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Abstract
Drinking water distribution systems must safely meet the expected demand for water. How-
ever, sudden pipe breaks can limit the continuous supply of drinking water. As operating 
pressure is among the factors affecting the probability of pipe breaks, a methodology was 
developed in this study to identify the pressure covariates that affect the frequency of water 
distribution pipe breaks. Five pressure covariates obtained from hydraulic simulations 
based on measured pressure and flow rate time series were evaluated using a likelihood 
ratio test to compare the maximum likelihood function values of a pipe break model cali-
brated with no covariates with those of the same model calibrated with a single pressure 
covariate. This pipe break model was calibrated using the recorded history of pipe breaks 
over a six-year period and applied to two district metered areas in the water distribution 
network of Quebec, Canada. The results indicated that the maximum and mean pressure 
covariates were significantly associated with the occurrence of pipe breaks.

Keywords Pressure covariates · Pipe breaks · Hydraulic simulation · Statistical model · 
Likelihood ratio test

1 Introduction

Water distribution networks (WDNs) are continuously exposed to numerous factors that 
affect distribution service sustainability and lead to component deterioration. This dete-
rioration can increase operating and maintenance costs, increase water losses, and reduce 
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service quality. Factors that influence pipe deterioration can be classified into three catego-
ries: intrinsic pipe factors (e.g., diameter, material, and age), environmental factors (e.g., 
weather, soil, and hydrogeological conditions), and operational factors (e.g., pressure and 
previous failure) (Barton et al. 2019). Most previous studies have focused on the age, pipe 
materials, and surrounding conditions (type of soil and temperature) as factors contributing 
to breaks in WDNs (Rezaei et al. 2015).

Leaks and breaks represent the two basic types of pipe deterioration. Leaks are small 
holes or cracks that allow water to slowly escape from active supply pipes. Liemberger and 
Wyatt (2018) estimated that the global volume of such “non-revenue” water was 126 bil-
lion cubic meters a year. In Montreal, Canada, water losses through the distribution system 
account for approximately 30% of the water volume produced (Ville de Montreal 2022). 
This suggests that preventing leaks could help to save large quantities of water, the waste of 
which is a global concern in the context of climate change, particularly in regions already 
facing water shortages. Based on the recommendations of the American Water Works 
Association (AWWA), the actions normally implemented by governments and WDN 
managers to reduce water loss through leaks and breaks comprise a combination of active 
leakage control, asset management, rapid high quality repair, and pressure management 
(AWWA 2016). Breaks are complete pipe failures that result in loss of service. Pipe breaks 
are often used as indicators of the structural condition of a WDN (Mailhot et al. 2003). In 
2023, the pipes with the highest break rates in Canada and the USA were made of cast iron, 
which had a break rate nearly ten times higher than that of PVC (Barfus 2023).

