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Abstract Lipophilic anthropogenic contaminants en-
ter the environment from different kinds of human
activities and corresponding emission sources. In the
hydrosphere, they accumulate frequently in specific
sedimentary zones, among others, and at coastal
areas, forming reservoirs of pollutants. Marine and
freshwater sediment samples as well as soil samples
from a highly industrialized coastal area in Northern
Greece have been analyzed in order to have a detailed
view on the state of the particle-associated pollution.
Noteworthy, based on extended GC/MS non-target
screening analyses, interesting, so far unknown, or
rarely documented contaminants have been identified
and quantified comprising, e.g., mono- and dichlor-
ocarbazoles, bromocarbazole, 2,6-di-tert-butyl-4-
nitrophenol, etc. However, all relevant contaminants
are discussed with respect to their spatial concentra-
tion profiles, their emission sources, and their
pathway. In addition, numerous pollutants are sug-
gested to become selected for environmental moni-
toring programs. Hence, this study can act as an
example for adapting individual monitoring programs
to the individual contamination in coastal areas.

Keywords Non-target screening analyses . Organic
contaminants . Sediments . Coastal area .Monitoring
programs

1 Introduction

Marine and freshwater sediments are integral and
dynamic parts of the aquatic environment that are
frequently affected directly or indirectly by anthropo-
genic discharge of contaminants. Principally, two
general emission sources can be differentiated: (1)
direct point emissions including industrial discharge,
municipal sewage effluents, or harbor activities and
(2) activities like production, refining, or usage of
petrogenic products, shipping, or agriculture activi-
ties, representing more diffuse sources contaminating
indirectly the aquatic system (Chen and White 2004;
Heim et al. 2004; Schwarzbauer et al. 2000). The
organic contaminants from the latter emissions can
enter the aquatic environment by different pathways
like surface runoff, erosion, or leaching of soils, aerial
deposition, spray drifts, volatilization, or direct
discharge of wastes.

Due to their hydrophobic nature, many organic
contaminants in aquatic systems are dominantly
associated with particulate matter (Parks 1975; Olsen
et al. 1982). Hence, sediments and suspended partic-
ulate matter act as important tools for transport and
deposition of associated organic compounds and, with
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respect to the long-term behavior, tend to support
geoaccumulation on partially high levels. Further on,
contaminated particulate matter in main aquatic
sedimentation zones, e.g., coastal areas, can form
natural reservoirs for secondary contamination which
can affect the benthic organisms and, consequently,
can transfer pollutants to higher trophic level organ-
isms through food chain transfer (Warren et al. 2003;
EPA 1996).

The important role of sediment pollution in the
environmental assessment is the main motivation for
many studies applied on aquatic sediment systems. In
particular, nowadays, several international sediment
management and monitoring programs have been
developed. For example, the European Sediment
Network is an activity which provides new aims and
methods in sediment management including riverine,
estuarine, and marine sediments (Apitz and Power
2002). Furthermore, the European AquaTerra project
is a second example which provides a better under-
standing of the river–sediment–soil–groundwater sys-
tem (Barth et al. 2007; Gerzabek et al. 2007). On the
other hand, many programs have national character
like the Alaska Environmental Monitoring and As-
sessment Program (Long et al. 1995) and the San
Francisco Estuary Regional Monitoring Program
(Hoenicke et al. 2007). However, most of the
monitoring programs investigate the presence of
preselected groups of dominantly priority pollutants
like polycyclic aromatic hydrocarbons (PAHs; e.g.,
Gocht and Grathwohl 2004), organochlorine com-
pounds or polychlorinated biphenyls (PCBs; e.g.,
Peré-Trepat et al. 2006). According to Petty et al.
(2004), monitoring programs might be inherently
limited to provide a holistic exposure assessment for
several reasons, e.g., the site conditions (e.g., water
quality) or the insufficiency of the analytical sensitiv-
ity and selectivity to detect and quantify trace levels
of contaminants.

