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Abstract
Missing data is a common problem encountered in various fields, including clinical 
research, environmental sciences and hydrology. In order to obtain reliable results from 
the analysis, the data inventory must be completed. This paper presents a methodology for 
addressing the missing data problem by examining the missing data structure and missing 
data techniques. Simulated datasets were created by considering the number of missing 
data, missing data pattern and missing data mechanism of real datasets containing miss-
ing values, which are often overlooked in hydrology. Considering the missing data pattern, 
the most commonly used methods for missing data analysis in hydrology and other fields 
were applied to the created simulated datasets. Simple imputation techniques and expecta-
tion maximization (EM) were implemented in SPSS software and machine learning tech-
niques such as k-nearest neighbor (kNN), together with the hot-deck were implemented in 
the Python programming language. In the performance evaluation based on error metrics, 
it is concluded that the EM method is the most suitable completion method. Homogene-
ity analyses were performed in the Mathematica programming language to identify pos-
sible changes and inconsistencies in the completed rainfall dataset. Homogeneity analyses 
revealed that most of the completed rainfall datasets are homogeneous at class 1 level, con-
sistent and reliable and do not show systematic changes in time.

Keywords Susurluk basin · Missing rainfall data · Missing data pattern · Missing data 
mechanism · Expectation–maximization

1 Introduction

One of the most important hydrological factors is rainfall, which is responsible for 
initiating various hydrological processes within the system and consequently provid-
ing data for various different analyses (Wangwongchai et  al. 2023). According to the 
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report prepared by the Center for Research on Disaster Epidemiology (CRED), the 
most impactful natural disasters in 2022 were droughts and floods influenced by rainfall 
(CRED 2023). Effective management of these disasters requires optimal water resources 
planning, which relies on high-quality rainfall data covering significant periods. Data 
gaps can occur for various reasons, including erroneous manual data entry, equip-
ment errors during data collection or missing data due to defective storage technolo-
gies (Gao et al. 2018). Despite data gaps, many hydrological analyses rely on statistical 
approaches based on full-time series, such as the SPI method and low duration curve.

Understanding and addressing the issue of missing data is critically important for 
ensuring the validity and reliability of research findings. This study is justified by the 
need to mitigate the adverse effects that missing data can have on statistical analyses, 
particularly in hydrological research where precise data is crucial. Because the presence 
of missing data in any series has several implications: (I) decrease in the power and 
accuracy of statistical research methods (Roth et al. 1999), (II) the potential for biased 
estimates of relationships between two or more variables (Pigott 2001), (III) reduced 
representativeness of samples and (IV) complexities in the analyses used in the study 
(Kang 2013). Due to these reasons, having a gapless time series is a necessary pre-
requisite for the statistical and deterministic model approach used in hydrology (Gao 
et al. 2018). To solve the missing data problem, researchers have focused on two main 
approaches: deletion and imputation. However, before opting for the deletion of missing 
data, it is crucial to examine whether the deficiency in the dataset is a structural defect. 
If the missing data stems from a structural issue, deleting it may introduce bias into the 
model. Moreover, a significant amount of information may be lost.

Inadequate accounting for missing data, especially for rainfall or flow time series, 
can lead to a poor basin simulation and due to this fact, ineffective management of water 
resources might occur. (Gao et al. 2023). As a result, it is necessary to impute missing 
values with great care. Imputation methods also fall into two main categories: value 
assignment (Mean, Mode, Median, etc.) or estimation-based imputation. Predictive 
imputation methods include machine learning techniques (k-Nearest Neighbour, Artifi-
cial Neural Networks, Support Vector, Random Forest etc.), multiple imputation meth-
ods, and model-based assignment (Maximum Likelihood/EM) methods.

As seen above, although numerous methods exist for missing data imputation in the 
literature, some prominent ones include the following: Mean (Sanusi et al. 2017; Üresin 
2021; Zhang and Thorburn 2022). The simplest method is commonly used to fill in 
missing data in meteorology and climatology. In the use of the arithmetic mean in the 
missing data, either the normal annual rainfall in the measurements at the surrounding 
stations should be in the range of 10% of the normal annual rainfall at the target sta-
tion (Egigu 2020), or arithmetic mean imputation replaces missing values in a variable 
with the arithmetic mean of the observed values of the same variable (Gao et al. 2023). 
Another most preferred method is the Regression Analysis (Caldera et al. 2016; Mfwango 
et al. 2018). The whole regression procedure is a two-stage method: In the first step, a 
regression model is developed using all of the full observations and missing data is then 
imputed based on that model. One of the most commonly used machine learning tech-
niques for missing data imputation is the k-nearest neighbour (kNN) algorithm (Sallaby 
and Azlan 2021; Sharma and Yuden 2021). The missing observation is estimated using 
the values of samples (neighbours) that are similar for one or more features. The most 
preferred model-based assignment method is maximum likelihood-based expectation 
maximization (EM) (Firat et  al. 2012; Malan et  al. 2020). Expectation maximization, 
while filling in missing data, provides accuracy and consistency by measuring how close 
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the obtained estimates are, compared to the actual data. This case increases the reliability 
of the analysis results.

In addition to the methods mentioned earlier, recent studies have explored various 
approaches, leveraging advancing technologies. Owusu et al. (2019) evaluated three satellite 
rainfall products, TMPA 3B42RT, TMPA 3B42, and CMORPH, against gauged rainfall data 
using correlation coefficient (r), bias, and percent bias as evaluation methods. They found that 
TMPA 3B42 performed the best across daily, monthly, annual, and seasonal timescales, while 
CMORPH consistently overestimated rainfall at gauge locations. Chan Chiu et al. (2021) pro-
posed sine cosine function fitting neural network (SC-FITNET), integrating principal com-
ponent analysis (PCA) and a sine cosine algorithm, which outperformed other methods in 
imputing missing rainfall data. Addi et al. (2022) explored statistical imputation techniques 
for filling missing daily rainfall data, identifying regression, probabilistic principal compo-
nent analysis (PPCA), and missForest as effective methods, particularly for capturing dry 
and wet periods and moderate to extreme rainfall events. Nascimento et  al. (2022) applied 
self-organizing maps (SOM) to simulate monthly in flows using satellite-estimated rainfall, 
while Pinthong et al. (2022) conducted a study to evaluate different techniques for the estima-
tion of missing monthly rainfall data. Their investigation encompassed six machine learning 
algorithms—Multiple Linear Regression (MLR), M5 model tree (M5), Random Forest (RF), 
Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Gaussian Processes 
(GP)—as well as four spatial interpolation methods—Arithmetic Average (AA), Inverse Dis-
tance Weighting (IDW), Co-Kriging with Constant (CCW), and Nearest Neighbor (NR). The 
findings indicated that machine learning approaches exhibited superior performance com-
pared to spatial interpolation methods, attributed to their capability to account for spatial con-
straints. Among the machine learning algorithms tested, GP demonstrated the highest efficacy 
in accurately estimating missing rainfall data, underscoring its potential utility in hydrological 
applications where spatial variability plays a critical role. Sahoo and Ghose (2022) discov-
ered that the feed-forward artificial neural network (FNN), RF, kNN and SOM in completing 
missing values of rainfall data. The findings highlighted the superior performance of the FNN 
with error metrics, proving its effectiveness in managing data gaps in complex hydrological 
systems. Nida et al. (2023) evaluated imputation techniques across weather variables, favor-
ing kNN for rainfall and mean imputation for temperature data. Khampuengson and Wang 
(2023) introduced full subsequence matching (FSM) as a novel approach for imputing miss-
ing values in telemetry water level data, aiming to address issues of incomplete or anomalous 
data caused by instrument failures. Their study compared FSM against established methods 
such as Interpolation, kNN, MissForest, and the long short-term memory (LSTM), demon-
strating FSM’s superior accuracy in imputing missing values, particularly for data exhibiting 
strong periodic patterns. Wangwongchai et al. (2023) investigated statistical techniques (STs) 
such as AA, MLR, and nonlinear iterative partial least squares (NIPALS), alongside artificial 
intelligence-based techniques (AITs) including long-short-term-memory recurrent neural net-
work (LSTM-RNN), M5 model tree, and multilayer perceptron neural networks (MLPNN), 
for imputing missing daily rainfall data. Their findings highlighted that the M5 model tree 
(M5-MT) among the AITs and MLR among the STs were particularly effective, with MLR 
recommended for its accurate performance and straightforward application without requir-
ing extensive prior modeling knowledge. Dariane et al. (2024) investigated various classical 
and machine learning methods for recovering missing streamflow data. Methods such as lin-
ear regression (LR&MLR), artificial neural networks (ANN), SVR, M5 tree, and Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) using Subtractive (Sub-ANFIS) and fuzzy C-means 
(FCM-ANFIS) clustering were compared, with machine learning approaches generally 
demonstrating superior performance. In the study conducted by Kannegowda et al. (2024), 
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Kalman Smoothing with structured time series is recommended for small, medium, and large 
gaps in rainfall data, and Kalman–ARIMA is suggested for very large and mixed gaps. Among 
multivariate methods, superior performance across varying gap lengths is consistently dem-
onstrated by RF. Kaur et al. (2024) employed multivariate imputation by chained equations 
and nearest neighbors techniques to handle missing weather data crucial for avalanche fore-
casting. Their study assessed six key weather variables, demonstrating improved forecasting 
accuracy and skill scores for artificial neural network-based models following data imputa-
tion. Loh et al. (2024) compared kNN, SVR, MR, and ANN techniques for imputing missing 
fine sediment data, finding ANN to consistently outperform the other methods across different 
missing data proportions. Apart from these studies, there are other research efforts available 
in the literature on missing data in these fields that can provide insights for future research 
on the practical application of hydrological modeling, structural engineering, and theoretical 
methods: In the study conducted by Tama et al. (2023), rainfall-induced runoff was predicted 
using a W-flow model. Additionally, Kencanawati et al. (2023) employed the rational method 
to determine peak discharge derived from surface runoff in their research.

