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Abstract Environmental models are frequently
used within regulatory and policy frameworks to
estimate environmental metrics that are difficult or
impossible to physically measure. As important
decision tools, the uncertainty associated with the
model outputs should impact their use in informing
regulatory decisions and scientific inferences. In
this paper, we present a case study illustrating a
process for dealing with a key issue in the use and
application of air quality models, the additional
error in annual mean aggregations resulting from
imputation of missing data from model data sets.

The case study is based on the US Environmental
Protection Agency’s Multi-layer Model, which
estimates the hourly dry deposition velocity of air
pollutants based on hourly measurements of mete-
orology and site characteristics. A simulation was
implemented to evaluate the effect of substituting
historical hour-specific average values for missing
model deposition velocity predictions on annual
mean aggregations. Sensitivity studies were per-
formed to test the effects of different missing data
patterns and evaluate the relative impact of the
substitution procedure on annual mean SO2 deposi-
tion velocity estimates. The substitution procedure
was shown to result generally in long-term unbiased
estimates of the annual mean and contributed less
than 20% additional error to the estimate even when
all data were missing. Consequently, it may be possible
to use the historical record of deposition velocities to
provide reasonably accurate and unbiased annual
estimates of deposition velocities for years without
meteorological measurements.

Keywords CASTNET. Deposition . Quality
assurance . Decision-making .Model accuracy and
precision

1 Introduction

Quantitative models are frequently used to esti-
mate important environmental parameters. These
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estimates provide important information for scien-
tists and policy-makers. However, uncertainty in
the model inputs and resulting uncertainty in the
model output can reduce confidence in the esti-
mates and diminish the utility of the results.
Therefore, guidance on methods and approaches
for dealing with key quality assurance issues
associated with models, like the effect of missing
data on regulatory decision-making and environ-
mental assessment, is required to provide the
scientist or decision-maker with a high degree of
confidence in using the model outputs. The US
Environmental Protection Agency’s (USEPA) Of-
fice of Air and Radiation, as well as other USEPA
programs, frequently use model outputs in support
of key regulatory programs. Establishing the
quality assurance criteria for using model predic-
tions requires that the USEPA have quantitative
metrics describing model uncertainty, that the
amount of acceptable uncertainty in the model
outputs be stated within the context of the uses
and decisions made with the data, and that the
resulting quality assurance criteria be thoroughly
tested and examined to ensure that the final model
predictions are acceptable within the program
goals and objectives.

In this paper, we present a case study illustrating a
process for imputing missing data in the model data
sets. The case study is based on EPA’s Multi-layer
Model (MLM; Meyers et al. 1998), which is used to
estimate dry deposition velocities of acidic com-
pounds and ozone at Clean Air Status and Trends
Network (CASTNET) sites (Clarke et al. 1997).

MLM generates hourly predictions of deposition
velocity using an Ohm’s Law analogy model based on
parameterizations of various resistances to deposition,
including aerodynamic, boundary layer, stomatal, and
cuticular resistances. MLM divides the plant canopy
into 21 layers so that within-canopy differences in
wind speed, radiation, and leaf area index can be
accounted for in the calculation of the deposition
velocity. Within MLM, hourly deposition velocity
(vd) estimates are generated using the following:
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where,

hc Height of the canopy (meter)
rc(z) Canopy resistance (seconds per meter) at

height z
ra,soil Subcanopy aerodynamic resistance

(seconds per meter)
rsoil Soil resistance (seconds per meter)
Ra Aerodynamic resistance (seconds per meter)
A(z) Leaf area density at height z
rs Stomatal resistance (seconds per meter)
rb(z) Boundary layer resistance (seconds per

meter) at height z
rmes Mesophyll resistance (seconds per meter),

and
rcut Cuticular resistance (seconds per meter)

