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Abstract Metal pollution is a global problem which
represents a growing threat to the environment. Because
of bioaccumulation and negative effects of heavy metals,
their bioavailability needs to be monitored. Many studies
showed accumulation of metals in crayfish tissues as
dose- and time-dependent without significant differences
in tissue concentration levels comparing males and
females. Muscles and exoskeleton were considered as
specific for accumulation of mercury and nickel,
respectively. Cadmium, zinc, copper, lead, and chromi-
um accumulated mainly in hepatopancreas. By analyzing
these specific tissues, it is possible to deduce the
bioavailability and, by presumption, the level of envi-
ronmental pollution by specific metals. However, in the
case of zinc and copper, their utility is limited to assessing
bioavailability because rapid depuration of these metals
renders them less useful for long-term environmental
monitoring programs. The literature reporting heavy
metal impacts on freshwater crayfish, with reference to
accumulation levels, is reviewed and summarized with
respect to their suitability as bioindicators. Summarized
published data from unpolluted or control localities can
be used as referential values in crayfish, and consequent-
ly help with evaluation of monitored sites.
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1 Introduction

Environmental pollution by heavymetals is an increasing
problem worldwide. Because of the accumulation effect
of some heavy metals, especially through the food chain,
their bioavailability needs to be monitored. Through
analysis of metal concentrations in living organisms, it is
possible to deduce the bioavailability and, by presump-
tion, the level of environmental pollution by specific
metals. Crayfish readily accumulate heavy metals in
tissues and also meet other criteria which make them
suitable as bioindicators of heavy metals in the environ-
ment. For example, Astacus astacus is easily identified
(Pöckl et al. 2006); its populations can be abundant and
widespread (Holdich et al. 2006), but it does not have a
large home range, hence migrations do not influence the
level of metals accumulated in its tissues (Bohl 1999;
Schütze et al. 1999). Specimens are therefore represen-
tative of the locations in which they are caught. They
are easily captured (Policar and Kozák 2005), and
the total body length of adult males, 60–70 mm
(Abrahamsson 1966; Mackevičienė 1999), and adult
females, 76–95 mm (Skurdal et al. 1993), provides
sufficient tissue for individual analyses.

In general, for all crayfish species, the concentration
of metals in the environment is not sufficient to be a
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direct cause of death. Furthermore, crayfish are consid-
ered to be highly resistant to environmental metal
contamination (Del Ramo et al. 1987; Roldan and
Shivers 1987; Chambers 1995). The accumulation of
metals in their tissues is dose- and time-dependent, and
therefore may be reflective of the levels of metals in the
environment (Antón et al. 2000; Rowe et al. 2001;
Sánchez-López et al. 2004; Alcorlo et al. 2006; Schmitt
et al. 2006; Allert et al. 2009). Crayfish fulfill criteria
described for bioindicators by Butler et al. (1971),
Phillips and Rainbow (1993), and Rainbow (1995).

2 Selected Heavy Metals: Bioaccumulation
and Impact in Crayfish

2.1 Mercury

A background level of mercury exists even in aquatic
ecosystems that are not directly contaminated by
human activity. The background concentration in
biota is usually less than 1.0 mg kg−1 fresh tissue
weight (Eisler 1987). Biomagnification of mercury
through the food chain is a well-known phenomenon
(Jackson 1998; Simon et al. 2000) and is influenced
by various factors (Scheuhammer and Graham 1999;
Pennuto et al. 2005). Simon and Boudou (2001)
reported that crayfish take up mercury (Hg) and
methylmercury (MeHg) from both water and food,
with a marked tendency to accumulate MeHg.
Experimental exposures of A. astacus to Hg as HgCl2
at concentrations of 0.1–0.8 mg l−1 have caused
cardiac arrhythmia followed by substantial levels of
mortality (Styrishave et al. 1995; Styrishave and
Depledge 1996). Mercury is known for its inhibitory
effects on ovarian maturation in Procambarus clarkii
(Reddy et al. 1997).

In crayfish inhabiting contaminated waters or
waters with a significant background level of mercu-
ry, the type of habitat and size of the specimen have
an influence on the concentrations in its tissues
(Stinson and Eaton 1983; Parks et al. 1991; Pennuto
et al. 2005). Generally for metals, including mercury,
finding significant differences in tissue concentration
levels between males and females is exceptional
(Loukola-Ruskeeniemi et al. 2003).