In the field of hydrology, the conventional approach for filling in the missing values gen-
erally involves direct regression analyses. However, the development in the machine learning 
techniques, particularly in recent decades, have introduced alternative methods such as the 
ANN, the kNN algorithm and ANFIS. When determining the most suitable method among 
various alternatives, researchers often create a simulated dataset by intentionally deleting some 
of the data with known values and then estimate these missing values. However, in most hydrol-
ogy studies, this process only considers the intentional deletion, neglecting the incomplete data 
structure when forming a simulated dataset. Notably, the actual amount of missing data is often 
disregarded. Tabachnick and Fidell (2012) argue that incomplete data mechanisms and patterns 
have a more significant impact on research results than the incomplete data rate.

This study aims to make a significant contribution to the literature by addressing the miss-
ing data problem, which is common in hydrology and related fields, by addressing the missing 
data structure and missing data techniques. Unlike previous studies that often focus on theoret-
ical frameworks or limited case studies, the current approach rigorously applies and compares 
estimation techniques, including traditional methods such as mean, median, interpolation and 
innovative machine learning approaches such as k-nearest neighbor and finally EM, a model-
based imputation technique using real historical data, to simulated datasets. To the best of the 
authors’ knowledge, this study is one of the innovative studies in hydrology in which the miss-
ing data pattern, missing data count, and missing data mechanisms, which are critical evalu-
ation criteria regarding missing data issues, are examined simultaneously and simulated data 
are created based on this. In this way, it aims to present a methodology regarding the missing 
data problem in hydrology. Additionally, in this study, the effects of normality assumption 
and station selection on Expectation Maximization performance were investigated. Further-
more, the study extends beyond imputation accuracy to include comprehensive homogeneity 
analyses, employing tools like Mathematica to assess the temporal and spatial consistency of 
completed datasets.

2  Study Area Description and Data Utilized

The Susurluk Basin, located in the western Turkey between 39°-40° north latitude and 
27°-30° east longitude, covers approximately 3.11% of Turkey’s total surface area, span-
ning about 24.349  km2 with a drainage area of 22.399  km2. The basin is characterized by 
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its diverse topography, featuring Uludağ, the highest mountain in the Marmara Region, 
within its bounds. Extending in an east–west direction, this mountain system significantly 
influences the region. The basin encompasses parts of Balıkesir, Bursa, and Kütahya prov-
inces. Noteworthy water bodies within the Susurluk Basin include Simav Stream, Nilüfer 
Stream, Mustafa Kemal Paşa Stream and Koca Stream. The Susurluk Basin experiences a 
transitional climate, exhibiting characteristics of both the Mediterranean and Black Sea cli-
mates (SBFMP 2018). With an annual mean rainfall is 688.54 mm and a mean annual flow 
is 5.43  km3/year, the basin plays a crucial role in Turkey’s water resources. The region’s 
significance is further underscored by the presence of two main freshwater lakes, Manyas 
Lake (24.400 hectares) and Uluabat Lake (19.900 hectares) both covered by the Ramsar 
Agreement (Mucan 2022). Given its strategic location and recent developments, including 
the construction of new water resource structures such as dams, the Susurluk Basin holds 
considerable economic and social importance for Turkey.

Continuity in the observation series cannot be ensured due to some reasons; such as 
changes in station locations, opening and closing of observation stations, equipment errors, 
planned maintenance or updates during the data collection process and lack of crew. Addi-
tionally, there are stations in the Susurluk Basin that were operational for a certain period but 
were later closed. Particularly since 2005, numerous stations have been established; however, 
the availability of the stations with long-term records is limited. Notably, there are no stations 
with a sufficient recording history to adequately represent the western part of the Susurluk 
Basin. To address this limitation, some stations located outside the basin were incorporated 
into this study. Given that the provinces of Balıkesir, Bursa, and Kütahya encompass a signif-
icant portion of the basin, data from all observation stations in these provinces were obtained 
from the Turkish State Meteorological Service. Subsequently, stations were selected from 
this extensive group, considering criteria termed adaptation parameters in this study. The 
selection process aimed to include stations that maximally align with the basin. The adapta-
tion parameters considered including temporality, locationality and similarity.

In the evaluation that concerns temporality, a key consideration was ensuring that 
selected stations had records from the same starting date until the present day. The determi-
nation of the study period’s commencement was influenced by the climate reference peri-
ods, which represent consecutive 30-year intervals calculated from climate data (Demircan 
et al. 2013, 2014). Climate modeling studies commonly utilize the data from climate ref-
erence periods such as 1961–1990, 1971–2000, and 1981–2010 as climate norms. Con-
sequently, for this study, it was decided that stations with records spanning 1981–2021, 
including the years 1981–2010, were suitable for inclusion, as this period was deemed to 
be the representative of the basin and its surroundings within the context of temporality.

In the analysis in corporation with the location criteria, the distance of stations with 
records from 1981 to 2021 to the basin and whether the basin was located within the 
Thiessen polygon were influential factors. Using ArcGIS software, Thiessen polygons 
were delineated for the stations and their impact weights were calculated. It was deter-
mined that the Gediz and Gönen stations were located within the Thiessen polygon. 
Despite the Edremit station is not being situated within the Thiessen polygon of the basin, 
it was included in the study due to its proximity to west region within the basin. The pri-
mary rationale for this selection is to reduce the spatial variations of hydrological and 
climatic parameters, thereby increasing the reliability and representativeness of the data.

In the assessment that was conducted for similarity, annual rainfall levels in the basin 
were calculated over the study period. The relationship between stations outside the basin 
was examined using correlation coefficients, with careful consideration to ensure that stations 
located outside the basin were at least moderately compatible with the basin. Additionally, the 
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missing value percentages of stations within the basin played a role to be able to determine 
which stations outside the basin should be included in the study. Consequently, 13 meteoro-
logical stations in the Susurluk Basin and its surroundings, that meet the criteria set under 
adaptation parameters, were selected for inclusion in the study, as depicted in Fig. 1. This 
methodology aims to ensure that the selected stations reflect more accurately the hydrological 
characteristics of the basin and to enhance the reliability of the study results.