The aerodynamic resistance is parameterized as a
function of the standard deviation of the wind
direction (σθ) and the wind speed at 10 m, while the
wind speed at the lowest level in the canopy is used to
determine the subcanopy aerodynamic resistance. The
soil resistance is set to a chemical specific value
which is dependent on soil moisture. The canopy
resistance is calculated at each level in the canopy.
Plant species-specific vertical profiles of leaf area
density are used. The stomatal resistance is calculated
using the approach of Jarvis (1976), where rs is
determined from a plant species specific minimum
stomatal resistance and from factors that account for
temperature, soil moisture, and vapor pressure deficit
stresses. The boundary layer resistance is calculated
from the within-canopy wind profile and the
molecular diffusivity of the gas. For the gases
currently modeled for CASTNET, the mesophyll
resistance is ignored. The cuticular resistance is a
chemical specific value that varies with surface
wetness. Additional information on the MLM
model and the underlying scientific basis for the
model structure can be found in Meyers et al.
(1998). The ability of the MLM to accurately and
precisely predict measured deposition velocities
under field conditions is discussed in Finkelstein et
al. (2000) and Finkelstein (2001).
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For CASTNET, MLM is driven by hourly meteo-
rological measurements taken at on-site 10-m towers.
Key site-specific meteorological inputs to the MLM
model include hourly measurements of precipitation,
wind speed, temperature, standard deviation of wind
direction (σθ), relative humidity, and solar radiation.
Missing hourly metrological data (caused by instru-
ment malfunction, quality assurance checks, labora-
tory error, etc.) results in a missing MLM model
prediction of hourly deposition velocity and therefore
a missing value for the hourly deposition flux. The
amount of missing data for any MLM model input
parameter at any given CASTNET location for a
specific year can range from less than 1% to over
90%. Weekly average concentration measurements
are made at the CASTNET sites of SO2, HNO3,
particulate SO4, NO3, NH4, and a suite of base
cations, while hourly average concentration measure-
ments are made of O3. Although not as likely as
missing meteorological data, missing concentration
values would also result in a missing value for the
hourly flux. Once valid hourly fluxes are calculated,
the hourly fluxes are aggregated to weekly, quarterly,
and then annual deposition estimates. Currently, in the
CASTNET program, a data completeness criterion of
69% is used at each step of the process. For example,

at least 69% of the hourly deposition fluxes must be
present to calculate a valid weekly deposition flux.
Therefore, completeness of the flux data at the hourly
time step is critical to ultimately providing annual
values of deposition. If there are enough missing
deposition velocity estimates, the completeness crite-
rion is not met, which reduces the quantity of
information available from this valuable monitoring
program. Missing data in model input data sets are a
major quality assurance issue for all predictive air
quality models. Therefore, establishing an approach
for resolving missing data issues, designing a proce-
dure for possibly imputing the missing hourly data,
and subsequently establishing a criterion for the
acceptable amount of missing data are important
components of the quality assurance program associated
with the model outputs.

Other approaches for imputing missing deposition
velocities have been investigated (Lavery et al. 2008)
and include substituting particular missing meteorolog-
ical input parameters using either historical data or data
from the nearest CASTNET station. However, replac-
ing missing MLM inputs requires that the model be
rerun, adding substantial programmatic computational
and procedural expenses. Another alternative approach
(Lavery et al. 2008) is to use long-term average

Table 1 Representative CASTNET sites selected for simulation

Site ID Location Latitude Longitude Plant species

ABT147 Abington, CT 41.84 −72.01 Sugar maple (30%), beech (27%), white oak (20%),
grass (12%), Virginia pine (22%), water (5%)

ACA416 Acadia National Park, ME 44.38 −68.26 Mixed wetlands (20%), mixed conifer deciduous (17%),
white pine (12%), aspen/birch (11%), beech/maple (9%),
spruce (7%), mixed pine (7%), mixed conifer (6%)

CAD150 Caddo Valley, AR 34.18 −93.10 Southern red oak (32%), loblolly pine (24%), grass (24%),
water (20%)

DEN417 Denali National Park, AK 63.75 −148.96 Stunted pine (61%), spruce (17%), scrub (9%), mixed
deciduous (6%), grass (5%), mixed forest (2%)

DEV412 Death Valley, CA 36.51 −116.85 Rock (95%), sagebrush (5%)

GAS153 Georgia Station, GA 33.18 −84.41 Grass (35%), loblolly pine (27%), apple/peach/pear (13%),
maize (10%), wheat (10%), water (5%)

GTH161 Gothic, CO 38.96 −106.99 Grass (45%), aspen (40%), spruce (15%)

