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Abstract
Water scarcity is an escalating global concern that poses significant challenges to agri-
culture. The need to feed a growing population, coupled with changing climate patterns, 
demands a re-evaluation of water use efficiency in major field crops. Water efficiency 
in agriculture is a critical facet of sustainable water management in rural areas, where 
agriculture often serves as a primary economic activity. In rural regions, where water re-
sources are often limited, efficient agricultural water management is vital to ensure food 
security, economic stability, and environmental sustainability. In this review, we have dis-
cussed various measures to improve water use efficiency or productivity in agricultural 
systems. Adopting the strategies for enhancing water productivity at plant and field level 
may include: rain water harvesting in rural area, soil moisture conservation practices like 
mulching, crop residue retention and conservation agriculture, better utilization of stored 
soil moisture by best crop management interventions, irrigation scheduling, integrated 
farming systems i.e. multiple usage of water in agriculture by combining various farm 
enterprises like crop production, dairy and fishery. Beside these, reviewed the water use 
efficiency for important field crops around the world. Review also discussed about how 
beneficial public policies particularly watershed management in rural area are needed to 
establish the right socioeconomic conditions for boosting WUE in the agriculture.

Keywords Climate change · Conservation agriculture · Rain water harvesting · 
Socioeconomic · Water scarcity

1 Introduction

Water is a crucial input affecting the final harvest of agricultural crops (Lamptey 2022). 
Every form of life, every facet of socio-economic progress, and the preservation of thriving 
ecosystems all depend on water (Barlow and Clarke 2017). Even good seeds and fertilizers 
cannot grow to their full potential if plants are not given the right amount of water. Compe-
tition for water resources is anticipated to rise due to population expansion, urbanization, 
and climate change, with an emphasis on agriculture. The world’s population will need food 

 et al. [full author details at the end of the article]

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-024-03836-6&domain=pdf&date_stamp=2024-4-10


M. Yadav et al.

and fibre to fulfil its basic needs by the year 2050, reaching 9.4 to 10.2 billion people, an 
increase of 22–34% (Boretti and Rosa 2019). The expanding population’s demands on water 
resources are leading to a decline in the quality of the available water supplies, while the 
need for fresh water for industrial and agricultural expansion is rising quickly. By 2050, it is 
predicted that agricultural production will need to increase by around 70% due to the rising 
calorie and complex food consumption that comes along with economic development in 
developing countries (World Bank 2022). Although there are enough freshwater resources 
worldwide to support continuing industrial and agricultural expansion, concerns about the 
long-term sustainable use of water resources are developing (Serageldin 1995). This is 
especially true when considering the regional differences in the availability and quality of 
water. Inadequate legislation, severe institutional failures, and financial ripoffs are frequent 
barriers to enhancing water management in agriculture (Hopken 2022). Water hazards are 
becoming more prevalent in agriculture which significantly impact productivity. Therefore, 
improving agricultural water management is crucial for a vibrant and successful agro-food 
industry (FAO 2017). To ensure just, sustainable, and prosperous rural economies, water is 
crucial (Massoud et al. 2010). Water is needed for human health, nutrition, and agricultural 
productivity in addition to providing employment possibilities in several significant fields 
throughout the rural economy. For rural communities to improve their standard of living, 
local economies to grow, decent jobs to be created in rural areas and across all economic 
sectors, and a healthy and productive workforce to be maintained, there must be sustainable 
water management, adequate water infrastructure, and access to safe, reliable, and afford-
able water supplies and adequate sanitation services (Qu et al. 2013). Water-related prob-
lems might significantly impact rural economies, lives, and suitable employment if they are 
not addressed. As a recognized human right, access to water that “Entitles everyone to suffi-
cient, safe, acceptable, physically accessible and affordable water for personal and domes-
tic uses” (Rights 2000). In recent years, agricultural regions have experienced severe and 
escalating water restrictions. Farmers in most nations do not pay the full cost of the water 
they use, which encourages such tendency (Pretty et al. 2001). Irrigated agriculture contin-
ues to be the leading user of water globally. 70% of water consumption worldwide and over 
40% in several OECD (Organisation for Economic Co-operation and Development) nations 
is for irrigation in agriculture. Aquifers are depleted and environmental externalities may 
result from intensive groundwater pumping for irrigation, which has a significant economic 
impact on the industry and beyond. Therefore, adopting efficient (in terms of water usage) 
and sustainable water management techniques is imperative (OECD 2022). The current 
water demand and future projections in different sectors are depicted in Table 1.