Table 1 presents detailed information regarding the locations of the meteorological 
stations. Table  2 presents general descriptive statistical information of monthly total 
rainfall data calculated using SPSS software (2013). As seen from this table, the skew-
ness coefficient values vary from 1.06 to 4.90. Notably, the Bursa station exhibits high 
skewness, indicating that a significant portion of the rainfall is concentrated around 
lower values, with fewer instances of high rainfall. Moreover, the Uludağ meteorol-
ogy station registers a monthly total rainfall mean approximately twice of the Bursa 
meteorology station. Over the study period, the annual total rainfall at Uludağ reaches 
2258 mm, compared to 1290.4 mm at the Bursa meteorology station.

3  Methods

3.1  General Considerations of Missing Data

This section examines the percentages of missing data, missing patterns, and various mech-
anisms of missing data. While these parameters are often overlooked in hydrology missing 
data imputation studies, they play a crucial role in data analysis and in determining appro-
priate strategies to be able to handle missing data. Each parameter is discussed below.

Fig. 1  Study area
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3.1.1  The Percentage of Missing Data

The percentage of missing data is vital for assessing the representing and reliability of the data-
set. Low percentage indicates the more reliable dataset with stronger analysis results, while 
high percentage requires careful consideration when determining the strategies for handling 
the missing data. The acceptance of the missing data percentage depends on the research’s 
purpose, sample size, and the mechanism of the missing data. While there is no exact thresh-
old for an acceptable percentage of missing data, some studies have proposed distinct bound-
ary values. For instance, Schafer (1999) suggested that a missing rate of 5% or below has 
minimal significance. Bennett (2001) proposed that missing data exceeding 10% is likely to 
introduce bias in statistical analysis. In certain statistical software, such as SPSS, 5% is used as 
a distinguishing point (Landau and Everitt 2004). When the proportion of the missing data is 

Table 1  Location information of the meteorological stations

Province Station Name Station Code Latitude Longitude Altitude (m)

Balıkesir Bandırma 17114 40.3315 27.9965 63
Bigadiç 17698 39.3953 28.1383 260
Edremit 17145 39.5895 27.0192 21
Gönen 17674 40.1135 27.6426 37

Bursa Bursa 17116 40.2308 29.0133 100
Dursunbey 17700 39.5778 28.6322 637
Keles 17695 39.9150 29.2313 1063
M.Kemal Paşa 17675 40.0425 28.3995 60
Uludağ 17676 40.1075 29.1290 1877

Kütahya Gediz 17750 38.9947 29.4003 736
Kütahya 17155 39.4171 29.9891 969
Simav 17748 39.1252 28.9919 809
Tavşanlı 17704 39.5384 29.4941 833

Table 2  General descriptive statistics of monthly total rainfall of the meteorological stations

Province Station
Name

Station
Code

Mean
(mm)

Standard
Deviation

Skewness 
Coefficient

Variation
Coefficient

Balıkesir Bandırma 17114 58.67 55.52 1.57 0.95
Bigadiç 17698 43.63 39.56 1.08 0.91
Edremit 17145 60.44 64.36 1.91 1.06
Gönen 17674 56.05 51.22 1.43 0.91

Bursa Bursa 17116 58.02 55.04 4.90 0.95
Dursunbey 17700 45.56 38.48 1.16 0.84
Keles 17695 59.52 47.53 1.06 0.80
M.Kemal Paşa 17675 58.79 49.22 1.14 0.84
Uludağ 17676 115.83 103.28 2.92 0.89

Kütahya Gediz 17750 46.02 40.05 1.20 0.87
Kütahya 17155 45.29 35.45 1.30 0.78
Simav 17748 59.18 60.14 2.05 1.02
Tavşanlı 17704 40.55 30.53 1.15 0.75



 T. Hırca, G. Eryılmaz Türkkan 

below 5% and the missingness is either completely at random (MCAR) or missing at random 
(MAR), it might be feasible to exclude the missing data or use an appropriate single imputa-
tion method. Conversely, in the same scenario (MCAR or MAR missingness), if the propor-
tion of missing data exceeds 5%, sophisticated methodologies for imputing the missing values 
become necessary. In cases where the missing data is classified as Missing Not At Random 
(MNAR) and the missingness is attributed to selection bias, corrective techniques like the 
Heckman adjustment can be employed (Cheema 2014; Osman et al. 2018).

3.1.2  Missing Data Patterns

The concept of missing data patterns involves identifying both missing and observable val-
ues within a dataset. It reveals the distribution of missing data and whether these gaps fol-
low a specific pattern. For instance, understanding whether missing values are specific to 
a particular feature, category, or time period is crucial for comprehending the missing data 
pattern. While there is no standard list of missing data patterns, the three most common 
patterns are univariate, monotonic and nonmonotonic, as illustrated in Fig. 2.

• Univariate: There is a univariate missing data pattern when only one variable has miss-
ing data (Demirtas 2018; Emmanuel et al. 2021).

• Monotone: This pattern occurs when the missing data follows a particular order. The 
presence of a monotone data pattern facilitates the handling of missing values, since the 
patterns among these missing values may be readily observed (Dong and Peng 2013).

• Non-Monotone: This pattern does not follow any particular order or pattern, and the 
missingness of data occurred randomly or independently. Therefore, the missingness of 
one variable is not affected by the missingness of other variables (Chen 2022).

3.1.3  Missing Data Mechanisms

In order to learn more about the missing data problem, the cause of the missing data occur-
rence has been decomposed according to the various missing data mechanisms. Rubin 

Fig. 2  Missing data patterns (Blue: observed values, red: missing values (Emmanuel et al. 2021))
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(1976) appears to have been the first to introduce formally the missing data mechanisms of 
missing completely at random and missing at random. Rubin identified three mechanisms 
for missing data: Missing completely at random (MCAR), missing at random (MAR) and 
missing not at random (MNAR) (Dong and Peng 2013). It is based on its relationship with 
the observed or unobserved values in the dataset. For detailed information about missing 
data mechanisms, the manuscript by Rubin (1976) can be used.

Kalaycıoğlu (2017) symbolized the missing data mechanisms as follows in order to be 
more easily understood:

In any study, let  Yi represent the dependent variable for each individual i. In this case, 
the dependent variable Y can be divided into two parts,  Yobserved and  Ymissing, to indicate the 
observed and missing values, respectively. Furthermore, in the same study, let the p inde-
pendent variables observed without missing values be defined by the matrix X =  (X1,  X2, 
…,  Xk) (k = 1,…, p). Under these conditions, for each individual i, the missing data index 
matrix R for the dependent variable  Yi can be defined as follows:

• Missing completely at random (MCAR): The probability of the missing data is not asso-
ciated with any observed or missing value of the dependent variable that contains miss-
ing data in the dataset.

• Missing at random (MAR): The probability of the missing data occurrence in variables 
with the missing data is only related to the observed values, but from variables with the 
missing data is independent.

Under this assumption, the probability of the missing data on the dependent variable 
may also be related to observed or missing data on the independent variables. Namely,

• Missing not at random (MNAR): The probability of the missing data in the dependent 
variable, this is related to the missing data 

(
Ymissing

)
  , in the variable itself. Under this 

mechanism, an assumption about why the missing data occurs must be included in the 
statistical analysis using composite models. However, the inclusion of this assumption, 
which cannot be verified without prior knowledge of why the data is missing, is possi-
ble with more complex statistical models than the other methods. Because of this prac-
tical difficulty, the statistical modeling in the presence of non-random missing data has 
not been widely used in the literature.

The mechanisms for missing data are defined by the probability of missing data occur-
rence. When this probability is entirely unrelated to other measured variables, it is pre-
sumed that the remaining sample is a random subsample (Missing Completely at Ran-
dom—MCAR). However, if there is a relationship between other measured factors and the 
likelihood of missing data, it can be inferred that the data is not MCAR. Nevertheless, 

Ri =

{
1, IfYi ismissing

0, IfYi is observed

}

(1)f (R|Yobserved
,Ymissing) = f (R)

(2)f (R|Yobserved
,Ymissing) = f (R|Yobserved)

(3)f (R|Yobserved
,Ymissing) = f (R|Yobserved

,X)
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MNAR is never definitively ignored because, in practice, the missing data itself is never 
known. Statistical tests in literature can be employed to determine whether the missing 
data is entirely random or not. In this study, Little’s (1988) MCAR test, one of the most 
preferred methods, was applied.