Among the operating factors affecting the deterioration of water pipes, frequent vari-
ations in pressure and overpressure lead to a higher frequency of leaks (Lambert 2001; 
Savic and Walters 1995), and when combined with other factors (e.g., pipe corrosion, 
defects in manufacturing, and material), higher pressure increases the probability of 
breaks in WDN pipes (Barton et  al. 2019). Indeed, when a pipe material is degraded 
owing to corrosion or other factors, the stress imposed by cyclic pressure fluctuations 
on cracks can cause pipe breaks (Rezaei et al. 2015). Furthermore, previous investiga-
tions on the relationship between the operating pressure and pipe break rate have shown 
that a decrease in pressure reduces the probability of pipe breaks. Konstantinou et  al. 
(2024) applied a random forest model to relate the total number of water pipe breaks 
to various operational factors; the mean pressure and pressure variation (amplitude 
and frequency) were found to exhibit the best fit with the observed number of breaks. 
Akbarkhiav and Imteaz (2021) reported a strong relationship between the pipe break 
rate and a pressure index integrating the number of service connections in predefined 
pressure ranges. Martínez-Codina et  al. (2015a) used data from four district metered 
areas (DMAs) in Madrid, Spain, to identify a threshold above which a small increase 
in the maximum pressure could lead to a significant increase in the probability of pipe 
breaks. This probabilistic approach, based on Bayes’ theorem, used pipe break data and 
pressure measurements to estimate the cumulative distribution functions (CDFs) of the 
maximum pressure values under normal operating conditions and when they coincide 
with a recorded pipe break. The probability ratio (PR) was subsequently computed as 
the ratio of the break-conditional CDF to the unconditional CDF of maximum pressure 
in six equal intervals. The maximum pressure threshold was defined as the first maxi-
mum pressure interval in which the conditional probability value exceeded the uncon-
ditional probability value. Martínez-Codina et al. (2015a) suggested that the threshold 
values should be updated according to the age and level of pipe deterioration. Mos-
lehi and Jalili_Ghazizadeh (2020) also applied Bayes’ theorem to two groups of pipes 
sharing the same material (ductile iron or polyethylene) in a large zone of the WDN of 
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Tehran, Iran. The number of annual recorded pipe breaks and annual maximum pressure 
corresponding to the maximum hourly average pressure over a specific time window 
(set to 24  h), were used to develop a break rate function for different pipe materials 
using the maximum pressure as the independent variable. Similar to the method applied 
by Martínez-Codina et  al. (2015a), Moslehi and Jalili_Ghazizadeh (2020) determined 
the maximum pressure threshold by comparing the unconditional and break-conditioned 
CDFs of the maximum pressure range associated with each material; they divided this 
range into 17 equal intervals and calculated the PR for each. The first maximum pres-
sure interval exceeding PR = 1 was identified as the maximum pressure threshold for 
that pipe material. The results indicated that the maximum pressure threshold for duc-
tile iron pipes was greater than that for polyethylene pipes. Finally, Jara-Arriagada and 
Stoianov (2021) developed a model for predicting pipe breaks based on logistic regres-
sion using polynomial terms. They estimated the probabilities of breaks according to 
different pressure variations and subsequently identified the influence of the pressure 
variation on the probability of pipe break occurrence using a sensitivity analysis com-
bined with machine learning. The results indicated that a decrease of 20 m in the mean 
pressure led to a reduction of 18% and 30% in the rate of breaks for asbestos cement and 
cast iron pipes, respectively.

Owing to the scarcity of reported data and the difficulty of collecting pressure meas-
urements, few studies have quantitatively investigated the influence of pressure on pipe 
breaks using actual pressure data. Instead, the pressure values used in most previous 
pipe break modeling studies were estimated from hydraulic simulation models based 
on uncertain parameters, including demand and pipe roughness; therefore, considerable 
uncertainty is associated with these results (Ghorbanian et al. 2016). Pressure indicators 
were calculated by Martínez-Codina et al. (2015a, 2015b) and Moslehi and Jalili_Ghaz-
izadeh (2020) by exploiting the water pressure time series recorded at a single point in 
their respective studied DMAs. For the former, this specific point was the entry point 
of the DMA; for the latter, it was a point where pressure variations could represent the 
average of the area under study.

Furthermore, most previous studies have investigated the influence of operating pres-
sure on the occurrence of pipe breaks by first assuming a specific pressure covariate as 
the most significant indicator. However, Martínez-Codina et  al. (2015b) compared the 
impacts of seven pressure indicators (maximum pressure, minimum pressure, average 
pressure, pressure range, pressure variability, pressure change, and pressure change rate) 
calculated for different time windows (between one and five days) on the occurrence of 
pipe breaks to determine which was the most influential. Their methodology was based 
on the comparison of a CDF conditioned on pipe breaks with 100 CDFs obtained from 
random sets for each pressure indicator. The results indicated that the pressure range 
indicator had the most significant influence on pipe breaks.

The primary objective of this study was to identify the pressure covariates that have 
a significant impact on pipe breaks. In contrast to previous studies, in which pressure 
was either measured over a short period that covered only a small portion of historical 
pipe break records (Konstantinou et al. 2024), simulated with a hydraulic model that did 
not rely on pressure measurements (Jara-Arriagada and Stoianov 2021), or considered 
globally for a DMA but not for each pipe (Akbarkhiav and Imteaz 2021; Moslehi and 
Jalili_Ghazizadeh 2020; Martínez-Codina et al. 2015a, 2015b), the proposed methodol-
ogy relies on the estimation of pressure covariates for all pipes of a specific water DMA 
based on pressure and flow rate measurements taken at the supply and outlet junctions 
of that DMA.
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2  Case Studies