However, a further restriction of monitoring pro-
grams is related to a large variety of organic
contaminants comprising not only pesticides, phar-
maceuticals, industrial chemicals, or personal care
products but also numerous so far unknown or rarely
reported compounds. These latter substances are
usually man-made xenobiotics that are usually not
considered in monitoring network programs. The
application of a non-target screening approach pro-
vides the opportunity to expand the knowledge on

low-molecular-weight organic pollutants in a restrict-
ed region and reveals a first deeper insight into the
state of pollution (Bester et al. 1998; Ricking et al.
2003; Kronimus et al. 2004). Further on, compounds
identified by screening analyses should be evaluated
based on their molecular structure, their technical
usage, and their (eco)toxicity. Additionally, results of
non-target screening analyses might allow (1) to
identify individual emission pathways, (2) to link
contaminants with specific sources, and (3) to
investigate in more detail the spatial distribution of
specific contaminations (Bester and Theobald 2000;
Galassi et al. 2004; Dsikowitzky et al. 2004;
Schwarzbauer and Heim 2005; Weigel et al. 2005).
However, the most important value of non-target
screening analyses is to provide suggestions for
including so far unnoticed or new contaminants in
optimized monitoring programs.

In this study, detailed gas chromatographic-mass
spectrometric (GC/MS) non-target screening analyses
have been applied to riverine and marine sediments as
well as to soils derived from a highly industrialized
coastal area next to Kavala city, in Northeastern
Greece. The numerous compounds identified in the
area are classified dominantly according to their
molecular structure. Furthermore, they are discussed
with respect to: (a) their quantitative data, (b) their
potential source specificity, and (c) their usage and/or
applications if such data are available.

2 Materials and Methods

2.1 Area Description and Sampling

The studied region is a coastal area situated 15 km
east of Kavala city (Northeast Greece), which is
significantly affected by anthropogenic activities. The
main industrial activities are attributed to petrochem-
ical industry (in particular, crude oil treatment facility,
sulfur and natural gas liquids extraction facilities, and
storage of these products), a phosphoric fertilizer
plant (with production facilities of ammonia, phos-
phoric acid, sulfuric acid, nitric acid, nitrogenous
fertilizers, etc. and installations for the storage,
bagging, palletizing, in-plant handling, and loading
of products on ships and trucks and a harbor), a
fishery trade (with production and storage areas,
freezing compartments, and tin ware production
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units), marble quarries, and some enterprises which
trade with inert materials. Additionally, in the sur-
rounding area, extended agricultural activities are
taking place and the new national highway (Egnatia
odos) is passing through, and furthermore, uncon-
trolled dumping of huge amounts of household wastes
contaminates this area (Grigoriadou et al. 2007).

In January 2004, 22 soil samples (S1 to S22) of
approximately 150 g were collected from the main-
land site next to the costal line. Sampling was
performed using a stainless steel shovel with a
sampling depth of approximately 10 cm. Additionally,
seven aquatic sediment samples (T1 to T7) were taken
from swales and canals in the area between the fishery
and the petrochemical industry. The collected amount
of riverine sediment was approximately 150 g, respec-
tively. Ten marine sediment samples (M1 to M10) of
approximately 300 g, respectively, were collected from
the bottom of the sea at a distance between 500 and
1,500 m from the coastline (Fig. 1). Both kinds of
sediment samples were collected from the top 10 cm
by a sediment rabber. Further on, for each sample, the
loss-on-ignition was determined after DIN 38414
(Deutsches Institut fur Normung e.V.), and the total
organic carbon content (% TOC, s. Table 1) has been
calculated using a factor of 1.724 as proposed by
Scheffer and Schachtschabel (1998).

2.2 Analysis

Approximately 100 g of soil and terrestrial sediment
samples have been treated by Soxhlet extraction. Each
sample was placed in a Soxhlet apparature and

extracted sequentially with 150 mL of acetone for
24 h and 250 mL of hexane for 24 h. The extracts
were combined and carefully concentrated to a
volume of approximately 2 mL at room temperature
using a rotary evaporator.

Further on, aliquots of 150 g of marine sediments
were extracted by a extraction procedure using an
overhead-shaking method. The samples were
extracted with a mixture of 80 mL of acetone and
120 mL of n-hexane. The extraction was initiated by
ultrasonication for 15 min, followed by 6 h overhead-
shaking. The water phase was discarded, and the
acetone–hexane mixture was concentrated at room
temperature by rotary evaporation down to a volume
of approximately 2 mL. All samples were dried over
2 g of anhydrous granulated sodium sulfate and re-
concentrated to a volume of approximately 1 mL.
Finally, the raw extracts were desulferized by addition
of pre-cleaned and activated copper powder.