3.2  Dealing with the Missing Data in Rainfall Data

Over time, numerous approaches have been developed to estimate missing values   in a 
dataset. This section discusses the missing values   approaches used in this study. These 
approaches can be broadly classified into four categories (Fig. 3).

3.2.1  An Overview of Simple Missing Data Handling Techniques

For decades, dozens of methods have been utilized to address the issue of missing data. 
In this section, the most commonly used simple methods in the literature are mentioned. 
The simple imputation strategy involves substituting the missing values for each individ-
ual value by utilizing a quantitative or qualitative feature derived from the available non-
missing data (García-Laencina et al. 2009). Various approaches, such as mode, mean, or 
median, are employed in simple imputation to address the missing data by utilizing the 
existing values. Simple imputation approaches are frequently employed in most research 
due to their simplicity and their utility as a convenient reference strategy (Jerez et al. 2010). 
The arithmetic mean approach is used to calculate the incomplete rainfall record when the 
normal annual rainfall of the neighboring stations is within a range by ± 10% of the normal 
annual rainfall of the target station. However, if this condition is not met, the normal rate 
method is used for the same purpose or mean imputation can be made by using the values 
of the station with the missing value. In this study, as stated in Sect. 4.1., since many of the 
stations have missing values at the same time, each of the station’s own values were used 
in the imputation with the mean. Since the records of the neighboring stations could not be 
used in the study, both the mean of the series during the study period and the mean of the 
previous and next two values of the missing value were imputed instead of each missing 
value in the station with the arithmetic mean. A similar process was applied by calculating 
the median of the nearby points. One of the simple approaches used to fill in missing data 
in any time series is spatial interpolation or temporal interpolation methods. In this study, 
the temporal interpolation technique was used by using the observed values just before and 
after the missing data.

Fig. 3  Taxonomy of the missing data techniques used in this study
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3.2.2  k‑Nearest Neighbors (kNN) Imputation for Missing Values in Machine Learning

There are several ways available for imputing the missing data, including one of the most 
often used being hot-deck imputation methods. A deterministic variation of these approaches 
is the “nearest neighbour” (NN) imputation algorithm (Andridge and Little 2010). The hot-
deck imputation approaches include the replacement of the missing values in instances with 
missing data (recipients) with values obtained from cases (donors) that exhibit similarity to 
the receiver in terms of observable attributes (Beretta and Santaniello 2016). The major dis-
advantage of the hot-deck attribution is the difficulty in defining the concept of ‘similarity’. 
Therefore, the hot-deck procedure does not provide a standard path for missing data. How-
ever, it is an important technique as it allows missing values to be retrieved from a dataset 
without the need for additional mathematical or statistical data (Kalton and Kish 1984). Due 
to its relatively fast and simple algorithm, the hot deck imputation has become very popular 
among missing data imputation methods (Fadillah and Muchlisoh 2020).

The K-nearest neighbor algorithm (kNN) is one of those algorithms used for classifica-
tion in Supervised Learning based on the distance function created with the parameter k. 
Several distance measures, including the Minkowski distance, Manhattan distance, Cosine 
distance, Jaccard distance, and Hamming distance, can be used for kNN imputation; how-
ever, the Euclidean distance is reported to be the most efficient and productive (Amir-
teimoori and Kordrostami 2010; Emmanuel et al. 2021). The Phyton programming language 
and the Scikit-Learn (Scikit-Learn 2023), Pandas (Pandas 2023) libraries were used for 
missing imputation with the kNN algorithm in this study. For detailed information about the 
kNN, the manuscript by Emmanuel et al. (2021) can be used.

3.2.3  Expectation–Maximization (EM) Algorithm

The Expectation–Maximization (EM) algorithm is a commonly employed iterative technique 
for estimating the maximum likelihood parameters in statistical models (Dempster et al. 1977). 
Furthermore, it facilitates the process of estimating parameters in probabilistic models that use 
incomplete data (Dikbas 2017). The missing values are firstly calculated using the estimated 
model parameters in the application of this method. These completed missing values are then 
used to recalculate the model parameters and this process is repeated. In the missing data com-
pletion, the EM algorithm does not take the cause of the gaps into consideration of the data-
set and assumes that they are completely random. One of the most important advantages of the 
EM method is that the algorithm can be applied even if there are mutually between the missing 
values in the series and no measured values are neglected. The Gaussian Probability Distribu-
tion (normal distribution) of a multivariate data can be represented by the mean and covariance 
matrix. That means, the mean and covariance matrix are appropriate statistics of the normal 
distribution. The EM method uses an iterative algorithm and estimates the means, covariance 
matrix and correlations of quantitative variables with missing values. This method, which is 
an approach to iterative calculation of maximum likelihood (ML), estimates in various missing 
data problems. There are two steps in each iteration of the EM algorithm: The first step is the 
E-step, called the expectation step and the second step is the M-step, called the maximization 
step. In the E or expectation step, the missing data and the model parameters are estimated with 
the given observation values. In the M or maximization step, the missing data are assumed to be 
known and the parameters that will maximize the expected probability function in the E step are 
determined. This is used in the next step E to determine the distributions of the model param-
eters. The convergence is achieved as the probability increases with each iteration step with this 
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algorithm. Do and Batzoglou (2008) offer a comprehensive introduction to the mathematical 
underpinnings and practical applications of the expectation–maximization (EM) approach. In 
this study, missing value analysis was conducted using the EM modules in the toolbox of IBM 
SPSS software (2013).

The effect of the station selection and normality assumption in imputation with Expecta-
tion Maximization is also one of the research topics of this study. In this study, the correlation 
matrix was taken into account for the selection of the station. In the normality assumption, 
the values obtained from the EM imputation applied to the raw data were compared with 
the values obtained as a result of the EM imputation to the transformed forms of the data 
determined to be not normally distributed. In this contex, there are three basic methods that 
can be used to test the assumption of normality: Descriptive methods; examination of skew-
ness, kurtosis, mean, mode, median values, Graphical methods; examination of histogram, 
stem-and-leaf graph, box-and-whiskers graph, P-P (probability) and Q-Q (percentage) graphs 
and statistical methods are Shapiro–Wilk, Kolmogorov–Smirnov, Jarque–Bera etc. In the lit-
erature, the fact that skewness and kurtosis are between certain limit values is accepted as an 
indicator that the data complies with the assumption of normal distribution. These limit val-
ues should be between ± 1 according to Hair et al. (2013), ± 1.5 according to Tabachnick and 
Fidell (2012), and ± 2 according to George and Mallery (2010).

Although skewness and kurtosis values provide researchers with a wider range of evalu-
ations to evaluate the assumption of normality, statistical tests reveal more precise results. 
Many studies use and compare different tests to validate the normality. In this study, raw and 
transformed versions of the data were examined with three different approaches: skewness/
kurtosis, Shapiro–Wilk (Shapiro and Wilk 1965) and Jarque–Bera (Jarque and Bera  1980) 
test. The Shapiro–Wilk and Jarque–Bera tests focus on different properties and evaluate differ-
ent assumptions. While the Shapiro–Wilk test is especially effective in small samples (Pituch 
and Stevens 2016), the Jarque–Bera test provides a more comprehensive analysis by focusing 
on features such as skewness and kurtosis. Therefore, the final evaluation of the normality 
assumption was made with the Jarque–Bera test. However, the changes occurring at Shap-
iro–Wilk were also followed at every stage. For the Shapiro–Wilk test, SPSS the software nor-
mality calculation toolbox and the tseries (tseries 2023) library in R were used to calculate the 
Jarque–Bera test. The flow chart of the study, prepared to facilitate understanding of which 
analyzes were carried out at which stage of the study, is presented in Fig. 4.

3.3  Evaluation Criteria for Missing Data Imputation

To evaluate the accuracy of the prediction, error criterion parameters of mean absolute 
error (MAE), root mean square error (RMSE) and mean biased error (MBE) were used. 
Root mean square error (RMSE) is a statistical measure that measures the discrepancy 
between observed and predicted values. The equations of these metrics are shown in the 
following (Niazkar et al. 2023)

MAE quantifies the mean magnitude of a prediction set’s errors as:
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MBE is used primarily to estimate the mean bias in the model and to decide whether 
any steps need to be taken to correct the model bias.

where n denotes the number of data, xobserved
i

 represents the  ith observed value, and xpredicted
i

 
represents the  ith predicted value.