Two datasets from two DMAs (designated as Zones A and B for confidentiality reasons) 
of Quebec City’s WDN were used for the analyses presented in this paper. The first dataset 
contained a record of pipe breaks recorded from 1987 to 2020 as well as the installation 
date, length, diameter, and material of all pipes in the DMAs. The second dataset included 
recorded 15-min measurements of water pressures and flow rates at the inlets and outlets of 
each DMA from 2015 to 2021. Representations of the two studied DMAs in the EPANET 
software are presented in Fig. 1 along with the locations of their inlets and outlets. The 
figure shows that water is supplied by three inlets for Zone A and two inlets for Zone B, 
and that Zone A has four outlets and Zone B has two outlets. Notably, Zone B contains two 
multifunctional junctions that behave as inlets or outlets according to the water consump-
tion balance. All input and output junctions are equipped with measurement sensors for 
flow rate and pressure, except for outlets G and H in Zone B, which only contain flow rate 
sensors (i.e., no pressure data were recorded at these two outlets).

The primary characteristics of Zones A and B are listed in Table 1. Zone B is larger than 
Zone A in terms of the number of pipes and total pipe length. In addition, Zone B is older, 
with 63% of its pipes over 40 years old, compared to 54% in Zone A.

Fig. 1  EPANET models of a) Zone A and b) Zone B

Table 1  Physical characteristics of the studied DMAs

Characteristics Zone A Zone B

Number of pipes 1069 3835
Pipe diameters (mm) 150 to 750 150 to 750
Total length (km) 51.9 179.5
Pipe materials Ductile cast iron, gray cast iron, and 

PVC
Ductile cast iron, gray cast 

iron, and PVC
Pipe ages 54% of pipes > 40 years old 63% of pipes > 40 years old
Mean service pressure (kPa) 490 to 872 343 to 1029
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From 2015 to 2020, the average recorded number of annual breaks was 15 and 67 in 
Zones A and B, respectively, corresponding to 0.3 and 0.4 breaks/year/km, respectively.

3  Methods

The pressure time series at the inlets and the input and output flow rates measured in the 
two DMAs every 15 min were used to run successive hydraulic simulations and obtain the 
pressure in each pipe in 15-min time steps. These calculated pressures were subsequently 
applied to estimate the pressure indicators for each pipe. Finally, five pipe break models 
were calibrated with different pressure covariates and the statistical significance of these 
covariates was assessed using a likelihood ratio test. As shown in Fig.  2, the associated 
methodology comprises four primary steps.

1. Cleaning and preparing data: First, the outliers in the database of recorded pressures 
and flow rates were detected and removed or modified.

2. Hydraulic simulations: For each 15-min step, the pressures at water supply junctions, 
flow rates at water outlet junctions, and water demands were attributed to the corre-
sponding water network elements. A hydraulic simulation was subsequently executed 
using the EPANET 2.2 software (Rossman et al. 2020) to compute the pressures at all 
nodes, based on which the pressure indicators were calculated for each pipe in the water 
network.

Fig. 2  Flowchart describing the applied pipe break analysis methodology
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3. Calibration of the pipe break model: Based on the pipe break records, two different pipe 
break models were calibrated by maximizing their likelihood functions. One model had 
no pressure covariates; the other included a single pressure covariate.

4. Likelihood ratio test: The two pipe break models were compared based on the ratio 
between their respective maximum likelihood function values.

The Python programming language was used to implement all steps of the proposed 
methodology.

3.1  Data Cleaning

Outliers in the water pressure (P) and water flow rate (Q) time series were identified as values 
outside the following limits:

where Ul denotes the upper limit, Q1 denotes first quartile value, Q3 denotes the third quar-
tile value, IQR = Q3 − Q1, and Ll denotes the lower limit.

Each identified outlier i was removed or modified according to the following conditions:

1. For an outlier Q[i] (P[i]), if Q[i + 1] (P[i + 1]) or Q[i-1] (P[i-1]) were also defined as 
outliers, then all measurements for both Q and P in this time step were removed.

2. Otherwise, Q[i] was defined as mean(Q[i + 1], Q[i-1]) and P[i] was defined as 
mean(P[i + 1], P[i-1]).

3.2  Hydraulic Simulations

The pressure in each pipe in the studied DMAs must be known to compute the pressure covar-
iates of the pipe break model. Because the monitored pressure values are only available at 
the inlet and outlet junctions of the DMAs, the pressure in each pipe was computed using 
the EPANET 2.2 software (Rossman et al. 2020) in 15-min time steps. The pressures at the 
upstream junctions and the inlet and outlet flow rates were used to run these hydraulic simula-
tions, and the monitored pressures at the downstream junctions were compared to the corre-
sponding calculated pressures to validate the model.