1.1 Facts for Global Water Use

The average worldwide freshwater drain from agriculture is 70%. Approximately 67% of 
global resource extractions are attributed to China, Iran, Pakistan, India, and the United 
States (Boretti and Rosa 2019). Water demand increased nearly twice as quickly as popula-
tion growth during the past century. Food production has grown by more than 100% during 
the past 30 years. By 2050, according to the FAO, an additional 60% more food would be 
required to feed the world’s expanding population (FAO 2017). As a result, water consump-
tion is expected to rise. The available irrigation water is the only half of the total freshwater 
present globally (Table 2).
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2 Water Governance, Infrastructure and Settlements for Rural Area

Cities and rural regions compete more for limited water supplies, putting both their prosper-
ity and the environment in danger (Elkind 1998). The water shortage is getting worse as a 
result of overusing it for irrigation. Groundwater aquifers are being drained and agricultural 
and non-agricultural water sources are becoming of worse quality. Rural livelihoods fre-
quently depend on a sufficient water supply, and these livelihoods are threatened by growing 
water shortages and competition for water resources. Therefore, providing access to clean, 
convenient water sources is crucial. Twenty-two nations are experiencing severe water 
stress, and over 2 billion people reside in countries with significant levels of water stress. 
According to estimates, 4 billion people experience acute water stress yearly (UNWWDR, 
2019). By 2030, it is predicted that over half of the world’s population will reside in regions 
with significant water stress, leading to population relocation due to rising water demand. 
However, the increased demand for water in areas with limited availability or high competi-
tion for water calls for increased diversification of water sources, such as low-yielding wells 

Table 1 Water demand and resources: current and projections by 2050
Sector At present Global increment by 2050 Reference studies
Global Population 7.9 billion 9.4 to 10.2 billion people WWAP, 2018; Bo-

retti and Rosa 2019
Water scarce population 1.9 billion (27%) 2.7 to 3.2 billion (42–95%) WWAP, 2018
Food demand - 60% WWAP, 2018
Water use in Agriculture 70% Uncertain (60% up to 2025) Alexandratos and 

Bruinsma 2012
Groundwater withdrawal 800 km3 per year 1100 km3 per year Wada et al. 2016
Water use for industry 20% (75% for 

energy produc-
tion and 25% for 
manufacturing)

Industrial increment 800% in 
Africa and 250% in Asia; manu-
facturing will increase by 400% 
and 85% for energy.

WWAP, 2014; Wada 
et al. 2016; IEA, 
2012

Domestic global water use 10% 300% in Africa and Asia; 200% 
in Central and South America.

Wada et al. 2016

Table 2 Estimation of storage of freshwater over the globe that available for irrigation in agriculture
Sources Groundwater Lakes Large dam 

reservoirs
Small dam
reservoirs

Total 
freshwater 
storage for 
irrigation

Total 
freshwater 
storage*

Total water storage 
(Bm3)

22,600,000 182,900 9,025 1,873 2,27,93,798 5,26,67,432

% storage of total 
freshwater for 
irrigation

99.1 0.8 < 0.1 < 0.1 - -

% storage of total 
freshwater

49.9 0.34 0.02 0.004 - -

Reference studies Gleeson et al. 
2012

Mes-
sager et 
al. 2016

ICOLD 
2020

Lehner et 
al. 2011

- McCartney 
et al. 2022

*Total freshwater storage includes ice of antarctic, greenland, ground ice sheets, mountain glaciers, 
wetlands, soil storage and water from paddy fields along with above sources
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and springs, rainwater or storm water harvesting, urban runoff, and wastewater recycling 
(Alley and Alley 2022). Water scarcity is likely to limit opportunities for economic growth 
and the creation of decent jobs in rural areas (UNWWDR, 2019). This not only opens up 
new opportunities for small-scale, intense uses of water, such the growth of extremely lucra-
tive crops in tiny plots, but it also has the potential, via technical advancement, to create jobs 
in the operation and maintenance of treatment facilities to recover water.