NCS415 North Cascades National Park, WA 48.54 −121.45 Rock (36%), white oak (15%), maple (15%), spruce (13%),
Virginia pine (10%), grass (8%), pond pine (3%)

PNF126 Cranberry, NC 36.11 −82.05 Grass (38%), chestnut/red oak (32%), maple (30%)

PRK134 Perkinstown, WI 45.21 −90.60 White oak (39%), sugar maple (33%), blue grass (10%),
maize (9%), water (9%)

WSP144 Washington Crossing, NJ 40.31 −74.87 White ash (40%), grass (37%), maize (23%)
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deposition velocities, but this approach does not
capture the diurnal and seasonal patterns in the
deposition velocity (Sickles and Shadwick, 2007).

The goals of this study are to develop a method to
impute missing MLM deposition velocity estimates
and then to quantify the additional uncertainty in the
annual average deposition velocity estimate when the
method is applied. The method developed was to
replace missing deposition velocity estimates with the
average value from historical measurements for that
hour and day of the year.

2 Methodology

To assess the impact of substituting historical deposition
velocity data for missing values in the CASTNET
database, an approach was developed to capture the
diurnal and seasonal patterns in missing data that could

occur across the range of CASTNET sites. Eleven
CASTNET sites representative of the geographical and
ecological diversity of sites in the CASTNET program
were chosen for evaluation (Table 1). The sites ranged
from dry ecosystems like site DEV412, a desert
location in Death Valley, CA, to sites with high
precipitation and large vegetative diversity, like site
NCS415 in North Cascades National Park, WA. Many
of these sites have been sampled for over 20 years,
resulting in an extensive historical record of meteorol-
ogy and deposition. Of the entire period of record, the
years 2000–2005 were selected for further analysis
because they had relatively high data completion rates
at the selected sites (USEPA 2009). These 66 site–year
combinations had 89% valid data, on average, for the
5-year period. Hereafter, the data for these 6 years at
the 11 sites are termed the “Master” files. The MLM
model generates hourly predictions for SO2, nitric acid,
ozone, and particulate deposition velocity. For this
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Fig. 1 a Distribution
of hourly SO2 deposition
velocities at site ABT147
(Abington, CT). b
Time-series of hourly
SO2 deposition velocities.
The blue dots indicate
the yearly mean SO2

deposition velocity
(averaged over non-missing
MLM predictions during
the year)
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study, SO2 deposition velocity was chosen for analysis.
A comparison of study results among the other
deposition outputs showed the greatest variability in
annual average deposition velocity was expressed for
the SO2 deposition velocity outputs. Consequently, the
study findings presented here represent a “worst-case”
scenario, where the general conclusions should apply
to the other chemical species measured by CASTNET.

For each of the 11 sites and 6 years, the historical
average SO2 deposition velocity was calculated for
each hour of the year using non-missing values from
the site’s entire historical record with the following
exceptions. Values from the first 2 years of operation
of the site were excluded from these historical
averages to ensure that the soil moisture estimates
used in the deposition velocity model had reached
equilibrium. The selected year was also excluded
from the averages to avoid bias in the evaluation of
results. This procedure generated six files for each site

(one for each year) which, for this paper, are termed
“Historical” files. As an example, the site DEV412
began operation in 1995; the Historical file for the
year 2000 for this site would contain one value for
each hour of the year (8,760 h), each of which is the
average deposition velocity of that hour for the years
1997–1999 and 2001–2005.

The amount and pattern of missing data across
CASTNET sites and between years is random and
cannot be modeled. Therefore, missing data patterns
were simulated by using “Mask” files which contain
patterns of missing data during the year 2000 at 78
different CASTNET sites. Tests of the sensitivity of the
substitution method to the missing data patterns used
were conducted by imposing each of the 78 Mask files
on each of the 66 Master files. The resulting missing
hours were then replaced by the corresponding hourly
average deposition velocity from the Historical file for
that site and year. Hourly values missing in the original
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Fig. 2 a Distribution
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Master file were not replaced regardless of whether the
value was missing in the Mask file.