Following, the extracts were separated into six
fractions by column chromatography on silica gel
using mixtures of pentane, dichloromethane, and
methanol as eluates with increasing polarity according
to Schwarzbauer et al. (2000). After fractionation,
50 μL of a surrogate standard solution containing
6 ng/μL of n-hexadecane was added to fractions 1 to
5 and 200 μL of surrogate standard solution contain-
ing 5.8 ng/μL of fluoroacetophenone was added to
the sixth fraction. Acidic compounds in the sixth
fraction were methylated using a methanolic diazo-
methane solution. Finally, prior to gas chromato-
graphic and gas chromatographic-mass spectrometric
analyses, all extracts were reduced to a volume of
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approximately 50 μL by rotary evaporation at room
temperature.

2.2.1 GC and GC/MS Analyses

The GC analysis was carried out on a GC6000 gas
chromatograph (Carlo Erba, Vega Series 2, Milan,
Italy) equipped with a 30 m×0.25 mm id×0.25 μm
film ZB5 fused silica capillary column (Zebron,
Germany) and a flame ionization detector. Chromato-
graphic conditions were as follows: injection volume
1 μL; split/splitless injection at 270°C; splitless time
60 s; temperature program, 60οC oven temperature,
3 min isothermal time, temperature raising rate of
3°C/min up to 300°C hold for 15 min. The
hydrogen carrier gas velocity was 40 cm/s.

GC/MS analyses were performed on a Finnigan
MAT 8222 mass spectrometer (Finnigan, Germany)
linked to a HP 5890 gas chromatograph (Hewlett
Packard, USA) equipped with a 30 m×0.25 mm id×
0.25 μm film BPX5 fused silica capillary column
(SGE, Germany). Chromatographic conditions were
the same as described above. The mass spectrometer
was operated in full-scan mode at a resolution of 1,000
in EI+ mode (70 eV), source temperature of 200οC,
scanning from 35–700 amu at a rate of 1 s/decade and
an inter-scan time of 0.1 s.

2.2.2 Quality and Quantity Results

Identification of individual compounds was based on
the comparison of EI+—mass spectra and gas chro-
matographic retention times with those of reference
compounds. First evidence of identification derived

from comparison of mass spectra with mass spectral
data bases (NIST/EPA/NIH Mass Spectral Library
NIST02, Wiley/NBS Registry of Mass Spectral Data,
7th Ed., electronic versions). Retention time inaccu-
racies were corrected by the retention time of the
surrogate standard.

Quantitative data of selected target compounds
were obtained by integration of specific ion chromato-
grams extracted from the TIC. Injection volume and
sample volume inaccuracies were corrected by using
d34-hexadecane as a surrogate standard. An external
four-point-calibration generated from a mixture of
reference compounds was used for quantification, and
all data were normalized to dry matter. The limit of
quantification was determined to be approximately
0.1 ng/g, but no attempts were made to quantify
components at concentrations less than 0.5 ng/g.

Finally, blank experiments of the two applied
extraction methods (Soxhlet and overhead-shaking)
have been carried out in order to consider artifacts as
the result of laboratory contamination, e.g., by
phthalates, phosphates, etc. The amount of each
contaminant calculated in the blank sample, which,
in general, was lower than 2 % of the sample
concentration, has been subtracted from the amount
of the same contaminant in the environmental
samples.

3 Results and Discussion

GC/MS non-target screening analyses of the 39
samples collected from the coastal industrial area of
Kavala city revealed numerous compounds which

Sample TOC (%) Sample TOC (%) Sample TOC (%) Sample TOC (%)

S1 0.59 S12 2.41 T1 4.46 M1 0.35

S2 1.18 S13 6.32 T2 7.45 M2 0.69

S3 1.00 S14 4.19 T3 0.27 M3 0.98

S4 0.47 S15 0.35 T4 0.68 M4 1.92

S5 1.51 S16 2.59 T5 0.37 M5 0.31

S6 1.21 S17 0.33 T6 0.55 M6 1.52

S7 3.94 S18 0.07 T7 1.13 M7 0.63

S8 0.51 S19 6.59 M8 2.02

S9 5.87 S20 0.38 M9 1.23

S10 0.67 S21 0.37 M10 0.65

S11 0.72 S22 1.63

Table 1 TOC values of
sediment and soil samples
calculated from loss-on-
ignition data
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belong to several groups of well-known contaminants
as well as of compounds which are rarely documented
or unknown. Six main groups of contaminants
regarding their chemical structure or technical appli-
cation have been distinguished: (1) halogenated
compounds, (2) nitrogen-containing compounds, (3)
sulfur-containing compounds, (4) technical additives
and plasticizers, (5) polycyclic aromatic compounds
(PACs), and (6) oxygen-containing compounds. In the
following, selected contaminants that might be harm-
ful to the environment are discussed with respect to
their concentrations, spatial distribution, and possibil-
ity to be used as source indicators for specific
emissions, and finally their applications and path-
ways, if this kind of information is available.