Sixty percent of the world’s food is produced on rainfed land, although rainfed crop-
land is only half as productive as irrigated land for growing crops (ILO 2020) because it 
immediately lowers farmer’s income. An unstable water supply has a detrimental effect 
on both the quality and quantity of employment in the agro-food industry. Furthermore, 
the difficulty of relying on rainwater for agricultural output is further exacerbated by the 
increased unpredictability of rainfall patterns and the increasing frequency of floods and 
droughts, both of which are influenced by climate change and ultimately leading to reduced 
yields (Mishra 2017). Flooding, for example, has a disproportionately negative impact on 
impoverished farmers and indigenous and tribal populations, who are less able to exploit 
natural resources in an environment of heightened competition, which might speed up the 
movement of people from rural to urban areas. On the other hand, access to essential water 
supply and sanitation services might provide extra challenges for migrants, refugees, and 
internally displaced individuals living in rural regions (Ali 2020). Approaches like the pro-
motion of payments for ecosystem services (PES) help rural communities manage their 
water resources to compensate for opportunity costs of environmental services and lower 
poverty to lessen the effect of these difficulties. Despite making up a small portion of all 
employment, the immediate occupations in the water sector supports many other jobs (Ibok 
et al. 2014). Thus, rather than creating new jobs, water may be a facilitator of existing ones.

3 Field Water Balance and its Components

The provision of field water has been a key area of agricultural study and management 
(Molden et al. 2010). Calculation of soil water balance is the popular method for monitoring 
soil water supply in field condition. Making informed judgments about water management, 
irrigation scheduling, and water conservation depends on understanding water balances 
(Sturdy et al. 2008). Water conservation suggests that the available water should be con-
served within the area of interest. Calculating the water balance accurately can help correct 
previous mistakes and prevent them in the future. The water balance elements fluctuate with 
time, such as from day to day, year to year, etc.

3.1 Concept of Field Water Balance

The field water balance is a record of all the amounts of water introduced to, taken out of, 
and stored inside a specific volume of soil during a specific period in a specific field (Fries et 
al. 2020). The rule of conservation of matter, which asserts that matter cannot be generated 
or destroyed but can only be moved from one condition or place to another, is clearly stated 
in the water balance. It is a mass balance of the flow and storage of water in surface soil (for 
a specific depth) on a per-area basis using the hydrologic equation (Ali 2010). There is no 
appreciable amount of water that is decomposed or composed in the soil, so the water con-
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tent of a soil profile with a finite volume cannot change without addition from the outside 
(such as through infiltration or capillary rise), nor can it decrease unless it is transported 
to the atmosphere by evapotranspiration or to deeper zones by drainage. The two types of 
boundaries needed for water balance calculations are the physical (or geographical) bar-
rier and the temporal (or time) boundary (Burt, 1999). The methods for estimation of field 
water balance components and its factor affecting them are given in Table 3. Water balance 
can be investigated for a field, farm, irrigation district, or hydrological basin. Mathematical 
formula of field water balance is given by Ali 2010.

 ET = P + I + G± Q−∆S

Where, ET = Evapotranspiration (mm), P = precipitation (mm), I = irrigation (mm), G = net 
groundwater flow (mm), Q = run-on or runoff (mm), and ΔS = the change in soil water con-
tent within the root zone (mm).

Table 3 Estimation of field water balance components and factor affecting of each component (Wenyan et al. 
1994; Ali et al. 2007; Ali 2010)
S.N. Component Methods of estimation Factors
1. Evapotrans-

piration (ET)
Direct method- Lysimeters
Indirect method- Empirical equa-
tions like FAO Penman- Monteith, 
Modified Penman etc.

Weather factor- temperature, solar radiation, 
wind-speed, humidity, day-length. Crop fac-
tor- stomata, LAI, root architecture, cultivar. 
Management factors-weeding, shading, ir-
rigation, mulching, disease and pests, etc. Soil 
factor- Soil moisture retention, soil salinity, 
hard pan, fertility, etc.