In crayfish, mercury is accumulated largely in
muscle (Stinson and Eaton 1983; Simon et al. 2000;
Loukola-Ruskeeniemi et al. 2003). However, in

Orconectes propinquus fed pellets dosed with Hg
and MeHg, the relative levels of mercury accumula-
tion in various organs were: hepatopancreas>gills>
exoskeleton>abdominal muscle; and for methylmer-
cury: gills>abdominal muscle>hepatopancreas>exo-
skeleton (Wright et al. 1991). Methylmercury has
been reported to represent approximately 90% of the
total mercury in crayfish (Pennuto et al. 2005;
Hothem et al. 2007).

Reported mean total mercury concentrations in
abdominal muscle and hepatopancreas of crayfish are
presented in Table 1.

2.2 Cadmium

Cadmium is generally a non-essential element with
teratogenic, carcinogenic, and highly nephrotoxic
effects on living organisms (Anderson et al. 1978;
Eisler 1985). However, an isolated case of its
incorporation into an enzyme of the marine diatom
Thalassiosira weissflogii has been recently reported
(Cullen et al. 1999; Lane et al. 2005). It is still
considered non-essential for other organisms.

Accumulation of environmental cadmium in cray-
fish tissues has been reported. Levels of environmen-
tal pollution have shown positive correlations with
concentrations in tissue samples. Tissue levels were
often positively correlated with proximity to the
pollution source (Anderson et al. 1978; Bagatto and
Alikhan 1987a; Schmitt et al. 2006; Besser et al.
2007). Cadmium has been shown to be taken up and
accumulated by crayfish, both from the surrounding
water and via food (Giesy et al. 1980; Devi et al.
1996).

Hepatopancreas is the main organ of cadmium
accumulation and detoxification in crayfish (Bagatto
and Alikhan 1987a; Viikinkoski et al. 1995;
Mackevičienė 2002) as well as in other crustaceans
(White and Rainbow 1986; Páez-Osuna and Tron-
Mayen 1996; Tu et al. 2008a, b; Barrento et al. 2008,
2009). Chambers (1995) showed relative tissue
levels of cadmium accumulation in Cherax tenuima-
nus to be: hepatopancreas>gills>muscle. A similar
pattern was reported by Bruno et al. (2006) in
Cherax destructor (hepatopancreas>exoskeleton>
muscle). In crustaceans exposed to various cadmium
concentrations, highest accumulation has been
reported in gills (Mirenda 1986; Meyer et al. 1991;
Schuwerack et al. 2001; Martín-Díaz et al. 2006).
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Bruno et al. (2006) found adult C. destructor
(weight~50 g) to have more cadmium in muscle and
exoskeleton than did juveniles (weight ~10 g). The
relatively high amount of cadmium in the exoskel-
etons of adults compared to juveniles seems to be
related to the lower frequency of molting. Significant
differences between males and females have not been
found, either in the quantity of accumulated cadmium
(Bagatto and Alikhan 1987a,b) or in its toxicity
(Chambers 1995). However, when P. clarkii were
placed in high concentrat ion of cadmium
(0.03 mg l−1) over a period of 21 days, males showed
significantly higher concentrations in hepatopancreas
than females (Martín-Díaz et al. 2006).

Reported mean cadmium concentrations in abdom-
inal muscle and hepatopancreas of crayfish are
presented in Table 2.

2.3 Zinc

Although zinc is an essential trace element for all
living organisms, and is a constituent of more than
200 metalloenzymes and other metabolic compounds
ensuring stability of biological molecules such as

DNA and structures such as membranes and ribo-
somes, excess intake can cause a variety of patholog-
ical effects (Eisler 1993).

The content of zinc in the body of a crayfish is
naturally high (Bagatto and Alikhan 1987c). In
crustaceans, generally, zinc is regulated until a
threshold of exposure is reached, after which it will
accumulate in tissues at higher levels (Bryan 1967;
White and Rainbow 1982, 1984; Vijayram and
Geraldine 1996). This regulation is often mediated by
the detoxifying proteins, metallothioneins (Rainbow
1997). Metallothioneins are non-enzymatic proteins
with a low molecular weight which play a role in the
homeostatic control of essential metals such as Zn and
Cu (Kägi and Schäffer 1988; Amiard et al. 2006).