3.1 Halogenated Compounds

Data on all halogenated compounds identified in the
investigated area are presented in Table 2. Numerous
pollutants belong to the class of persistent organic
pollutants which are important objects in monitoring
programs. Notably, two different groups were distin-
guished, locally restricted compounds and more wide-
spread distributed ones. To the first group belonged the
widespread used PCBs with five to seven chlorine
substituents which have been identified solely in
sample S17 with low concentrations. Also, DDT-
related compounds appeared spatially restricted. In
detail, the two main metabolites of the pesticide DDT
(2-bis(4-chlorophenyl)-1,1,1-trichloroethane), namely
the o,p'- and p,p'-isomers of DDE and DDD, were
detected with low concentrations only in the soil
samples S4, S6, S7, S12, S13, S14, and S19.
Noteworthy, although PCBs and DDT-related com-
pounds are frequently used parameters in monitoring
approaches, the restricted appearance of these com-
pounds on low concentration levels, points out the
limited usefulness of considering these compounds in
monitoring programs applied to this area.

Further on, trichloro- and pentachlorobenzenes,
partially known as widely used agents in the techno-
sphere, and the well-known flame retardant dibromo-
phenol (Hassenkloever and Bickmeyer 2006) have
been identified exclusively in sample S7 with only 1
to 27 ng/g. In the same sample (S7) as well as in a
group of aquatic sediment samples from swales and
canals around the fishery (T3, T4, and T5), trichloro-
butanol was detected with relative high concentrationsT
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up to 320 ng/g. Trichlorobutanol is used widespread as
bactericide, e.g., in pharmaceuticals and cosmetics.
Based on the application fields of the chlorinated
monoaromatics and the halogenated alcohol, these
contaminants might likely be linked with the uncon-
trolled discharge of household rubbish in this area.

Finally, a very interesting group of halogenated
carbazoles was identified in the investigated area. In
detail, 3,6-dichlorocarbazole, which has been rarely
reported as environmental pollutant, and the so far
unknown contaminants 3-chlorocarbazole and dibro-
mocarbazole have been detected with quite different
levels of concentrations. 3,6-Dichlorocarbazole and 3-
chlorocarbazole showed a widespread distribution
with highest concentrations in soil samples S16
(3500 ng/g), S18 (1600 ng/g), and S19 (2000 ng/g)
for dichlorocarbazole and S16 (110 ng/g) and S18
(71 ng/g) for monochlorocarbazole. According to
Reischl et al. (2005) information on the industrial
usage of carbazole derivatives is limited, though small
amounts of chlorocarbazole might be formed natural-
ly. However, the high concentrations of 3,6-dichlor-
ocarbazole in this study are not explainable as the
result of natural source emissions, and, consequently,
our data give first evidence for a xenobiotic formation
of these contaminants in particular by comparison
with the concentration levels detected in former
studies. The environmental occurrence of 3,6-dichlor-
ocarbazole has been reported in the past only in two
studies in Germany: in Lippe river sediments with
low concentrations of 50 ng/g (Kronimus et al. 2004)
and in soil samples from Bavaria with concentrations
around 10 ng/g (Reischl et al. 2005).

Further on, dibromocarbazole was identified solely
in sample M1. According to our knowledge, this
compound has not been reported formerly as envi-
ronmental contaminant and, consequently, no infor-
mation on its emission pathway and environmental
behavior is available. It is noteworthy that none of the
halogenated compounds has been detected in marine
sediment samples. This might be the result of dilution
effects that reduce the environmental amounts below
the detection limit.

3.2 Sulfur-Containing Compounds

A second group of identified contaminants comprises
the sulfur-containing compounds. These compounds
can be separated into two groups from a chemical pointT
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of view: (a) the heterocyclic polysulfur compounds and
(b) the aliphatic sulfur compounds (s. Table 3).