Evaporation 
(E)

Direct method – Open pan 
evaporimeter
Indirect method- Dalton Equation, 
Penman equation, Mayer formula, 
Rohwer formula,

Air humidity, temperature, energy, impurities 
of water, wind speed, available water, soil 
type, etc.

2. Surface 
Runoff

Hydrograph (total runoff and time), Soil management, topography, cropping 
rotation, surface cover, crop root zone, depth, 
rainfall intensity and rainfall distribution, etc.

3. Deep 
Percolation 
or Deep 
Drainage

(a) Field-plot water balance
(b) Drainage lysimeter
(c) Darcian flux calculation
(d) Chloride mass balance
(e) Groundwater table rise
(f) Tensiometers at lower depths

Soil structure, Soil texture, pore size, irriga-
tion method, irrigation frequency, stream 
size, rainfall distribution, opportunity time for 
infiltration/percolation, hard layer, evapora-
tion demand, groundwater level, hydraulic 
conductivity, etc.

4. Capillary 
Rise from 
Water-Table

Empirical equations and by 
subtraction

Crop roots, soil texture, depth of water table, 
rooting depth, irrigation frequency, ET de-
mand, EC of irrigation water

5. Soil Water 
Storage

Gravimetric determination or indi-
rect method viz., neutron moisture 
meter, time domain reflectometer 
(TDR), Frequency domain reflec-
tometry (FDR) etc.

Soil organic matter (SOM), Soil texture, etc.

6. Rainfall Rain gauge The air belts, moisture-bearing winds, air 
temperature, mountain ranges, ocean currents, 
altitude, inland distance from the coast, etc.

7. Irrigation Parshall flume, weir, flowmeters, 
venturi meters, throat method, etc.

Type of soil, method of application, crop 
water requirement, etc.
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4 Estimation of Water Use Efficiency in Agriculture

An important indication of how well plants use their resources is their water use efficiency 
(Wallace 2000), which affects how the carbon and water cycles adapt to climate change. 
WUE is the ratio of plant output (or carbon absorption) per unit of water usage. When 
atmospheric gas exchanges are balanced, plants may absorb more carbon dioxide for pho-
tosynthesis and consume less water for transpiration (Ku et al. 1977). Different methods 
that employ other computations of carbon absorption and water usage can be used to deter-
mine the WUE of plants (Gong et al. 2022). While “flux-based” method employs measured 
exchange of gross primary productivity (GPP) carbon from eddy covariance techniques (Hu 
et al. 2022), “harvest-based” method uses above-ground biomass (AGB) as an indication of 
carbon assimilation (De Haan et al. 2021). Depending on the water consumption variables, 
harvest- and flux-based techniques can be further differentiated. Evapotranspiration, which 
considers water consumption within an ecosystem, and precipitation, which assumes a con-
nection between water intake and output, can be used in harvest-based techniques. Flux-
based WUE techniques can employ either transpiration, which takes into account canopy 
water consumption, or ET, which indicates ecosystem water use. Flux-based WUE methods 
heavily rely on plant cover and short-term (daily; half-hourly) weather conditions fluctua-
tions. Briggs and Shantz (1913) first proposed the idea of WUE, which demonstrates a con-
nection between plant productivity and water usage (Fig. 1). The word “WUE” to describe 
how much biomass a plant produces for every unit of water it uses. Kijne et al. (2003) 

Fig. 1 Relation between water used to yield and water use efficiency
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proposed the idea of water productivity as a reliable indicator of an agricultural system’s 
capacity to transform water into food.

The output of a particular design in proportion to the water it uses is how much water 
it produces, and this may be quantified for the entire system or specific components of it, 
specified in time and location (Cook et al. 2006).