3.4  Homogeneity Test

The utilization of homogeneous series in climate change research holds critical importance. 
Changes in homogeneous series are attributed to variations in climate and weather patterns 
(Conrad and Pollak 1950). Several factors, such as the change in the position of the observa-
tion station, modifications in the observation format, and structural alterations in the station’s 
surrounding environment, can impact the quality and dependability of long-term climatological 
time series (Peterson et al. 1998). The presence of discontinuities in non-uniform time series, 
which are not attributable to environmental variables, introduces uncertainty in accurately deter-
mining changes in rainfall when such data are used for climate studies. Therefore, it is impera-
tive to assess the homogeneity of observational data before incorporating it into any research 
endeavor. In the event that non-homogeneous data is identified, it should be either eliminated 
or adjusted to achieve homogeneity. Climate scientists have developed and employed numerous 
approaches to assess the homogeneity of the data under consideration (Klingbjer and Moberg 
2003; Ducre-Rubiatille et al. 2003; Tomozeiu et al. 2005; Staudt et al. 2007; Modarres 2008).

In this study, the homogeneity is determined by a two-step approach suggested by Wijn-
gaard et al. (2003). In the first step, the aim is to check the homogeneity of all stations with 
four tests: (I) Standard Normal Homogeneity Test (SNHT) (Alexandersson 1986), (II) Pettitt’s 
test (1979), (III) Buishand’s test (1982), and (IV) Von Neumann’s test (1941). The details of 
these tests are shown in Table 3. The test statistics in the respective table were computed using 
Mathematica software, and the results were evaluated within a 95% confidence interval.

Homogeneity is checked by testing the null hypothesis  (H0). The  H0 hypothesis shows that 
there is no change, which implies that the data under investigation is homogeneous. In the 
second step, the stations are divided into three classes according to the homogeneity results:

• Class 1: Homogeneous (one or zero tests reject the  H0 at the 0.05 significance level)
• Class 2: Doubtful (two tests reject the  H0 at the 0.05 significance level)
• Class 3: Suspect (three or four tests reject the  H0 at the 0.05 significance level)

4  Results and Discussion

4.1  Creation of the Simulated Datasets

The location of the missing data plays a crucial role in dataset integrity. The efficacy of 
model the performance, particularly in methods like median imputation of nearby points, 
mean of nearby points or series mean, is directly influenced by the spatial distribution 
of missing data. A simulated dataset, initially created in the form of a holistic dataset 
(449*13 data matrix), can lead to inaccurate results, especially during months with sea-
sonal transitions, such as may and august. This is due to the consideration of september 
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Fig. 4  Flow chart of the study
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in the missing value imputation for august, resulting in an above-normal rainfall imputa-
tion. To address this issue, simulated datasets were generated on a monthly scale, consid-
ering the number of missing value, the missing data pattern and the missing data mecha-
nism in the real datasets. The generation of simulated datasets is based on the deletion 
of rows containing missing values in the real dataset at all stations. Subsequently, in this 
complete dataset, a simulated dataset was created by replicating the same missing value 
patterns observed in the real dataset. This process was repeated for each month with 
missing values. Table  4 presents the mean and standard deviation values for both the 
real datasets and the simulated datasets. SPSS software was used and Little’s MCAR test 
was applied to determine the missing data mechanisms. The results of Little’s MCAR 
test indicated that the missing value mechanism in the real datasets exhibited a Missing 
Completely at Random (MCAR) structure. Furthermore, it was confirmed that the simu-
lated datasets shared the same MCAR structure. If missing values in a dataset are MCAR 
(Missing Completely At Random), it indicates that the probability of a value being miss-
ing is unrelated to both observed and unobserved data. This indicates the following:

Randomness The missingness in the dataset is distributed randomly, without any discern-
ible pattern or connection to the observed data or the missing values themselves.

No Bias The absence of data is not causally linked to any particular traits or values within 
the dataset.

The presence of missing values in an MCAR structure suggests that simple imputa-
tion techniques, such as mean or median imputation, can be appropriately utilized in the 
study. However, for data affected by Missing at Random (MAR) or Not Missing at Random 
(NMAR) mechanisms, more sophisticated imputation methods such as multiple imputation 
or predictive modeling techniques may be necessary.

Table 3  Formulas of the homogeneity tests (Hırca et al. 2022)

* Unlike the other tests, the  H0 hypothesis is accepted if the value found in Von-Neumann’s test exceeds the 
critical value

Method Formula Description

SNHT Tk = kZ2

1
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2

k = 1, 2,… , n (7)
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Figure 5 shows the missing data patterns for july and september for both real and simu-
lated datasets. One of the most important parameters in the missing data studies is the miss-
ing data pattern. The procedure generally applied to impute the missing values in hydrology 
is based on selecting a key station for the station with missing values. In most cases, the 
missing value at the target station is completed using thes key station data. Therefore, in most 
imputation approaches (such as regression analysis, normal rate method, and some machine 
learning methods) estimation of missing rainfall data is possible when data is available at 
other stations. However, when missing values are found at all stations at the same time, the 
methods that directly use the data of the key station cannot be preferred. Therefore, missing 
data patterns should be examined in determining the methods to be used in the study.

In Fig. 5, each row in the dataset represents a different pattern of the missing values and 
indicates a group of samples with the same pattern of missing values. These patterns or groups 
of cases are organized depending on the specific variables where the missing values occur. 
Stations on the x-axis are ranked according to the amount of missing values. When the miss-
ing value pattern given as an example is examined, the stations with the highest missing values 
are on the far right of the graph and the stations with the least missing values (or no missing 
values) are on the far left. The initial pattern is always one, which contains no missing values. 
It can be seen that there are 11 different patterns in the missing data pattern for july and 9 dif-
ferent patterns in the missing data pattern for september. For example, while Bursa station 
could be used to complete Bigadiç station in july, it shows that it cannot be completed in sep-
tember because there is a missing value in Bursa station in the same year. Therefore, the miss-
ing data pattern plays an important role in selecting the key station to be used for imputation.

4.2  Missing Value Imputation in Simulated Datasets

Missing rainfall values in the simulated datasets were estimated monthly by using vari-
ous imputation methods, including series mean, mean of nearby points, median imputa-
tion of nearby points, linear interpolation, Hot-Deck, kNN and EM algorithms. Due to the 
simultaneous missing values at the stations, the key station-based methods applicable in 
any month were rendered inapplicable. Consequently, the column-based imputation tech-
niques, which use the station’s own records, were preferred in the study. However, EM 

Table 4  Comparison of real and simulated datasets in terms of missing values

Month Structure of the Real 
Dataset

Structure of the Simulated Dataset

Mean Std. Dev Mechanism Mean Std. Dev Mechanism

January 90.33 79.36 MCAR 90.86 79.95 MCAR 
May 49.31 38.77 MCAR 50.32 38.72 MCAR 
June 36.89 33.98 MCAR 38.26 34.14 MCAR 
July 16.45 23.77 MCAR 19.05 26.78 MCAR 
August 14.32 22.01 MCAR 16.56 25.04 MCAR 
September 30.98 40.34 MCAR 36.73 42.79 MCAR 
October 63.82 64.42 MCAR 66.61 65.38 MCAR 
November 78.29 57.66 MCAR 79.14 58.03 MCAR 
December 98.00 71.38 MCAR 99.85 71.17 MCAR 
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imputation, allowing simultaneous completion, was also utilized. Different scenarios were 
created based on station the selection and normality assumption in EM imputation:

• Scenario 1: EM is imputed to the raw data by matching it with the station with which it 
is most compatible, as indicated by the single correlation matrix (Fig. 6) in the month 
with the missing value. In this scenario, the same station is used every month for 
matching.

• Scenario 2: EM is imputed to the raw data by matching it with the most compatible sta-
tion in the month to be completed where the missing value is found Tables 5.

• Scenario 3: In the normality test results of the raw data, only the transformed versions 
of those that are not normally distributed are completed with the station which has the 
highest correlation in a single correlation matrix (Table 6).