Mackevičienė (2002) found the order of zinc
accumulation in crayfish tissue to be: hepatopancre-
as>exoskeleton>digestive tract>abdominal muscle.
A similar pattern was observed in Cambarus bartoni
(Bagatto and Alikhan 1987c). Marine decapods such
as crabs (Charybdis longicollis), lobsters (Panulirus
inflatus), and shrimp (Penaeus sp., Pleoticus muelleri,
and Metapenaeus affinis) appear to have similar zinc
accumulation patterns, with the hepatopancreas as the

Table 1 Mean total mercury concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Vermeer (1972)a O. virilis Canada 0.60b –

Stinson and Eaton (1983)a P. leniusculus USA 0.60b –

France (1987) O. virilis Canada 0.27b –

Allard and Stokes (1989)a Cambarus bartoni Canada 0.69 –

C. robustus 0.43 –

O. obscurus 0.37 –

O. propinquus 0.34 –

O. virilis 0.40 –

Finerty et al. (1990)a P. clarkii and P. a. acutus USA 1.37b 1.08b

Madden et al. (1991) P. clarkii USA <2.0b 2.1b,c and <2.0b

Parks et al. (1991) O. virilis Canada 0.05–0.2b –

Scheuhammer and Graham (1999) O. virilis Canada 0.17 –

Loukola-Ruskeeniemi et al. (2003)a A. astacus Finsko 0.88b 0.24b

Pennuto et al. (2005)a O. virilis USA 0.63 –

Hothem et al. (2007)a P. clarkii USA 1.10 –

Pacifastacus leniusculus 1.11 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
c Values less than the detection limit were replaced with the detection limit in calculation
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main storage organ (Darmono and Denton 1990;
Marcovecchio 2004; Páez-Osuna et al. 1995; Méndez
et al. 1997; Pourang and Amini 2001; Pourang et al.
2004; 2005; Firat et al. 2008). Most zinc was
accumulated in the gills during laboratory toxicity
tests in the crayfish (Lindhjem and Bennet-Chambers
2002; Martín-Díaz et al. 2006).

In a long-term study of zinc content in the
hepatopancreas, gills, and abdominal muscle of C.
tenuimanus of various ages, Bennet-Chambers and
Knott (2002) found the highest levels in juveniles.
Higher zinc concentration is primarily related to the
relatively larger and more permeable body surface of
juveniles which renders them unable to regulate zinc
content as effectively as adults. Zinc levels in the
hepatopancreas and, especially, in muscle, is regulated
primarily in specimens older than 12 months. The
widest range of measured values has been recorded in

the gills. Bruno et al. (2006) also found higher values
of zinc in juveniles of C. destructor.

Reported mean zinc concentrations in abdominal
muscle and hepatopancreas of crayfish are presented
in Table 3.

2.4 Copper

Copper is usual in the environment and essential for
normal growth and metabolism of all living organisms
(Eisler 1998). It is a component of the respiratory
metalloprotein–hemocyanin in crustaceans (White and
Rainbow 1982; Rainbow 2002); hence, relatively high
copper levels are found in tissues of crayfish,
especially in hepatopancreas (Bagatto and Alikhan
1987a; Madden et al. 1991; Bruno et al. 2006).

Concentration of copper in the bodies of crusta-
ceans is regulated to an approximately constant level

Table 2 Mean cadmium concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Dickson et al. (1979) O. australis australis USA 0.4b 3.6b