 
Water productivity =

Agricultural benefit

Water use

The fluctuation in WUE brought on by climatic circumstances reduces over longer time 
scales (seasonal, interannual); however, this may not hold true for crops exhibiting abrupt 
changes in canopy growth during the growing season. In light of these variations caused 
by changes in plant canopy structure and growth, variation in seasonal WUE at incremen-
tal timeframes (i.e., half-hourly) may be significant for agricultural WUE trends (Wang et 
al. 2022). Environmental factors, which significantly impact rates of both carbon absorp-
tion and water usage, also affect the WUE of plants. Environmental factors can influence 
variables related to carbon assimilation and water utilization to varying degrees (Song et 
al. 2022). Indeed, climate, soil, vegetation, and hydrological conditions may all have a var-
ied impact on water usage and carbon absorption variables. As a result, changing climatic 
and hydrological regimes significantly influence agricultural resource use. Other than WUE 
many indices used for estimation of water use are depicted in the Table 4.

4.1 Measuring Regional and Basin Level Water Productivity

It is relatively difficult to establish water balances for each farm and crop at the large size of 
an administrative unit, the sub-basin, and the basin. Additionally, a portion of the provided 
water is frequently reused at the field or system sizes and in other parts of the basin (Playan 

Table 4 Water use indices and their formulas (Allen et al. 1998; Gonzalez et al. 2016; Cao et al. 2021)
Indices Formula Abbreviations
Water Produc-
tivity (WP)

WP = Y
WF

Y- Yield,
WF- Total water footprint

Effective 
utilization
degree (WE)

WE = ETc
WF

ETc – Field crop ET,
WF- Total water footprint

ETc = Kc× ETo ETc = Crop Evapotranspiration, Kc = crop 
coefficient, ET0 = References ET, (calculated 
by Penman-Monteith equation)

Water foot-
print (WF)

WF = WFAblue + WFgreen + WFgreen WFAblue= Blue water, WFgreen= Green water, 
WFgrey = Grey water

Blue water 
(WFAblue)

WFAblue= Ai×RIS × IWR
IE

WFAblue = Blue water, Ai = Irrigated crop-
land area, RIS = Relative irrigation supply, 
IWR = Irrigation water requirement, IE = Irri-
gation efficiency

Green water 
(WFgreen)

WFgreen= A×Min× ETc, Pe A = Crop planting area,
ETc = Crop Evapotranspiration,
Pe = crop effective precipitation

Grey water 
(WFgrey)

WFgrey = ∝×AR
Cmax−Cmin

∝ = leaching-runoff fraction
AR = rate of chemical application, kg/ha
Cmax = Maximum acceptable concentration
Cmax = Concentration in natural water
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and Mateos 2006). The worth of production relative to consumptive use of water by crop is 
believed to be a better indicator of water productivity to overcome these challenges in cap-
turing the reuse and benefits outside the areas of interest. While in rainfed regions, minimum 
effective rainfall and evapotranspiration (ETo), consumptive water usage in irrigated areas 
indicates the potential ETo (Molden et al. 2003). Depending on the available data, resources, 
expertise, and analysis goal, estimates of crop yields and consumptive water use can be 
made using either statistical data on crop yields, historical values of crop coefficients, and 
potential evapotranspiration, or more recent approaches utilizing remote-sensing imagery 
and crop modelling.

4.2 Statistical Approach

Long-term (minimum of three years) subnational data on detailed land use, crop output, 
number of irrigated and rain-fed areas of various crops, and combined total production can 
be used to assess the value of crop production. The IWMI Global Climate and Water Atlas 
(IWMI, 2001), the FAO, and local meteorological offices provide monthly ETo and rainfall 
data. These data and crop coefficients for the key crops may be used to calculate consump-
tive water usage. Amarasinghe et al. (2010) have provided a detailed description of the 
procedure.

 
Water Productivity (WP) =

∑
jcrops Average yield jx

(
Area IR

i + Area RF
j
)

CWU

where, RFjkl is the effective rainfall of Ith month in the kth growth period.
CWU is Crop water use and IR is Irrigation.

5 Water Use Efficiency of Major Field Crops

Unfortunately, WUE remains low in many regions, exacerbated by the reluctance of farm-
ers to adopt efficient water management practices. The current challenges in water use effi-
ciency within major field crops are multifaceted, reflecting a complex interplay of factors 
that hinder the adoption of sustainable water management practices (Dubois 2011). One 
primary obstacle stems from the prevalence of traditional irrigation methods that often 
prove inefficient in delivering water precisely to crops. Outdated practices, such as flood 
irrigation, contribute to excessive water usage, leading to water wastage, soil erosion, and 
diminished crop yields. Additionally, the lack of access to modern irrigation technologies 
and infrastructure in many agricultural regions further hampers efforts to enhance WUE 
(Hawkesford et al. 2013; Kumar et al. 2023). The WUE of the major crops of India and 
Mediterranean region are depicted in Tables 5 and 6.