• Scenario 4: In the normality test results of the raw data, only the transformed versions 
that are not normally distributed are completed with the station with the highest corre-
lation in the month in which the missing value is found (Table 7).

When the correlation is examined separately each month, the station with the missing 
value is matched with the station with the highest correlation according to the monthly cor-
relation analysis results. In a single correlation matrix, simulated rainfall data are listed from 
January 1981 to December 2021 and the first the normality analyses of the stations are eval-
uated (Table 6). Then the correlation analysis is performed according to the normality status 
of the stations. In Scenario 1 and Scenario 3, where a single correlation matrix is used, the 
stations with the highest correlations are matched in the same way in all months (Fig. 6).

In many studies, the assumption of the normality is often overlooked. However, 
depending on the result of the normality assumption, the researchers choose between 
parametric or non-parametric methods. Failing to investigate the normality can lead to 
erroneous inferences. The statistical tests can be preferred in normality tests because 
they provide clear results. While different limit values exist in the literature for cases 
where statistical tests are not preferred, according to Table 5 and Table 7, in most cases 
where the skewness/kurtosis coefficients are between ± 1, the Jarque–Bera test revealed 
that the rainfall series follows a normal distribution.

Fig. 5  Missing data pattern for (a) july and (b) september
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One of the continuous variables may not meet the Pearson correlation normality 
assumption. In such cases, Spearman’s rho correlation is an alternative nonparamet-
ric method to determine whether a linear relationship exists between two variables. 

Fig. 6  Spearman’s rho correlation analysis of simulated raw data in 449*13 matrix form

Table 5  Normality analysis of simulated raw data (for Scenario 2)

Skewness/Kurtosis values exceed ± 1.5 H0 is rejected for Shapiro-Wilk H0 is rejected for Jarque-Bera

Bandırma Bigadiç Bursa Dursunbey Edremit Gediz Gönen Keles Kütahya M. Kemal Paşa Simav Tavşanlı Uludağ

January

Skewness 0.803 0.641 0.449 0.834 0.514 0.750 0.527 0.737 0.652 0.912 0.871 1.112 3.913

Kurtosis 0.706 -0.142 -0.930 0.264 -0.872 0.596 -0.634 -0.100 0.035 1.370 0.352 1.565 20.070

Shapiro-Wilk 0.054 0.075 0.036 0.023 0.018 0.084 0.064 0.022 0.042 0.045 0.014 0.007 0.000

Jarque-Bera 0.113 0.274 0.247 0.116 0.221 0.156 0.281 0.179 0.267 0.030 0.094 0.006 0.000

May

Skewness 1.024 1.151 0.763 1.221 1.897 0.740 1.279 0.815 0.561 0.891 1.169 0.591 1.262

Kurtosis 0.409 1.079 -0.080 2.311 4.415 0.164 0.980 -0.016 -0.321 0.024 1.608 -0.432 1.723

Shapiro-Wilk 0.002 0.001 0.032 0.006 0.000 0.024 0.000 0.013 0.168 0.006 0.005 0.050 0.003

Jarque-Bera 0.038 0.010 0.160 0.001 0.000 0.184 0.004 0.126 0.325 0.085 0.004 0.270 0.002

Jun

Skewness 1.281 2.191 1.024 1.317 2.421 1.043 1.529 1.822 0.785 1.599 1.196 1.407 1.561

Kurtosis 0.959 5.335 1.267 1.975 5.691 0.321 2.798 3.972 0.058 4.221 0.852 1.387 3.167

Shapiro-Wilk 0.000 0.000 0.024 0.001 0.000 0.000 0.000 0.000 0.016 0.001 0.001 0.000 0.000

Jarque-Bera 0.008 0.000 0.026 0.001 0.000 0.045 0.000 0.000 0.173 0.000 0.015 0.002 0.000

July

Skewness 0.504 2.658 0.854 1.670 2.298 2.039 0.729 0.787 1.504 2.598 1.857 0.917 2.363

Kurtosis -1.009 8.387 0.167 2.503 5.503 4.703 -0.678 -0.391 2.275 8.739 3.646 0.124 6.986

Shapiro-Wilk 0.007 0.000 0.022 0.000 0.000 0.000 0.002 0.009 0.001 0.000 0.000 0.006 0.000

Jarque-Bera 0.312 0.000 0.193 0.000 0.000 0.000 0.221 0.233 0.001 0.000 0.000 0.172 0.000

August

Skewness 2.063 2.350 2.069 1.440 1.785 2.427 3.115 3.840 1.558 0.967 2.537 2.093 3.530

Kurtosis 4.845 6.908 4.828 1.204 2.009 7.624 10.913 17.537 1.662 -0.386 7.652 4.437 15.368

Shapiro-Wilk 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jarque-Bera 0.000 0.000 0.000 0.009 0.003 0.000 0.000 0.000 0.003 0.181 0.000 0.000 0.000

September

Skewness 1.912 0.869 0.559 1.235 1.823 1.870 1.954 1.269 2.092 1.067 1.748 0.838 1.427

Kurtosis 3.390 -0.746 -0.450 0.996 3.001 3.198 3.453 1.410 5.252 0.265 3.177 -0.662 1.972

Shapiro-Wilk 0.000 0.001 0.053 0.002 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.001

Jarque-Bera 0.000 0.174 0.403 0.025 0.000 0.000 0.000 0.012 0.000 0.077 0.000 0.155 0.002

October

Skewness 1.352 1.562 4.285 0.975 0.972 1.272 2.115 1.947 0.676 1.665 1.400 0.937 1.812

Kurtosis 2.247 2.331 20.758 0.813 -0.089 1.459 5.933 5.414 -0.218 3.965 2.325 1.252 3.291

Shapiro-Wilk 0.002 0.000 0.000 0.020 0.001 0.001 0.000 0.000 0.080 0.000 0.001 0.017 0.000

Jarque-Bera 0.000 0.000 0.000 0.049 0.066 0.004 0.000 0.000 0.240 0.000 0.000 0.038 0.000

November

Skewness 2.413 0.264 0.233 0.544 0.975 0.850 1.667 0.345 1.657 0.551 0.789 0.652 0.584

Kurtosis 9.470 -0.448 -1.110 0.090 1.880 1.275 4.973 -0.486 3.612 -0.055 0.623 0.141 0.037

Shapiro-Wilk 0.000 0.689 0.062 0.404 0.035 0.034 0.001 0.477 0.000 0.258 0.107 0.156 0.338

Jarque-Bera 0.000 0.638 0.296 0.400 0.008 0.049 0.000 0.527 0.000 0.379 0.128 0.270 0.346

December

Skewness 0.725 0.750 0.652 0.840 2.045 0.840 0.869 0.670 1.681 0.261 1.797 1.197 0.848

Kurtosis 0.329 0.989 0.694 0.251 6.627 0.376 1.005 0.523 4.692 -0.335 4.163 2.842 1.842

Shapiro-Wilk 0.050 0.051 0.257 0.027 0.000 0.028 0.039 0.289 0.000 0.701 0.000 0.012 0.055

Jarque-Bera 0.194 0.122 0.226 0.113 0.000 0.110 0.062 0.231 0.000 0.689 0.000 0.000 0.018
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Therefore, in this study, the Jarque–Bera and Shapiro–Wilk tests were examined com-
paratively at all stages, where correlation analysis is required. But if the  H0 hypothesis 
is rejected in Jarque–Bera method, it is accepted that the rainfall series are not normally 
distributed. Hypotheses created under the assumption of normality;

H0 The data conforms to normal distribution.

Hı The data does not comply with normal distribution.

Since the raw datasets are used in Scenario 1 and Scenario 2, the assumption of normal-
ity is only used to determine the correlation analysis showing the relationship between sta-
tions (Pearson? or Spearman’s rho?). Scenario 2 is based on correlation analyses calculated 
separately for each month. Therefore, according to the normality analysis results in Table 5, 
the correlation coefficients are calculated for each month and the station with which the sta-
tion containing the missing value is most compatible is determined.