Sulfur-containing heterocyclic compounds are
known constituents of sulfur-rich petroleum as well
as of process water from petrochemical facilities,
generated easily in contact of petroleum-related matter
with water phases enriched in reduced forms of sulfur
(Witter and Jones 1999). Consequently, the group of
polysulfur heterocycles appeared in our study with
extraordinary high concentrations exclusively in the
sample derived from the canal where the petrochem-
ical industry discharges liquid waste (sample T2). The
m/z=59 ion chromatogram of the semipolar fractions
of sample T2 illustrates the elevated appearance of
several peaks representing the sulfur-containing com-
pounds (Fig. 2). Since this group of compounds
appeared only in a very restricted area, it can be
considered as a molecular marker for the emissions of
the petrochemical industry.

The second group of sulfur compounds contained the
following aliphatic compounds: dimethyltrisulphide, di-
iso-propyldisulphide, hexanethiol and bis(methylthio)
ethylene. The two sulfides (dimethyltri- and di-iso-
propyldisulphide) appeared only in subaquatic freshwa-
ter samples. It is known that oligosulfides are frequently
produced under anoxic conditions and/or in hypertro-
phic aquatic systems and are connected with algae
growth (Ginzburg et al. 1998). According to Witter and
Jones (1999), sulfides are by-products of elemental
sulfur reduction. Hence, the occurrence of these sulfides
indicates more anoxic conditions in selected samples
and might act as indicators for the environmental
conditions in the affected aquatic systems.

3.3 N-containing Compounds

Beside sulfur-containing compounds, a group of
nitrogen-containing compounds was also identified

(s. Table 4). Considering the spatial distribution,
several of these N-compounds showed a restricted
distribution in marine sediment samples. In detail,
caffeine, dimethyl- and trimethylpyridine, 2,2,6,6-
tetramethyl-4-piperidinone (an intermediate for UV-
stabilizers), and indole [an indicator for putrefication
processes but also known as constituent in fragrances
and flavors (Higashio and Shoji 2004)], and methyl-
5-hydroxynicotinate, a so far unreported contaminant,
appeared not only exclusively in marine sediment
samples but also with low concentrations. However,
since natural sources cannot be excluded for several
of these compounds (Pinsky and Bose 1988; Higashio
and Shoji 2004) and regarding the low concentration
levels, they seemed not to be relevant for the
environmental assessment of the area investigated.

A more interesting anthropogenic compound,
which has been reported rarely as a contaminant in
environmental samples (Schwarzbauer and Littke
2004), is 2,6-di-tert-butyl-4-nitrophenol. This com-
pound has been reported as a compound identified in
the internal surfaces of a submarine formed when
lubricating oil mist containing 2,6-di-tert-butylphenol,
an antioxidant additive in many synthetic lubricat-
ing oils and hydraulic fluids, passes through an
electrostatic precipitator and became nitrated (Al-
exander et al. 2001). The restricted appearance in
the samples S1, M7, and M9 around the petrochem-
ical industry 2,6-di-tert-butyl-4-nitrophenol might
indicate a source specificity of this molecule in
aquatic systems with respect to petrochemical indus-
try emissions.

Finally, cyclohexylpiperidine appeared solely in
the sample S18 with a concentration of 6 ng/g. This
sample was collected next to the fertilizer industry
and the old national road Kavala-Xanthi. However,
according to our knowledge for this compound, there
is no environmental information available.
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Fig. 2 Ion chromatogram
of m/z=59 from the 3rd
fraction of sample T2
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3.4 Technical Additives—Plasticizers

A group of xenobiotics, which are widespread used
as technical additives and plasticizers, was detected
(s. Table 5). Common plasticizers, e.g., di-iso-
butylphthalate, di-n-butylphthalate, bis(2-ethylhexyl)
phthalate, NBBS, etc., are widespread distributed
and, consequently, detected frequently in the aquatic
environment (Larsson et al. 1986; Martinez-Carballo
et al. 2007). As it can be noticed from the
quantitative results in Table 5, these compounds were
determined in almost all the samples investigated on
different concentration levels and with different hot
spot areas.

With respect to the spatial distribution, several of
these anthropogenic substances showed the highest
concentrations in the sample S7, likely as the result of
huge amounts of household rubbish discharged in this
area. In addition, compounds used in daily life, e.g.,
personal care products, were identified here, including
4-oxoisophorone which is used in fragrance and
cosmetic industry (maximum concentration, 210 ng/g),
as well as the UV-protector 2-ethylhexyl-4-methoxy-
cinnamate (maximum concentration, 930 ng/g). Triphe-
nylphosphate which is used as flame retardant as well as
in lubricants was identified in soil sample S5. This
sample was collected near the petrochemical industry
and next to the national road of Kavala-Xanthi which
is probably the reason of the appearance of this
compound.