Moreover, the inertia to adopt water-efficient practices among farmers is fueled by a 
combination of factors, including limited awareness, ingrained habits, and perceived eco-
nomic risks. Many farmers may not be fully aware of the benefits and long-term gains asso-
ciated with adopting precision irrigation systems, sensor technologies, and other advanced 
methods (Keating et al. 2010). Furthermore, the upfront costs associated with transitioning 
to modern technologies can be a deterrent, especially for smallholder farmers with limited 
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financial resources. This economic aspect exacerbates the resistance to change, creating 
a barrier to the widespread implementation of water-efficient techniques. Climate change 
adds another layer of complexity to the challenges faced in achieving optimal WUE (Mes-
sina et al. 2022).

Increasingly unpredictable weather patterns, including prolonged droughts and erratic 
rainfall, disrupt traditional farming calendars and necessitate adaptive strategies. Farmers 
often resort to compensatory over-irrigation to mitigate the risks associated with climate 
variability, inadvertently contributing to water inefficiency and environmental degradation 
(Kalogirou 2001).

6 Measures for Improving Water Use Efficiency in Agriculture

The main users of water are food and agriculture, which need 100 times as much as we 
need for our own needs (Nijdam et al. 2012). Fresh vegetables and animals are both grown 
and supported by agricultural water consumption. Agricultural productivity, markets, com-
merce, and food security are all predicted to be affected by rising water hazards; however, 
these risks may be reduced with the right legislation. Water use efficiency may also be 
increased using various techniques, including on-farm water management and irrigation 
timing (Chaudhry 2018). Using less irrigation lowers the cost of water and labour for the 
farmer while maximizing the storage of soil moisture (Wu et al. 2022). Growing more food 
and reaping greater advantages while using less water has recently attracted much inter-
est (Jiang et al. 2022). Many nations and regions are reaching the limits of water shortage 
within nations (Tian et al. 2021). Boosting water productivity in existing uses of water is 

Table 6 Water use efficiency (kg m− 3) for crops of Mediterranean region
Country Wheat Corn Cotton Soybean Sunflower Reference studies
Syria 0.5–2.5 - 0.50–0.74 - - Karam et al. 2005;

Oweis et al. 2005;
Katerji et al. 2006;
Katerji et al. 2008

Morocco 0.11–1.15 - - -
Israel 0.6–1.60 - 0.22–0.35 - -
Italy 1.02–1.59 0.82–1.80 - 0.47–0.77 0.39–0.72
Turkey 1.33–1.45 0.22–2.15 -
France - 1.6 - 0.55 0.6

Crops WUE range (kg m− 3) Reference studies
Cereals
Wheat (23) 0.58–2.25 Singh et al. 2010
Rice (6) 0.30–0.54
Sorghum (7) 0.56–1.43
Rabi maize (10) 0.49–1.63
Pearlmillet (4) 0.41–0.70
Pulses
Chickpea 4.45–4.80 Sarkar et al. 2016
Lentil 1.95–3.07 Razzak et al. 2022
Black gram 2.28–3.49 Ray et al. 2023

Table 5 Water use efficiency of 
major field crops of India
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the most practical solution for increasing agricultural output in the face of increased water 
shortages.

6.1 Water Efficient Agricultural Practices in Rural Areas

Water use efficiency can be increased by (i) choose crops and cropping systems based on the 
availability of water (Verma and Yadav 2018) and (ii) increasing consumptive ET (Prihar et 
al. 2000) as listed in Fig. 2. Increasing the transpiration (T) increased water use efficiency of 
plants (Zhou et al. 2020; and Wang et al. 2022). Many water and soil conservation practices 
followed in rural area to store rain water or to efficient utilization of applied water (Yadav 
et al. 2022). Based on the physiographic condition and soil properties of area water conser-
vation practices are adopted. In general area of gentle slope contour farming is adopted to 
conserve soil and water and for area of high rainfall and high slope terracing is help to allow 
to water to infiltrate into soil and in-situ water conservation (Pratibha et al. 2022).