Regulatory analyses and environmental assessment
decisions typically use aggregated data fromCASTNET
because of the large geographic extents and long-term
temporal scales related to reductions in air emissions
mandated by the 1990 Clean Air Act Amendments.
Therefore, to be consistent with and relevant to these
analyses and assessments, the annual deposition veloc-
ity was selected as the metric for evaluating this method.

The annual average SO2 deposition velocity was
calculated for each of the 66 Master files (termed
“Master Annual Average”). For each of the 66 Master

files, all 78 Mask files were applied, creating patterns
of missing data for that file. The new “missing”
hourly deposition velocity values were replaced using
the Historical file for that site and year. This created
78 “Substitute” files for each of the 66 Master files.
We calculated the annual average SO2 deposition
velocity for each of the 78 Substitute files for each of
the Master files from the simulation procedure
(termed “Substitute annual average”). For each of
the 78 data sets (i=1 to 78), a percent difference
between the Master Annual Average value and that
resulting from the resulting Substitute data files was
calculated as:

Percent Differencei ¼ ðMaster AnnualAverage� Substitute Annual AverageiÞ
Master Annual Average

� �
»100 ð3Þ
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Fig. 3 a Distribution
of hourly SO2 deposition
velocity at site GAS153
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non-missing MLM
predictions during the year)
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In the above formula, negative values resulted when
the annual values after substitution were larger than the
annual value obtained from the original data file
generated by MLM. Transformation of the Percent
Differencei to Percent Errori was implemented by taking
the absolute difference of each calculated percent
difference. A total of 5,148 comparisons were made
(11 original Master File sites for the 6 years (2000–
2005) times 78 Mask file missing data scenarios). The
resulting data were then statistically and graphically
evaluated.

3 Results and Discussion

An initial evaluation of the Master file data sets
indicates a large variability in the deposition velocity
patterns among the sites. Examples of this spatial and
ecological variance are shown through comparisons

between Figs. 1, 2, 3, and 4, each of which shows
hourly deposition velocities for an individual site. For
example, in Fig. 1, site ABT147, located in the
northeastern United States, clearly shows a seasonal
pattern over the 6-year time span used in the
simulation. The upper panel (Fig. 1a) presents a
histogram of the MLM hourly SO2 deposition
velocity predictions, with a log-normal distribution
overlain on the data. Descriptive statistics are pre-
sented in the insert. Figure 1b indicates the time-series
patterns and trends of the modeled hourly deposition
velocity. The blue dots indicate the mean annual SO2

deposition velocity (averaged over non-missing MLM
predictions during the year). The time-series graphic
indicates the presence of missing data. Notice that the
missing data occur at inconsistent times during any
year and are not directly tied to the pattern or degree
of temporal variability. Similar information is pre-
sented in Figs. 2, 3, and 4 for sites NCS415 (high
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elevation site), GAS153 (coastal plain site in the
southern United States), and DEV412 (desert site in
the western United States). Missing data patterns vary
among these example sites, and the patterns, magni-
tudes, and temporal trends of the MLM SO2 deposi-
tion velocity outputs are highly variable among sites.
Generally, sites at lower elevations in the eastern
United States have a higher frequency of larger
deposition velocity. Vegetation at these sites has a
high leaf area index and long active growing seasons.
In colder climates (northern and high elevation sites),
the plant stomata are open less often resulting in less
uptake of gases. In dry regions of the United States,
the amount of gaseous chemicals absorbed by
vegetation is minimized as plant stomata are often
closed to reduce evapotranspiration. Key climatology
patterns and ecological factors that affect site-specific
deposition velocity include rainfall patterns during the
spring and summer seasons, the percentage of site-

specific crop and forest coverage, and the site-specific
wind speed and turbulence.

The within-year variability of SO2 hourly deposi-
tion velocities in any of the Master files is dependent
upon a large number of environmental factors,
including vegetation, temporal changes in precipita-
tion, weather patterns, and temperature. Given the
range and temporal patterns of deposition velocities
illustrated in Figs. 1, 2, 3, and 4, it is clear that
accurately estimating a missing hourly MLM predic-
tion from historical data will necessitate the use of
hour-specific values rather than a simple annual
average value.