A further compound, dibutylhydroxytoluene,
which is also widespread used, e.g., in chemical,
medicinal, and food industry, was detected in almost
all the samples of the area showing widespread
distribution. The highest concentration was observed
in sample T3 (840 ng/g). A similar investigation in
China exhibited contamination on a similar level of
390 ng/g (Wang et al. 2003).

3.5 Polycyclic Aromatic Compounds, PACs

PACs are not only well-known but also well-
investigated pollutants derived from two major
sources: (a) the petrogenic origin (fossil fuels) and
(b) the pyrogenic origin (basically from incomplete
combustion processes). A very detailed description
of the contamination in this area by a subgroup of
these compound class, the PAH, has been formerly
described (Grigoriadou et al. 2007). However,T
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quantitative results of PACs containing sulfur, nitro-
gen, or oxygen (S-PAC, N-PAC, and O-PAC)
detected in the investigated area are presented in
Table 6, whereas the summarized concentration
profiles illustrating the spatial distribution are given
in Fig. 3.

Maximum values for S-PACs were determined in
sample T2 (240000 ng/g) followed by somewhat
lower concentrations in the samples S3, S5, S7, S19,
T1, M1, and M4. These samples were collected from
three different areas, (1) around the petrochemical
industry (samples T1, T2, S3, and S7), (2) around
the two national roads (S19 and S5), and (3) from
two marine sediments (M1 and M4). The very high
concentrations of S-PACs in the samples around the
petrochemical industry, in particular in sample T2,
might be a reason of environmental concern. The
elevated concentrations around the national road are
tending to be the result of traffic exhaust, especially
by cars with insufficient combustion of the fuel.
However, interesting is the appearance of elevated
concentrations of PACs in the marine sediments
which were collected next to each other in front of
the fertilizer industry. This hot spot might be
interpreted as the result of oil spill from shipping
or harbor activities. Interestingly, almost the same
hot spots were detected for N-PACs and S-PACS
with the exception of the sample T2. This indicates
different emission sources for soil-related PAC
contamination around the petrochemical plant as
compared with the affected riverine and marine
sediment samples.

3.6 Oxygen-Containing Compounds

Also, numerous oxygen-containing compounds have
been detected in this study including carboxylic acids,
alcohols, ketones, and aldehydes (s. Table 7), but only
one compound, bis(2-ethylhexyl)adipate DEHA,
seemed to be of environmental interest. DEHA is
used mainly as a plasticizer for synthetic resins such
as PVC films. Leaching procedures from solid
polymer matrices lead to DEHA release into the
environment. This compound has also been identified
in sediments from an urban area in Canada with
highest concentration of 4,400 μg/kg (Horn et al.
2004), while, in our investigation, the concentrations
peaked in a marine sediment sample (M6) with
7,700 ng/g.T
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4 Conclusion

GC/MS non-target screening analysis applied to
marine and riverine sediment, as well as to soil
samples from the highly industrialized coastal area
of Kavala city, revealed a detailed description of
the contaminants within this area. Contaminants,
which have been routinely and intensively investi-
gated in the past like PCBs and PACs, do not have
high importance for the state of pollution in the
particulate matter. However, rarely noticed or quite
new environmental contaminants, e.g., halogenated
carbazoles have been identified and determined.
According to our knowledge, for many of these
interesting compounds, no or limited environ-
mental information was available. Regarding the
environmental transport of the anthropogenic con-
taminants discussed, different emission sources as
well as concentration hot spots were revealed.
Further on, many of these compounds showed a
diffuse distribution while others exhibited a re-

stricted appearance indicating specific point emis-
sion sources mainly derived from industrial
activities.

Most of the identified compounds in this indus-
trial coastal area are not considered in monitoring
network programs, although they exhibit partially
toxic and harmful potential for the environment,
e.g., by halogenated moieties. Hence, this study
using a non-target screening analysis demonstrated
the principal usefulness of such approach as base
for generating individual monitoring programs, in
particular, for aquatic systems that are affected by
multiple emission sources. Further on, the still
unnoticed contaminants should be subject for
further ecotoxicological and toxicological investiga-
tions in order to estimate their harmfulness in the
environment.

As an overall conclusion, this study can act as an
example for adapting individual monitoring pro-
grams to the individual contamination in coastal
areas.
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