6.2 Selection of Crop

Based on the water availability of the region selection of crop and variety become crucial 
for efficient use of water, rainfed area lies water supply only on rainfall so selection of 
crop should be accordingly (Riaz et al. 2020). Crop may have poor growth and develop-
ment because only 15 to 30% of total rainfall water is utilizable, the rest of the rain water 
being lost through runoff, deep percolation and evaporation from soil (Rockstrom et al. 
2002). Since more water would be needed for food production than the normal amount of 
water to produce unit kg of food, the resulting water use efficiency might be very low. In 
these circumstances, increased fertilizer application often results in an increase in both crop 

Fig. 2 Efficient practices for water resources utilization in agriculture
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production and water use efficiency. Most of the food consumed by underprivileged com-
munities in developing nations is produced through rainfed agriculture (Kakpoet al. 2022). 
This component accounts for more than 95% of the agricultural land in sub-Saharan Africa, 
90% in Latin America, 65% in East Asia, 60% in South Asia, and 75% in the Near East and 
North Africa (IWMI, 2010). In rainfed farming systems, water productivity, or “the vol-
ume of crop produced per drop,” is typically low while evaporation losses are considerable 
(Cantero-Martinez et al. 2007). Land is regularly degraded, crops frequently perish from 
drought or floods, and there are few mechanisms in place for better water management. 
Productivity is notably poor in portions of sub-Saharan Africa and South Asia, which causes 
food insecurity and poverty for rural communities.

6.3 Selection of Cropping System

Rainfall amount and intensity, topography, the ability of the soil to retain water and infil-
trate it, the depth of the root zone, and soil depth all affect how much of the precipitation is 
transformed into soil water that is useful to plants (Assouline 2013). The sort of cropping 
system that can be used in a location is determined by the depth of the soil because of its 
impact on the water storage capacity that is available (Milly 1994). Only monocropping 
of corn or sorghum is possible in the shallow black soil of Madhya Pradesh region with 
10 cm of available water. While double cropping can be done on deep soil with 200 mm 
of available soil moisture, monocropping or intercropping can be done on medium soil 
depth (Singh et al. 2010). The ability of the crops to adapt to the current climatic and soil 
conditions, rather than the amount of water, limits the crops that can be grown under these 
circumstances. Generally speaking, C4 plants have the ability to consume less water than 
C3 plants, especially in semiarid environments (Lara et al. 2011). Under the limited water 
availability conditions, selection of crop should equally important to irrigation scheduling 
(Chai et al. 2016).

6.4 Crop Rotation and Mixed Cropping

Crop rotation diversification would boost the entire cropping system’s resilience as a means 
of adapting to climate change. In order to ascertain whether including diverse rotation of 
wheat and barley will boost water use efficiency. Alvaro-Fuentes et al. (2009) studied 4 rota-
tions in NE Spain. When compared to monoculture systems, the WUE of the total rotation 
system was lower when rapeseed and vetch not been able to achieve a produce in a number 
of the years. When grown in an intercropping system, peanut showed a greater WUE from 
0.00015 kg plant− 1 mm− 1 when grown in monoculture to 0.00022 kg plant− 1 mm− 1. They 
claimed that the intercropping technique would provide benefits for more effective water 
use in settings with restricted water supplies (Franco et al. 2018).

6.5 Crop Residue Incorporation

In addition to enhancing the physical, chemical, biological, and biological (e.g., biodiver-
sity, earthworm) properties of soils, soil organic matter (SOM) also reduces climate change 
by storing carbon in soils (Page et al. 2020). All of these advancements result in better 
soil water use for growing crops. Currently, up to 25–75% of the SOC in agricultural soils 
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around the globe may liable to lost as a result of intensive farming methods, and roughly 
45% of soils in Europe have low organic matter levels (Zahoor et al. 2019). Around 511 Mt 
of crop wastes are produced worldwide (Venkatesh et al. 2022). Crop leftovers can be used 
as a sustainable and cost-efficient management approach to maintain agricultural soil fertil-
ity, SOC levels, and ecosystem services.