C. tenebrosus 0.1b 2.4b

Stinson and Eaton (1983)a P. leniusculus USA 5.53b –

Díaz-Mayans et al. (1986) P. clarkii Spain 0.02b –

Bagatto and Alikhan (1987a) C. bartoni Canada 1.8b 2.4b

Bagatto and Alikhan (1987b) C. bartoni Canada 4.4 30.2 and 32.5

France (1987) O. virilis Canada 0.16b –

Alikhan et al. (1990) C. bartoni Canada – 4.7

Finerty et al. (1990)a P. clarkii and P. a. acutus USA 3.55b 0.83b

Madden et al. (1991) P. clarkii USA 0.73b and 0.33b 0.30b and 0.26b,c

Madigosky et al. (1991) P. clarkii USA 0.0005b 0.10b

Jorhem et al. (1994)a A. astacus Sweden <0.025b 1.39b

P. leniusculus <0.02b 2.54b

Schilderman et al. (1999)a O. limosus The Netherlands – 5.44

Gherardi et al. (2002) Austropotamobius pallipes Italy – 1.4

P. clarkii – 0.2

Mackevičienė (2002)a A. astacus Lithuania 0.05 0.01

Abd-Allah and Abdallah (2006)a P. clarkii Egypt 1.97 –

Bruno et al. (2006)a C. destructor (adults) Italy 2.25 35.0

Hothem et al. (2007) P. clarkii USA 0.03 –

P. leniusculus 0.03 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
c Values less than the detection limit were replaced with the detection limit in calculation
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until copper bioavailability exceeds a high threshold
and net accumulation begins (White and Rainbow
1982; Rainbow and White 1989). For example,
following exposure of P. clarkii to varying concen-
trations of copper (0.125–0.500 mg l−1) for 96 h, no
significant differences were found in tissue copper
content (Maranhão et al. 1995). However, after
exposure for 8 weeks to a copper concentration of
5 mg l−1, a time-dependent accumulation of copper
was observed in tissues in the order: gills>exoskele-
ton>abdominal muscle. When placed in clean water,
the level of copper in the exoskeleton, gills, and
abdominal muscle reduced by 73%, 72%, and 65%,
respectively, within 2 weeks (Naqvi et al. 1998). A
similar pattern of copper accumulation and depuration
was observed in A. leptodactylus, (Guner 2007). No
changes in tissue concentrations of copper were
observed in C. destructor fed the floating aquatic
macrophyte Lemna minor which had been previously
treated with a copper solution (Allinson et al. 2000).
Crayfish can, thus, be useful for assessing bioavail-
ability of copper in aquatic ecosystems, but not in a

long-term monitoring program, due to their capacity
for rapid depuration (Naqvi et al. 1998; Guner 2007).

Reports of mean copper concentrations in abdom-
inal muscle and hepatopancreas of crayfish are
presented in Table 4.

2.5 Lead

Lead is introduced from many sources into aquatic
environments, where it is rapidly incorporated into
suspended and bottom sediments. This element is
neither essential nor beneficial to living organisms
and is responsible for a large number of adverse
effects on biota (Eisler 1988; Allert et al. 2009).

Mackevičienė (2002) found that lead accumulated
in tissues of crayfish under aquaculture conditions in
the order: hepatopancreas>digestive tract>muscle>
exoskeleton. During exposure of A. astacus to low
concentrations of lead (0.02 mg l−1) for a maximum
of 10 weeks, the metal was accumulated primarily in
the hepatopancreas, carapace, and gills and reached
only low concentrations in the hindgut and muscle

Table 3 Mean zinc concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Dickson et al. (1979) O. australis australis USA 91.3b 106.6b

C. tenebrosus 127.4b 309.9b

Bagatto and Alikhan (1987b) C. bartoni Canada 96.0 and 97.0 149.0 and 166.0

Bagatto and Alikhan (1987c) C. bartoni Canada 80.0b 92.0b

France (1987) O. virilis Canada 61.0b –

Madden et al. (1991) P. clarkii USA 5.9b and 5.3b 34.7b and 25.1b

Jorhem et al. (1994)a A. astacus Sweden 75.0b 203.57b

P. leniusculus 75.0b 178.57b

Schilderman et al. (1999)a O. limosus The Netherlands – 137.50

Bennet-Chambers and Knott (2002)a C. tenuimanus Australia 76.1c 174.4c

Gherardi et al. (2002) A. pallipes Italy – 180.0

P. clarkii – 506.0

Mackevičienė (2002)a A. astacus Lithuania 23.25 35.29

Abd-Allah and Abdallah (2006)a P. clarkii Egypt 125.8 –

Bruno et al. (2006)a C. destructor (adults) Italy 18.0 179.29

Hothem et al. (2007) P. clarkii USA 76.90 –

P. leniusculus 100.35 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
c Specimens heavier than 120 g
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Table 4 Mean copper concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Dickson et al. (1979) O. australis australis USA 71.9b 584.9b