The upstream monitored pressure values were included in the EPANET model as fixed-
level reservoirs. As there were no flowmeters for consumers in the studied DMAs, the demand 
at each node was computed based on the initial water demand values in the EPANET model. 
As the EPANET models provided by the City of Quebec contain the demands at each node 
for an average day of water consumption, the sum of the water demands at each node e, Qe , 
for this average day was used to calculate the demand weighting factor, pe , for that node. This 
factor represents the portion of total water consumed, Qt , at node e in a DMA containing K 
nodes. The corresponding equations are:

Ul = Q3 + 1.5 IQR ;Ll = Q1 − 1.5IQR

Qt =

K
∑

e=1

Qe
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Thus, for each simulation, the demand value assigned to node e at time ts, Qe,ts
 , was 

computed from the total measured flow rate of water consumed in the DMA at time ts, 
QC,ts

 , as follows:

where QC,ts
=
∑

QI,ts
−
∑

QO,ts
 , in which QI,ts

 denotes the total input water flow rate for the 
DMA at time ts and QO,ts

 denotes the total output water flow rate from the DMA at time ts.
Successive EPANET simulations (one in each 15-min time step) were performed using 

the Python Water Network Tool for Resilience (Klise et al. 2018). The Python script was 
based on a “for” loop that first assigned the corresponding water demand at each node and 
water elevation at each reservoir, then ran a hydraulic simulation for that time step and 
saved the results.

3.3  Hydraulic Model Validation

The hydraulic model was validated by analyzing the relative root mean square deviation 
(RRMSE) between the observed and simulated pressures at each outlet junction. The 
RRMSE was calculated for each year z of the recorded period as follows:

where P̂ts
 is the simulated pressure at time ts, Pts

 is the measured pressure at time ts, m is the 
number of simulation time steps, and Pts

 is the mean observed pressure.

3.4  Pressure Covariates

For a DMA containing N pipes, the pressure covariates for each pipe j were computed as 
the mean of the corresponding covariates at the upstream and downstream nodes of that 
pipe. Because the pipe breaks were recorded in one-year time steps (i.e., only the year 
of occurrence of the break and its location were known), the pressure covariates listed in 
Table 2 were also calculated for a one-year time step.

The stationarity of the annual covariates (Table 2) for the recording period was tested 
using the Mann–Kendall test; only the pressure covariates that exhibited a non-significant 
trend in their annual values were retained. Finally, the pressure covariates selected for 
inclusion in the pipe break model were provided as average annual values over the record-
ing period, as listed in Table 2.

3.5  Pipe Break Model

Barton et  al. (2022) provided an exhaustive review of statistical pipe failure models for 
drinking water networks. They noted that available pipe failure records were typically 
short, potentially precluding the development of reliable pipe break models. Mailhot et al. 

pe =
Qe

Qt

Qe,ts
= peQC,ts

%RRMSE =

�

∑m

ts=1
(P̂ts

−Pts
)
2

m

Pts

x100
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(2000) and Pelletier (2000) developed a statistical method to model the evolution of pipe 
breaks in WDNs by considering breaks that could have occurred before the beginning of 
the historical pipe break record. Their model was based on two statistical distributions: 
a Weibull distribution to model the time of appearance of the first break following the 
installation date of a pipe and an exponential distribution to model the time between sub-
sequent breaks. This model was applied to estimate the evolution of pipe breaks in a WDN 
and thereby evaluate proposed replacement scenarios (Pelletier et al. 2003). Mailhot et al. 
(2000) and Pelletier (2000) also proposed other models comprising various combinations 
of these two distributions, including the Weibull–exponential–exponential (WEE) and 
Weibull–Weibull–exponential models. However, explanatory variables other than the pipe 
age were not considered in these models. Toumbou et al. (2014) developed a pipe break 
model incorporating additional explanatory variables based on the WEE model by Mailhot 
et al. (2000). This pipe break model, which was applied in the present study, combines a 
Weibull distribution to model the time elapsed between the pipe installation date and its 
first break with a first exponential distribution associated with the time between the first 
and second breaks and a second exponential distribution linked to the time between sub-
sequent breaks. Notably, the WEE model facilitates estimations of the influences of vari-
ous factors (e.g., pipe diameter, length, and material, pressure, etc.) on the occurrence of 
breaks.

