increased by
limiting the models to certain depths from the full core
model to the top core model. In order to distinguish
variables of highest importance for a principal compo-
nent, we have set an overall loadings threshold of 7=0.8.
This procedure facilitated the characterization of the
compound variables. Thereby, the first PC could be
addressed as the natural component since it had the
strongest relationships with elements that refer to clay
minerals and aluminosilicates. Silicon mainly originated
from weathering processes along with its high loading
for Ti (0.95, BH27) (Olsen et al. 2010). Rubidium and K
showed strong loadings in both PCA models as they
originate from the clay mineral fraction in particular
(Vasskog et al. 2012). The second PC could be charac-
terized as contamination component as it contained high
loadings with heavy metals which are linked to anthro-
pogenic influence.

A third principal component missed its importance in
the top core models since two PCs already explained
~80 % of the variance in the dataset. The Kaiser criterion
(eigenvalues>1) is often discussed as a threshold for the
number of principal components used in a model
(Comero et al. 2011). But since two principal compo-
nents covered a large share of the dataset variation, two
principal component models were considered as they
facilitated a two-dimensional visualization. Beyond, the

third PC did not feature strong loadings except for Mn or
Si after the models were limited to the top core sections.

It was possible to capture trends in the contamination
sources by the PCA models since element contribution
varied over depths. Temporal shifts in Pb and Zn con-
taminations of flood plain sediments in South-Eastern
Czech Republic were observed by Matys Grygar et al.
(2012). In our PCA model, the influence of variables
associated with contamination decreased in favor of
another variable as depicted in the shift between Pb
and Zn (Figs. 7 and 8). Copenhagen had gone through
a transition from a city being influenced by Industrial
Revolution in the eighteenth century until today where it
is branded “green,” due to its intended extended use of
renewable energies (Danish Ministry of Climate,
Energy and Building 2013; European Environment
Agency 2014). Especially during the period from the
1920s to the early 1990s, Pb was extensively used as an
additive to gasoline (tetra-ethyl lead) and was wide-
rangingly emitted to the atmosphere (Nriagu and
Pacyna 1988). Environmental legislation, such as the
phasing out of Pb in gasoline and the improvement of
fly ash filters in incineration plants (European Council
1975, 1987; von Storch et al. 2003), supplied the basis
for decreasing stresses on human health as well (Molin
Christensen and Holst 1988). As Zn levels remained on
a relatively higher level, source contribution patterns
must have changed. Fossil fuel combustion may no
longer be its dominating origin as the use of galvanized
metal products and fertilizers increased alongside.

(a) (b)
3 ! j j ! ! 1 ' T T
. . . . . Zn *Cu
Pb
2 Mn,
- N|+ 4
B N R .
= S
< ‘ ‘ ‘ : : Depth (cm X
R oofbr b P SR . é’mim’ & oo S Fey
N l?ﬂ e e 10to<20 | & Tii K,
P R R R W & ] 20to<30 | & 1 Ca, *
o & K 30 to <40 ; Rb
‘ L%y Lo 40 to <50 i ! ]
b 50 to <60 ;
‘ ‘ 3 ‘ ; ® 60to <70 - Cd,
3 ; ; ; ; ; ® 70to <80 A . i .
-3 2 1 0 1 2 3 -1 0 1

PC1 (47.3 %)

PC1 (47.3 %)

Fig. 8 The top core PCA model of core BH28 including (a) score and (b) loadings plot
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Additionally, Zn-containing compounds are common
constituents in hygienic products and agrochemicals
and serve as wood preservation (Bhattacharya et al.
2002; Nicholson et al. 2003).

5 Conclusion

The application of principal component analysis (PCA)
proved to be a helpful tool for interpreting XRF-core
scanning datasets for the presented lacustrine cores. The
number of variables of the presented datasets was con-
siderably decreased from 13 measured elements to only
two principal components while still capturing about
80 % of the original variance in the datasets. This aspect
facilitated data presentation and its interpretation.
Limiting the PCA models to only the homogenous top
part of the cores, avoiding deeper layers with different
texture, significantly improved the dimensionality of the
PCA models.

The first and second principal components were re-
lated to sedimentological features and contamination
burdens, respectively. Clay minerals dominated some
parts of the core matrixes and were controlling the first
principal component. Heavy metals in contrast were
dominating the second principal component.
Surprisingly, even the course of contamination trends
were revealed by the help of the score plots, highlighting
the transition of contamination loads over core depth
and time in both locations.
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