C. tenebrosus 37.3b 188.4b

Stinson and Eaton (1983)a P. leniusculus USA 21.32b –

Bagatto and Alikhan (1987a) C. bartoni Canada 50.0b 111.0b

Bagatto and Alikhan (1987b) C. bartoni Canada 147.0 and 114.0 1510.0 and 996.0

France (1987) O. virilis Canada 69.0b –

Finerty et al. (1990)a P. clarkii and P. a. acutus USA 16.77b 58.49b

Madden et al. (1991) P. clarkii USA 3.12b and 2.97b 14.65b and 10.33b

Jorhem et al. (1994)a A. astacus Sweden 28.50b 185.71b

P. leniusculus 25.50b 157.14b

Schilderman et al. (1999)a O. limosus The Netherlands – 1537.41

Gherardi et al. (2002) A. pallipes Italy – 780.0

P. clarkii – 353.0

Mackevičienė (2002)a A. astacus Lithuania 6.10 4.93

Abd-Allah and Abdallah (2006)a P. clarkii Egypt 32.72 –

Bruno et al. (2006)a C. destructor (adults) Italy 39.10 64.07

Hothem et al. (2007) P. clarkii USA 44.60 –

P. leniusculus 36.30 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality

Table 5 Mean lead concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Dickson et al. (1979) O. australis australis USA 1.2b 8.3b

C. tenebrosus 0.5b 0.1b

Stinson and Eaton (1983)a P. leniusculus USA <2.25b –

France (1987) O. virilis Canada 1.97b –

Finerty et al. (1990)a P. clarkii and P. australis acutus USA 10.69b 6.40b

Madden et al. (1991) P. clarkii USA <5.0b <5.0b

Madigosky et al. (1991) P. clarkii USA 0.06b 0.04b

Jorhem et al. (1994)a A. astacus Sweden 0.11b 0.18b

P. leniusculus 0.12b 0.11b

Gherardi et al. (2002) A. pallipes Italy – 0.1

P. clarkii – 0.1

Mackevičienė (2002)a A. astacus Lithuania 0.25 0.29

Abd-Allah and Abdallah (2006)a P. clarkii Egypt 15.93 –

Bruno et al. (2006)a C. destructor (adults) Italy 1.90 7.54

Hothem et al. (2007) P. clarkii USA < 0.19 –

P. leniusculus <0.19 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
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(Meyer et al. 1991). P. clarkii showed marked
accumulation of lead in the hepatopancreas and gills
after 7 days exposure at a contaminated location
(Anderson et al. 1997). The hepatopancreas was
observed to be the main storage organ of lead in C.
destructor (Bruno et al. 2006). It has been reported by
Roldan and Shivers (1987) that lead is stored in
metal-containing vacuoles of hepatopancreatic cells
and in vacuoles, cytoplasmic bodies, and vesicles in
cells of the antennal (green) gland of O. propinquus.

In contrast, the freshwater crab, Potamonautes perla-
tus, showed the lowest concentration of lead in the
digestive system (especially in the hepatopancreas)
while the highest concentration was in the gonads
(Reinecke et al. 2003). Following experimental
exposure to lead concentrations of 0.15 mg l−1 for
7 weeks, 3 weeks clearance was sufficient to decrease
lead concentrations in the exoskeleton (87% depu-
ration), abdominal muscle (79%), gills (50%), and
hepatopancreas (22%) in P. clarkii, and to affect a

Table 6 Mean nickel concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Bagatto and Alikhan (1987a) C. bartoni Canada 1.0b 0.3b

Bagatto and Alikhan (1987b) C. bartoni Canada 5.09 and <0.15 7.5 and 0.8

Finerty et al. (1990)a P. clarkii and P. a. acutus USA 4.84b 4.64b

Madden et al. (1991) P. clarkii USA 1.13b,c and 1.08b,c 1.25b,c and 1.23b

Jorhem et al. (1994)a A. astacus Sweden <0.50b 3.54b

P. leniusculus <0.38b 4.29b

Gherardi et al. (2002) A. pallipes Italy – 10.0

P. clarkii – 44.0

Mackevičienė (2002)a A. astacus Lithuania 0.85 1.54

Hothem et al. (2007) P. clarkii USA 1.81 –

P. leniusculus 1.11 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set a 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
c Values less than the detection limit were replaced with the detection limit in calculation