According to Toumbou et al. (2014), the average number of breaks for a pipe between T 
and T + DT, �(T , T + DT) , can be computed using the WEE model as follows:

where

and x is the covariate vector, β is the covariate coefficient vector, t is the time, ki and pi are 
scalar parameters of distribution i, and F1 and f1 are the survival and probability density 
functions of the Weibull distribution, respectively, given by:

The values of parameters k1, p1, k2, and k3 were estimated during the calibration of the 
WEE model, which was performed by maximizing its likelihood function using the histori-
cal record of pipe breaks. The covariates included in vector x were those linked to pressure 
( Pjmax

, Pjmean
, Pjvar

, Mj, and Lj , as defined in Table 2), which were considered successively, 
whereas the other covariates were linked to pipe physical characteristics (diameter, length, 
and material).

�(T , T + DT) =

(

k3

k2

− 1

)

{[

e
−k2(T+DT)e

x�

− e
−k2Te

x�
]

Int0 + e
−k2(T+DT)e

x�

Int1

}

− k3e
x�
Int2 + k3DTe

x� +

(

k3

k2

− 2

)

[

F1(T + DT) − F1(T)
]

Int0 = ∫
T

t�1=0

f1
(

t�1
)

ek2t
�
1e

x�

dt�1;Int1 = ∫
T+DT

t1=0

f1
(

t1
)

ek2t1e
x�

dt1;Int2 = ∫
T+DT

t1=T

F1

(

t1
)

dt1

F1 = e−(k1te
x.�)

p1

f1 = p1k1e
x.�
(

k1te
x.�
)p1−1e−(k1te

x.�)
p1
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3.6  Calibration of Pipe Break Model

The WEE model was calibrated by maximizing the natural logarithm of its likelihood func-
tion (Pelletier 2000; Mailhot et al. 2000; Toumbou et al. 2014) as follows:

where Pi(n) is the probability of having n breaks in pipe i between T and T + DT regardless 
of the number of breaks between the time of pipe installation and T, N is the number of 
pipes in the DMA, ni is the number of breaks between T and T + DT, and Tb and Ta repre-
sent the start and end of the data collection period, respectively.

The pipe break models (with and without a pressure covariate) were calibrated for each 
DMA. Subsequently, a database combining the data from the two DMAs was created to 
calibrate the pipe break model. This database included the most significant pressure covari-
ate identified based on the individually obtained results for each DMA.

In addition to the most significant pressure covariate, the pipe length, diameter, and 
material were included in the pipe break model calibration for the combined DMAs. 
This model was subsequently compared with the pipe break model calibrated using only 
the physical covariates (pipe diameter, length, and material) for the combined DMAs to 
verify the impact of the pressure covariate on pipe breaks when combined with physical 
covariates.

3.7  Likelihood Ratio Test

The likelihood ratio (LR) was used to compare the pipe break model calibrated without a 
pressure covariate with that calibrated with a pressure covariate. It was computed by

where l
(

�0
)

 and l
(

�̂
)

 are the maxima of the logarithms of the likelihood functions of the 

models without ( L
(

�0
)

 ) and with ( L
(

�̂
)

 ) the pressure covariate, respectively.
The null hypothesis of this test was that the difference between the two models was 

insignificant and could be neglected. If the null hypothesis was true, LR would follow a 
chi-squared distribution, X2

k
 , where k is the degree of freedom (i.e., the difference between 

the number of covariates of the two tested models). A significance level of α = 5% was con-
sidered for this test.

��(L) =
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��
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Pi(0)
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��
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4  Results and Discussion

4.1  Data Cleaning

The analyses were performed using the pressure, flow rate, and break data recorded from 
2015 to 2020. During the process of cleaning these data, 11% and 16% of records were 
removed from Zones A and B, respectively.

4.2  Hydraulic Simulations

The validation results for the hydraulic model are provided in Table  3, which indicates 
that the average RRMSE for the outlet pressures were 4.8% and 3.5% for Zones A and B, 
respectively. As these values were less than 5%, the hydraulic model was considered valid 
for computing the annual pressure covariates for each pipe in the two DMAs.