The normality test results of the raw data prepared within the scope of Scenario 1 and 
Scenario 2 and are given in Table 5. There are various approaches to investigate the nor-
mality of rainfall data. While some studies consider skewness/kurtosis coefficients (Basu 
et  al. 2004; Guo 2022), some studies consider Shapiro–Wilk (Mohammed and Scholz 
2023) and others consider Jarque–Bera test (Ünlükara et al. 2010; Ahani et al. 2012; Wes-
lati et  al. 2023). Both Shapiro–Wilk and Jarque–Bera tests were performed to evaluate 
the assumption of the normality. Both tests focus on different characteristics; while the 
Shapiro–Wilk test is especially effective in small samples (Pituch and Stevens 2016), the 
Jarque–Bera test provides a more comprehensive analysis by focusing on features such as 
skewness and kurtosis. In this context, since it was desired to evaluate the skewness and 
kurtosis properties of the datasets in more detail, the final normality evaluation was car-
ried out according to the Jarque–Bera test.

The procedural steps performed for the normality analysis results in Tables 5, 6 and 7 
are explained in detail below;

1. Collect Raw Data: Gather the data for analysis from stations.
2. The normality test is performed using appropriate statistical tests to check if the raw data 

follows a normal distribution. Common tests include the Jarque–Bera test, Shapiro–Wilk 
test or skewness/kurtosis coefficients.

3. Based on the results of the normality tests, each dataset is classified as either normally 
distributed or non-normally distributed.

4. Stations that are not normally distributed are transformed using methods such as square 
root, logarithmic or cube root.

5. The statistical test is selected based on the normality test results, choosing between 
Spearman’s rho correlation coefficient (for non-normally distributed data) or Pearson’s 
correlation coefficient (for normally distributed data).

Table 6  Normality analysis of simulated raw data in 449*13 matrix form (for Scenario 1 and Scenario 3)
Bandırma Bigadiç Bursa Dursunbey Edremit Gediz Gönen Keles Kütahya M. Kemal Paşa Simav Tavşanlı Uludağ 

Skewness 1.514 1.025 5.119 1.118 1.874 1.145 1.412 1.020 1.285 1.100 1.995 1.092 3.017

Kurtosis 3.324 0.855 55.990 1.420 6.061 1.521 2.773 1.033 3.184 1.457 6.343 1.710 23.218

Shapiro-Wilk 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jarque-Bera 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Skewness/Kurtosis values exceed ± 1.5 H0 is rejected for Shapiro-Wilk H0 is rejected for Jarque-Bera
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Before each stage requiring correlation analysis, normality analyses were performed con-
sistently by adhering to the steps mentioned above. Transformation methods were applied 
for months and stations that did not show normal distribution in Table 5. Then, these steps 
were applied for each station. In order to understand the effect of transformation processes 
on normality, normality tests were performed again and the results are given in Table  7. 
As seen from the relevant table, the transformation of non-normally distributed data shows 
improvement according to the skewness/kurtosis, Shapiro–Wilk, and Jarque–Bera test 
results, indicating that the data either normalize or approach normal distribution.

Under the light of Table 5, 6 and 7 it is possible to make the following comments:

• Shapiro–Wilk is a very sensitive method for evaluating the normality assumption. Even 
if the skewness and kurtosis values are ± 1, there are datasets that are not normally dis-
tributed according to the test.

• The fact that there were 9 missing months in the study and the dataset was divided 
monthly led to 117 normality tests. Approximately 38% of the raw datasets were deter-
mined to be normally distributed. This proves that rainfall data often has a distorted and 
irregular structure by nature.

• Skewness and kurtosis coefficients provide researchers with broader ranges (e.g., ± 1.5 
or ± 2) for assessing normality. Therefore, assuming normality based on these values 
is generally easier. However, skewness and kurtosis offer only an intuitive perspective 
on evaluating the normality of a dataset. Hence, using normality tests for a comprehen-
sive assessment leads to more reliable results. In this study, it was determined that the 
Jarque–Bera test accepts the dataset as normally distributed in most cases where the 
skewness and kurtosis coefficients are within the ± 1 range. Therefore, in studies where 
normality is assessed solely based on skewness and kurtosis, considering ± 1 instead of 
broader thresholds is a more appropriate approach.

Table 7  Normality analysis of transformed versions of only non-normal distributed simulated data (for Sce-
nario 3 and Scenario 4)

Bandırma Bigadiç Bursa Dursunbey Edremit Gediz Gönen Keles Kütahya M. Kemal Paşa Simav Tavşanlı Uludağ

January

Skewness 0.003 0.116 -0.253*

Kurtosis -0.146 0.297 0.889*

Shapiro-Wilk 0.710 0.630 0.349*

Jarque-Bera 0.939 0.950 0.603*

May

Skewness 0.174 0.328 0.313 0.585 0.351 0.287 0.333

Kurtosis -0.539 -0.542 0.020 0.775 0.041 0.236 0.180

Shapiro-Wilk 0.737 0.298 0.816 0.155 0.204 0.605 0.922

Jarque-Bera 0.662 0.520 0.730 0.285 0.675 0.771 0.711

Jun

Skewness 0.347 0.875 0.099 0.310 -0.316* 0.346 0.446 0.809 0.250 0.233 0.673 0.598

Kurtosis -0.469 0.740 -0.157 -0.449 0.075* -0.978 0.105 1.343 0.210 -0.352 -0.140 0.980

Shapiro-Wilk 0.381 0.036 0.910 0.195 0.614* 0.076 0.409 0.075 0.634 0.929 0.098 0.173

Jarque-Bera 0.563 0.103 0.910 0.612 0.766* 0.326 0.577 0.071 0.845 0.731 0.261 0.249

July

Skewness 1.014 0.501 1.247 0.655 0.363 0.746 0.598 0.764

Kurtosis 0.808 -0.378 0.673 -0.069 -0.216 0.392 -0.248 0.843

Shapiro-Wilk 0.011 0.170 0.001 0.119 0.778 0.037 0.133 0.154

Jarque-Bera 0.138 0.506 0.071 0.407 0.688 0.296 0.443 0.229

August

Skewness 0.613 0.523 1.004 0.405 1.063 0.734 0.342* -0.346* 0.474 0.999 0.743 -0.600*

Kurtosis -0.067 0.133 0.411 -0.619 -0.139 0.694 -0.899* 0.168* -0.028 0.929 0.547 0.000*

Shapiro-Wilk 0.067 0.100 0.017 0.127 0.000 0.256 0.068* 0.311* 0.280 0.034 0.173 0.104*

Jarque-Bera 0.466 0.640 0.144 0.524 0.156 0.300 0.476* 0.782* 0.607 0.115 0.306 0.455*

September

Skewness 1.060 0.334 0.625 0.753 1.017 0.329 0.756 0.889 0.500

Kurtosis 0.500 -0.562 0.068 0.527 0.974 -0.445 0.566 0.070 -0.389

Shapiro-Wilk 0.007 0.516 0.242 0.142 0.018 0.127 0.258 0.016 0.156

Jarque-Bera 0.070 0.590 0.452 0.268 0.068 0.633 0.251 0.157 0.457

October

Skewness 0.455 0.750 0.760* 0.210 0.544 0.178* 0.058* 0.319 0.303 -0.193 0.770

Kurtosis -0.072 0.409 1.905* -0.247 -0.048 -0.190* -0.317* 0.966 0.415 0.187 1.125

Shapiro-Wilk 0.686 0.114 0.121* 0.907 0.307 0.681* 0.896* 0.291 0.457 0.282 0.034

Jarque-Bera 0.525 0.197 0.030* 0.789 0.418 0.848* 0.860* 0.508 0.740 0.895 0.103

November

Skewness 0.139** -0.483 -0.467 0.472 0.159

Kurtosis 1.875** 0.557 0.446 0.817 0.917

Shapiro-Wilk 0.172** 0.261 0.200 0.635 0.471

Jarque-Bera 0.147** 0.442 0.486 0.381 0.642

December

Skewness 0.361 0.188 0.370 -0.226 -0.382

Kurtosis 1.510 1.126 0.875 0.933 0.811

Shapiro-Wilk 0.492 0.342 0.395 0.522 0.286

Jarque-Bera 0.209 0.497 0.475 0.583 0.488
It is the result of square root conversion without any symbol next to it. *It is the result of logarithmic transformation. **It is the result of cube root transformation.