Table 7 Mean chromium concentrations in abdominal muscle and hepatopancreas of crayfish expressed as mg kg−1 dry tissue weight

Reference Species Country Abdominal muscle Hepatopancreas

Dickson et al. (1979) O. australi australis USA 2.7b 0.9b

C. tenebrosus 3.1b 0.5b

Madden et al. (1991) P. clarkii USA 0.51b,c and 0.46b,c <0.4b and 0.46b,c

Jorhem et al. (1994)a A. astacus Sweden <0.13b 0.15b

P. leniusculus <0.10b 0.18b

Mackevičienė (2002)a A. astacus Lithuania 0.30 0.25

Abd-Allah and Abdallah (2006)a P. clarkii Egypt 5.03 –

Bruno et al. (2006)a C. destructor (adults) Italy 21.75 214.64

Hothem et al. (2007) P. clarkii USA 0.43 –

P. leniusculus 0.60 –

a Results originally given as the concentration in a wet weight were recalculated to dry weight with the water content set at 80% for
abdominal muscle and 72% for hepatopancreas (Jorhem et al. 1994)
b Concentration from an unpolluted (or reference) locality
c Values less than the detection limit were replaced with the detection limit in calculation
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return of hemolymph concentration of lead to pre-
exposure levels (Anderson et al. 1997).

Reported mean lead concentrations in abdominal
muscle and hepatopancreas of crayfish are presented
in Table 5.

2.6 Nickel

Nickel is a ubiquitous element known for its
toxicity, persistence, and affinity for bioaccumula-
tion (Eisler 1998) but is considered to be essential to
various biological functions, often at very low
concentrations (Alikhan and Zia 1989; Muyssen et
al. 2004). It has been shown to accumulate in tissues
of crayfish in relation to its availability in the
environment. The presence of a substantial concen-
tration of nickel in the exoskeleton might indicate
that this tissue is involved in the excretion of this
metal (Bagato and Alikhan 1987a). Mackevičienė
(2002) reported nickel accumulation in A. astacus to
be: exoskeleton (0.82 mg kg−1 wet weight)>hepato-
pancreas (0.43 mg)>muscle (0.17 mg)>digestive
tract (0.16 mg). A similar pattern was found in the
tissues of C. bartoni (Bagatto and Alikhan 1987b).
When this crayfish was exposed for 4 weeks to a
nickel solution at a concentration of 0.2–0.8 mg l−1,
accumulation occurred primarily in the gills and
alimentary tract (Alikhan and Zia 1989).

Reports of mean nickel concentrations in abdom-
inal muscle and hepatopancreas of crayfish are
presented in Table 6.

2.7 Chromium

Chromium is an essential element, although harmful
at high levels (Eisler 1986). Mackevičienė (2002)
found chromium accumulation in tissues of A. astacus
in the following order: exoskeleton>digestive tract>
hepatopancreas>muscle. Jorhem et al. (1994), study-
ing A. astacus and Pacifastacus leniusculus, also
observed higher concentrations in the hepatopancreas
than in muscle. Adult C. destructor shows levels of
chromium nearly twice that of juveniles and at much
higher concentrations in hepatopancreas than in
exoskeleton and muscle (Bruno et al. 2006). Follow-
ing 7-day exposure in a location with high environ-
mental chromium levels, P. clarkii accumulated
chromium primarily in the gills and hemolymph
(Anderson et al. 1997).

Reports of mean chromium concentrations in
abdominal muscle and hepatopancreas of crayfish
are presented in Table 7.

3 Conclusions

Due to rapid bioaccumulation and long retention
times, crayfish of both sexes are suitable bioindicators
of heavy metal contamination of freshwater ecosys-
tems. Hepatopancreas was found as a specific tissue
for accumulation of cadmium, zinc, copper, lead, and
chromium. Mercury and nickel accumulated largely in
muscles and exoskeleton, respectively. By analyzing
these specific tissues, it is possible to deduce the
bioavailability and, by presumption, the level of
environmental pollution by specific metals. However,
in the case of zinc and copper, their utility is limited
to assessing bioavailability, since rapid depuration of
these metals renders them less useful for long-term
environmental monitoring programs. Mainly summa-
rized published data from unpolluted or control sites
could be beneficial as referential values, which can
help in evaluation of monitored localities.
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