4.3  Pressure Covariates

The results of the Mann–Kendall trend test performed on the annual covariates defined in 
Table 2 for each pipe in the two DMAs during the 2015–2020 period indicate that there 
was no temporal trend in any pressure covariate values for any pipes, except 2% of the 
pipes exhibited a trend in L for Zone A and 1% of the pipes exhibited a trend in Pmean for 
Zone B. For both DMAs, the absence of a significant trend in the annual pressure covari-
ates permitted the calculation of all pressure covariates as mean annual values, as listed 
in Table  2. Thus, these covariates can be considered to characterize the entire recorded 
period.

4.4  Likelihood Ratio Test

The WEE model was calibrated using a combination of variables related to time (instal-
lation date and break date) and covariates (x) under the constraint k1 < k2 < k3 , applied 
according to the hypothesis that successive breaks occur more frequently (Duchesne et al. 
2016).

Table 3  Validation results for the hydraulic model

Sensor Zone A Zone B

A B C D E F

Year %RRMSE %RRMSE %RRMSE %RRMSE %RRMSE %RRMSE
2015 5.6 4.2 4.3 7.3 1.9 5.7
2016 5.3 3.8 4.0 6.4 1.9 5.3
2017 5.2 5.5 4.1 5.7 3.8 4.4
2018 5.3 4.4 4.3 5.1 3.1 3.9
2019 5.0 4.0 4.2 4.7 2.9 3.4
2020 4.5 4.2 4.0 4.3 2.5 3.6
Average 5.2 4.4 4.2 5.6 2.7 4.4
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The results of the LR test are provided in Table 4 for the separately calibrated mod-
els for Zones A and B and for the models calibrated by combining the data from both 
DMAs. These results indicate that the covariates Pmax , Pmean, and Pvar had significant 
impacts on pipe breaks in Zone A and Pmax and Pmean had significant impacts on pipe 
breaks in Zone B. The results also show that Pmax had a significant impact on pipe 
breaks when the pipes of both DMAs were combined.

The results presented in Table  4 for the individual DMAs can be further analyzed 
using Fig. 3, which shows the distributions of the mean and maximum pressure values 
and the mean pressure variation for the pipes in Zones A and B.

The Pmax and Pmean values were observed to have a significant impact on the occur-
rence of pipe breaks in both DMAs, although the two zones exhibited differences in 
terms of pipe age, pipe break rate, and the distributions of Pmax and Pmean . As previ-
ously mentioned, the pipes in Zone B were older than those in Zone A; thus, the pipe 
break rate was higher in the former. Moreover, Figs.  3a and 3b show that the varia-
tions in Pmax and Pmean for Zone B were greater than those for Zone A. The impacts of 
these two covariates on the pipe break rate have been demonstrated in previous studies, 
which showed that decreasing the maximum pressure (Martínez-Codina et  al. 2015a; 
Moslehi and Jalili_Ghazizadeh 2020) and mean pressure (Jara-Arriagada and Stoianov 
2021) led to reduced pipe break rates. However, these studies applied different meth-
ods to determine the pressure covariates, either estimating them from the time series of 
pressures measured at specific points of the DMA assuming that each covariate was rep-
resentative of all pipes in that DMA (Martínez-Codina et al. 2015a; Moslehi and Jalili_
Ghazizadeh 2020), or estimating them for each pipe using a hydraulic model that was 
not adjusted to represent the actual hydraulic conditions (Jara-Arriagada and Stoianov 
2021). In the former case, the covariates were conditioned to the occurrence of breaks; 
i.e., for each reported break, a pressure covariate was calculated from the pressure time 
series that preceded the break using a specific window width (generally between one 
and five days). However, Martínez-Codina et al. (2015b) pointed out that the maximum 
and mean pressures do not always affect the probability of pipe breaks, such as when the 
values of Pmax and Pmean are low.

In addition, the results in Table 4 show that the p-values from the LR test of Pmax and 
Pmean for Zone B were significantly lower than those for Zone A. This difference can be 

Table 4  Comparison between pipe break models with and without pressure covariates for Zones A and B 
(gray cells indicate covariates that had a significant impact on pipe breaks)

Comparison between WEE models p-value for Zone A p-value for Zone B

Without covariate vs. with Pmax covariate 0.02 1.2E-05

Without covariate vs. with Pmean covariate 0.02 1.4E-05

Without covariate vs. with Pvar covariate 0.04 0.60

Without covariate vs. with M covariate 0.58 0.10

Without covariate vs. with L covariate 0.20 0.09
Comparison between WEE models p-value for combined 

Zones A and B
Without covariate vs. with Pmax covariate 9.8E-06

With diameter, length, and material covariates vs. with 
diameter, length, material, and Pmax covariates

9.4E-55
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explained by the relative distributions of the two covariates, which were wider in Zone 
B (Fig. 3).