Skewness/Kurtosis values exceed ± 1.5 H0 is rejected for Shapiro-Wilk H0 is rejected for Jarque-Bera
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• Among the three different normality approachs that are examined in this study, the tests 
can be ranked from the strongest to the weakest as follows: Shapiro–Wilk, Jarque–Bera, 
and skewness/kurtosis coefficients.

• The transformation of non-normally distributed data shows improvement according to 
the skewness/kurtosis, Shapiro–Wilk, and Jarque–Bera test results, indicating that the 
data either normalize or approach normal distribution.

According to Table 8, which includes the evaluation according to the error metrics, the 
results according to RMSE and MAE error metrics are close to each other. MBE indi-
cates how much the measurements or predictions deviate from the actual values. If MBE is 
close to zero, it indicates that the predictions are close to the actual values. Since the error 
metrics gave similar results and the MBE value of Scenario 2 was -0.19, it was decided 
to implement this scenario. While median assignment of the nearby points was the least 
performing method, kNN was determined to be the most effective method after the Expec-
tation Maximization.

Different scenarios have been created to address the necessity of the normality assump-
tion in the expectation maximization process. Based on the created scenarios, the results of 
the Expectation Maximization can be summarized as follows:

• The use of the Expectation Maximization (EM) algorithm for imputing missing data 
offers advantages such as flexibility, a robust statistical foundation, an iterative nature, 
the ability to handle missing data directly, minimizing data loss, preserving data distri-
bution, and widespread availability. These advantages make the EM algorithm an effec-
tive and reliable method for missing data analysis.

• In this study, the stations close to each other were not directly matched. For instance, 
Uludağ and Mustafa Kemal Paşa are stations that are closer to each other (Fig. 1), but 
they are physically different in terms of topographic, meteorological, and hydrological 
aspects. The correlation analysis, being a statistical method, does not incorporate physi-
cal events, so there is no issue even if the stations are far away. The correlation analysis 
examines the relationship between two time series with the same units (rainfall). Since 
the most imputation methods are statistical analyses, the matching stations based solely 
on their proximity is not a correct approach. In fact, from different months of this study, it 
was determined that the correlation of the relationship between two stations very close to 
each other was very weak.

• As a calculation approach, the expectation maximization is not affected by the order. 
For example, logarithmically matched stations and square roots are calculated based 
on their order. It is a very useful method as it allows finding missing values at the key 
station.

• It was determined that EM imputations made after the transformation processes pro-
duced biased results.

The findings of the study, as stated by Khalifeloo et al. (2015), suggest that expecta-
tion maximization (EM) should be preferred as it offers a fast and iterative approach to 
missing data imputation.
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4.3  EM Imputation and Homogeneity Analysis to Real Datasets in Scenario 2

After establishing that Scenario 2 was the most suitable method for the simulated rainfall 
datasets, normality analyses were initially applied to the real data. Following this, cor-
relation analyses (Spearman’s rho or Pearson) were conducted for pairwise combinations 
based on the normality of the stations, and the most compatible station pairs were deter-
mined for each month. Finally, the complete rainfall series were obtained by applying EM.

If the rainfall series completed as a result of missing data analyses are to be used in 
subsequent hydrological, meteorological, climate change, and forecasting studies, they 
must be hydrologically/statistically reliable. For this reason, Standard Normal Homogene-
ity Test (SNHT), Pettitt, Buishand, and Von Neumann Ratio homogeneity tests, which are 
frequently included in the literature, were applied to detect inhomogeneities in the annual 
total rainfall series. Test statistics for homogeneity tests were calculated in the Mathemat-
ica software (2017) and evaluated according to the 95% confidence interval. The findings 
obtained from the homogeneity analyses are given in Table 9. The study highlights that the 
Pettitt test is more sensitive in detecting inhomogeneity in series.

According to Table 9, it has been determined that the majority of stations are homo-
geneous based on the results of homogeneity analyses. This finding provides a solid 

Table 8  Determining the most appropriate method

*  Root Mean Square Error
**  Mean Absolute Error
*** Mean Bias Error

Method Comparison between 
Actual Values and  
Estimated Values

RMSE* MAE** MBE***

Series Average 27.05 17.20 -3.04
Average of Nearby Points 30.07 18.50 -6.14
Nearby Points Median Imputation 31.96 18.58 -9.90
Linear Interpolation 29.22 18.86 -2.27
Hot-Deck 25.92 16.07 -2.15
kNN2 23.31 14.77 -3.61
kNN3 21.61 13.96 -3.94
kNN4 22.71 14.81 -2.88
kNN5 21.73 14.14 -3.93
kNN6 22.13 14.46 -4.32
kNN7 23.07 15.28 -2.77
kNN8 23.60 15.56 -3.15
kNN9 22.78 15.10 -3.71
kNN10 25.26 15.61 -2.56
EM S1: Raw Data Single Correlation 22.98 14.20 -1.01

S2: Raw Data Separate Correlation 23.11 14.46 -0.19
S3: Transformed Data Single Correlation 23.02 13.24 -4.56
S4: Transformed Data Separate Correla-

tion
23.81 14.10 -4.11
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foundation for making accurate predictions and reliably evaluating long-term trends in 
studies such as climate change research or hydrological modeling.

5  Conclusion

Missing data estimation is important for the sustainable management of water resources, as miss-
ing data can make it difficult to determine appropriate policies and strategies. The main purpose 
of this research is to present a methodology for missing data estimation in hydrology. In this con-
text, simulated datasets were created by considering the number of missing data, missing data 
pattern and missing data mechanism of real datasets containing missing values, which are often 
overlooked in hydrology. This paper provides a comparison of simple imputation approaches, 
machine learning technique and model-based imputation method. For this purpose, a missing 
data imputation study is carried out for the period 1981–2021. The application of the proposed 
missing data methodology is given for the monthly total rainfall of the Susurluk Basin. In EM, 
which is a model-based assignment method, scenarios created on station selection and normality 
assumption allow comparison of the performance of these selections on the method. EM is deter-
mined as the most suitable assignment method, followed by the kNN method. The Jarque–Bera 
test generally works well for distributions with medium to long tails and test generally indicated 
that the rainfall series followed a normal distribution when skewness and kurtosis coefficients 
were within the range of ± 1. Correlation analyses between geographically close stations revealed 
that proximity alone does not guarantee strong correlation in rainfall patterns, emphasizing the 
need for a comprehensive statistical approach rather than relying solely on geographical proxim-
ity for station matching. In future applied climatological studies, it is recommended to evaluate 
hybrid methodologies that combine the benefits of various approaches such as statistical tech-
niques (STs) and artificial intelligence-based techniques (AITs) discussed in the introduction, 
while adhering to the methodology presented in this study, when reliable key stations with no 
missing data can be selected. These techniques would be even more advantageous if they also 
account for the critical factor emphasized in this study, namely the missing data pattern.

Table 9  Homogeneity  analyzes*

* Critical values for 41 data at 5% significance level; Pettitt = 173.8 = 174, Buishand = 1.532, Von-Neu-
mann = 1.495, SNHT = 8.135

İstasyonlar Pettitt Buishand SNHT Von-Neumann Homojenlik Sınıfı

Bandırma 118 1.197 4.406 1.948 Class 1: Useful
Bigadiç 96 1.026 2.794 1.535 Class 1: Useful
Bursa 96 1.216 2.711 1.845 Class 1: Useful
Dursunbey 126 1.129 3.170 1.765 Class 1: Useful
Edremit 118 1.251 6.137 1.645 Class 1: Useful
Gediz 82 0.783 4.291 2.023 Class 1: Useful
Gönen 184 1.546 6.461 1.454 Class 3: Suspect
Keles 72 0.751 6.272 1.848 Class 1: Useful
Kütahya 148 1.277 4.946 1.931 Class 1: Useful
M.Kemal Paşa 138 1.093 3.301 1.957 Class 1: Useful
Simav 220 1.209 10.865 1.413 Class 3: Suspect
Tavşanlı 220 1.335 7.078 1.824 Class 1: Useful
Uludağ 168 0.988 4.500 1.670 Class 1: Useful
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