A comparison of the range and distribution of
deposition velocities for different sites is shown in
Fig. 5, which presents the empirical cumulative
distribution function (CDF) of non-missing MLM
SO2 hourly deposition velocity predictions for Master
files for the years 2000–2005. As was seen through

Fig. 5 Cumulative distribution function of hourly SO2 deposition velocity at selected representative sites

398 Water Air Soil Pollut (2011) 222:391–402



the comparisons of Figs. 1, 2, 3, and 4 and through
comparisons of the different panels in Fig. 5, the
overall CDF patterns are different between sites. In
contrast, the CDF’s for different years are relatively
consistent for a given site. Examination of the 42
Master files for the seven remaining Master file sites
(not shown here) showed results similar to Fig. 5.
Therefore, any approach to substitution should incor-
porate the historical record at the specific site to the
degree possible, with longer historical records possi-
bly providing a better estimate of the expected value
for any hourly deposition velocity output from MLM.

When the substitution method is applied, the
annual average deposition velocity in the Substitute
file depends on the year, the number of replaced
hours, and on the distribution of the missing values.
Sensitivity tests of these factors were conducted by
applying the missing data patterns for the 78 Mask
files to each of the 66 Master files (11 Master file
sites). The valuation of the percent error statistic (n=
5,148 comparisons) resulting from the simulation is
displayed in Table 2. The number of missing hours in
a year was categorized by bins representing 10%
intervals, from 0% to 100% missing hours, and the
average percent error for each missing hour bin was
computed. The magnitude and distribution of the
percent error statistic is site dependent; however, the
trend in magnitude of the statistic is generally
consistent among the chosen sites. As the percent of
missing data increases, the relative error in the
average annual value associated with substituting
historical hourly average values also increases, with
the average relative error increasing from <1% for 1–
10% missing hours to 4.0% for 41% to 50% missing
hours. It is significant to note that even when 91–
100% missing hours were replaced using this method
the average relative error in the estimate was only
7.7% and the maximum average relative error was
17.8% (site PRK134).

Figure 6 presents cumulative distributions of the
site- and year-specific percent error statistic for
selected Master sites. Each line on the graph is
generated from the 78 simulations for a single site–
year combination. The distributions provide a visual
examination of the relative change in percent error
between years for a single site. In the examples
provided in Fig. 6, and for the other sites not shown,
on average the relative change in the error statistic
between years was less than 1%. For some sites and T

ab
le

2
P
er
ce
nt

er
ro
r
fo
r
m
is
si
ng

da
ta

ca
te
go

ri
es

P
er
ce
nt

m
is
si
ng

da
ta

ca
te
go

ri
es

S
IT
E
_I
D

0–
10

%
11
%
–2

0%
21

%
–3

0%
31

%
–4

0%
41

%
–5

0%
51

%
–6

0%
60

%
–7

0%
71

%
–8

0%
81

%
–9

0%
90

%
–1

00
%

A
B
T
14

7
0.
50

1.
52

1.
97

3.
32

4.
62

5.
66

5.
31

–
–

7.
21

A
C
A
41

6
0.
58

1.
58

3.
23

4.
41

5.
75

8.
85

7.
02

9.
85

–
11
.8
4

C
A
D
15

0
0.
46

0.
93

1.
99

2.
12

2.
82

3.
42

4.
83

3.
47

–
5.
10

D
E
N
41

7
0.
93

2.
48

4.
47

6.
23

6.
35

8.
73

7.
67

11
.5
4

–
14

.5
6

D
E
V
41

2
0.
06

0.
12

0.
18

0.
19

0.
22

–
0.
31

0.
40

–
0.
54

G
A
S
15

3
0.
61

1.
89

3.
03

4.
29

4.
55

–
6.
53

6.
21

–
7.
37

G
T
H
16

1
0.
38

0.
95

1.
72

1.
65

2.
02

1.
43

2.
81

2.
52

–
4.
49

N
C
S
41

5
0.
42

1.
06

1.
12

2.
19

2.
25

1.
86

3.
58

2.
82

–
3.
71

P
N
F
12

6
0.
38

1.
28

1.
76

1.
87

2.
25

3.
24

3.
22

–
–

3.
33

P
R
K
13

4
0.
93

3.
30

5.
49

7.
43

8.
64

10
.9
2

10
.7
3

–
–

17
.8
0

W
S
P
14

4
0.
56

1.
71

3.
00

2.
34

4.
40

–
4.
94

6.
08

–
8.
90

N
ot
e:

R
es
ul
ts
ar
e
no

t
re
po

rt
ed

w
he
n
N
<
5

Water Air Soil Pollut (2011) 222:391–402 399



missing data patterns, the between-year variability is
3–4% percent error, but this occurs infrequently (i.e.,
in less than 20% of the simulations run). Therefore,
the substitution approach results in a relatively
consistent expected error over time for a specific site.