The comparison between the WEE models without a pressure covariate and with 
Pvar , shown in Table  4, provided contradictory results according to DMA: Pvar had a 
significant impact on pipe breaks in Zone A but not on those in Zone B. The distribution 
of Pvar across the pipes in the two DMAs (Fig. 3c) may explain this difference. The val-
ues of Pvar were higher and covered a wider range in Zone A (0.300 m to 1.100 m) than 
in Zone B (0.001 m to 0.250 m). Therefore, the pressure variation in Zone B was insuf-
ficient to affect the occurrence of pipe breaks. This can be related to the results reported 
by Martínez-Codina et al. (2015b), who demonstrated that indicators linked to the vari-
ability of pressure, such as the pressure variation rate, pressure variation, and range of 
pressure, influenced the occurrence of pipe breaks in six considered DMAs.

The results presented at the end of Table 4 strengthen this conclusion regarding the 
impact of the maximum pressure covariate on pipe breaks. These results indicate that 
Pmax had an even more significant influence on pipe breaks when data from the two 
DMAs were combined. Finally, the results in Table  4 also show that Pmax had a sig-
nificant impact on pipe breaks, even when the physical covariates were included in the 
calibration of the WEE model.

Fig. 3  Distributions of the a) maximum pressure covariate for Zones A and B; b) mean pressure covariate 
for Zones A and B; and c) mean pressure variation covariate for Zones A and B
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5  Conclusion

The impact of pressure on the occurrence of pipe breaks was investigated considering five 
explanatory water pressure covariates (mean annual maximum pressure, mean pressure, 
mean pressure variation, mean annual number of times the pressure variation exceeded 
PVar + 2� , and mean annual number of times the pressure variation exceeded PVar + 3� ) in 
pipe break models for two DMAs from the WDN of Quebec, Canada.

First, a hydraulic model was simulated and validated based on the recorded pressure 
and flow rate time series. This hydraulic model was used to estimate the aforementioned 
pressure covariates for each pipe in the studied DMAs. The results indicated that the maxi-
mum and mean pressure values had significant impacts on the occurrence of pipe breaks in 
both DMAs when considered separately; this was also verified when the data from the two 
DMAs were combined. The link between the maximum pressure and pipe break rate was 
verified by combining the pipe break model using this covariate with that using the physi-
cal characteristics (pipe diameter, length, and material) for the two DMAs combined. The 
results confirmed that pressure management strategies that aim to reduce pressure varia-
tions can reduce the occurrence of pipe breaks. Predicting the probability of pipe breaks 
as a function of pressure-related covariates could help water utilities decide between sev-
eral intervention scenarios such as implementing pressure management valves or replacing 
older pipes.

Note that the pressure and flow rate time series employed in this study covered only 
six years for the two studied DMAs. The use of a longer record period could strengthen 
the conclusions regarding the significant pressure covariates or help identify other critical 
covariates. Furthermore, the limits Ul and Ll imposed to detect outliers in the time series 
could be overly restrictive. Indeed, several actual extremely high water consumption rates 
could have been considered measurement errors when applying the proposed data cleaning 
method. This could specifically affect the results for the mean pressure variation, which 
was identified as exerting a significant impact on the deterioration of the WDN pipes in 
Zone A but not in Zone B. Finally, the pressure covariates were estimated assuming that 
they represented the entire recording period. The pipe break model is limited to such sta-
tionary covariates; however, when the recording period extends, the possibility of detecting 
a trend in the annual pressure covariates increases. Indeed, trends in pressure covariates 
can be caused by interventions in WDNs, such as changing the inlet pressure settings. In 
this case, including a nonstationary pressure covariate in the calibration of the WEE model 
could affect the validity of the results.

The primary findings of this study confirm the impact of the maximum and mean pres-
sure values on the occurrence of pipe breaks and can help WDN managers develop inter-
vention plans such as implementing pressure reducers with fixed or variable setpoints or 
developing real-time pressure management strategies.
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