This finding leads to two important questions for
each specific scientific or programmatic use of the data.
First, what magnitude of uncertainty is acceptable for
the particular application (trend detection, regulatory
decision, or environmental assessment) using the MLM
predictions? And second, what is the magnitude of data
substitution in the MLM predictions that results in an
uncertainty less than that specified in the previous
question? A key issue in resolving the above questions
is the concept of bias, i.e., whether the substitution
process results in estimates that are consistently higher
or lower than the known annual mean deposition
velocity. The results of the percent difference statistic
resulting from the simulation are shown in Table 3. A
percent difference of zero indicates no bias, a positive
value indicates that on average the Substitute Annual

Average is less than the Master Annual Average, and a
negative value indicates that on average the Substitute
Annual Average is greater than the Master Annual
Average. Examination of Table 3 indicates that the
tendency for the substitution procedure to result in
biased estimates of the annual mean deposition
velocity is inconsistent among sites, and trends are
not correlated with the amount of missing data. For
example, site PRK134 and site ACA416 have negative
percent differences along the scale of percent missing
data, while sites ABT147 and GAS153 generally are
associated with positive percent differences. Other sites
have both positive and negative average percent
differences across the range of percent missing data.
From a CASTNET program perspective, the results are
reassuring. For a particular year at any given site, the
annual mean deposition velocity resulting from substi-
tution may be either higher or lower than the true
mean. That is, there is no general tendency of the
substitution procedure to have a large impact on the
analysis of deposition trends across time. In addition,
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Fig. 6 Cumulative distribution of percent error for representative sites
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examination of Table 3 indicates that for the majority
of the sites and missing data categories, the average
percent difference is relatively small (<±5%).

4 Conclusions

The objective of this project was to establish quantita-
tive uncertainty relationships for average deposition
velocity predictions with varying degrees of missing
data from the MLM air quality model. Information on
the uncertainty will improve the usefulness of data from
CASTNET for environmental decision-making and
environmental assessment. A simulation designed to
evaluate the effect of substituting missing model
predictions on an hourly scale was implemented, and
the relative impact of the substitution procedure on the
site-specific annual mean SO2 deposition velocity
estimates was evaluated. The substitution procedure
was shown to result generally in long-term unbiased
estimates of the annual mean. Variations in error
resulting from the missing data procedure were shown
to be site-specific; however, the interannual variability in
the expected error for a given site was generally
consistent over time. For most sites, the results of the
current study suggests that substitution of numerous
hour-specific historical values for missing hourly values
leads to only small increases in uncertainty in the
resulting annual average SO2 deposition velocity. Even
when all data was missing, the average additional error
using this approach was less than 8% and the maximum
additional error was less than 20% for the studied sites.
Therefore, the use of historical average values which
capture the diurnal and seasonal patterns to fill in or
substitute for missing model hourly predictions is a
reasonable approach for increasing the information
content of the publically available CASTNET data.

Results from the current study are helping to guide
the EPA’s Clean Air Markets Division to develop
quantitative relationships between the amount of
missing data and uncertainty. These results are being
used to help EPA develop quality assurance criteria
for the acceptable amount of missing data that can be
imputed and still maintain acceptable data quality for
its assessments of total deposition.

This article describes the process of developing
quantitative metrics of uncertainty for data for use in
assessments. While we have illustrated this for data
replacement of missing data values, the same con-T
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cepts apply to instrument or chemical analysis-
derived uncertainty and error steps in the collection
of the data. Understanding and using quantitative
uncertainty/error metrics maximizes the amount of
data that is available for use in the particular
assessment. For the specific application of CASTNET
annual deposition fluxes, this analysis will greatly
increase the number of sites (and years) of data that
will be acceptable for inclusion in future assessments.
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