6.6 Rainwater Harvesting

We only rely on rivers, lakes, and groundwater to meet our needs for water (Zhang et al. 
2022). The ultimate source that supplies all of these sources, though, is rain. Making the best 
use of rainfall where it falls, or conserving it so that it doesn’t flow away and cause flooding 
elsewhere, is known as rainwater harvesting (RWH) (Zahoor et al. 2019). When necessary, 
the augmented resources can be extracted (Abdulla and Al-Shareef 2009). The maximiza-
tion of benefits of RWH (Gee et al. 2022) helps to the increase the water use efficiency in 
rural areas.

6.7 Conservation Tillage

Existing tactics, such as conservation tillage, can assist farmers in reducing the risks brought 
on by climate change and variability while also increasing the effectiveness of resource 
utilization. Conservation tillage is described as a strategy that leaves at least 30% of the 
soil surface covered with agricultural residues from cover crops or cash crops after planting 
(USDA, NRCS). The minimum level of soil cover determined by research to be required 
to prevent severe soil loss is 30%, but higher residue amounts are recommended (Zahoor et 
al. 2019). Conservation tillage, in conjunction with cover crops, has the ability to minimise 
subsurface compaction, minimize erosion, and improve soil organic carbon (SOC) build-
up, all of which have a positive impact on a variety of soil physical and chemical properties 
(Kaurin, 2018). Normally, puddled transplanted rice required 35 to 40% more irrigation 
water than zero tilled direct seeded rice (Bhushan et al. 2007). Conservation agriculture 
required 41–43% less water compared to conventional tillage (Rashid 2005). Transplanted 
rice in bed as compared to the conventional tillage saves 37% irrigation water without sac-
rificing grain yield during the dry season (Rahman and Islam 2008).

6.8 Irrigation Scheduling

In most developing countries as well as many arid places, increasing irrigation efficiency 
is becoming a major concern (Mubeen et al. 2016). Conventional irrigation scheduling has 
sought to maintain soil moisture levels near the field’s carrying capacity while supplying 
an adequate water supply for higher water productivity. A number of unique approaches to 
irrigation scheduling, however, have been developed recently but have not yet been widely 
embraced. Instead of directly sensing the soil moisture condition, many of these rely on the 
plant’s response to water shortages. (Erdem, 2010). The objectives of the irrigator and the 
irrigation system at hand play a significant role in the type of irrigation scheduling that is 
selected. In general, more complex scheduling techniques call for more precise application 
systems (Chebil and Frija 2016). The average increased in water use efficiency due to deficit 
irrigation was 9.3% and 6.4% for wheat and maize, respectively (Li et al. 2022).
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6.9 Moisture Conservation Practices

Moisture conservation techniques are used to increase yield in water-scarce areas (Datta et 
al. 2022). Li et al. (2018) compared the effects of plastic and straw mulch on potato WUE 
and discovered that straw mulch enhanced production by 16% while plastic mulch raised 
it by 24%. This led to a 29% increase in potato water use efficiency under a plastic mulch 
and a 6% increase under a straw mulch. According to Liu et al. (2014), different types of 
mulch had no effect on water use efficiency, but plastic mulch boosted water use efficiency 
when compared to no mulch, and the extra water conserved as a result of the decreased soil 
water evaporation could support higher plant stand. Zhang et al. (2017) conducted a review 
of the impacts of mulch on water use efficiency and found that overall, mulch raised water 
use efficiency by 61% as a result of the altered water balance and the more productive maize 
crop. In semi-arid areas, crop residue applied to the soil surface has demonstrated benefits 
in reducing soil water evaporation and boosting water use efficiency (Hatfield et al. 2019). 
Soil management techniques revealed that adding wheat residue at a rate of 5 t ha1 along 
with a 350 mm irrigation boosted soil water availability and increased grain yield by 62% 
and WUE by 35% (Ali et al. 2018). A more efficient production method in water-limited 
conditions would be made possible by the planting pattern and irrigation on wheat in the 
North China Plain. (Wang et al. 2014).

6.10 Supplemental Irrigation

When using this type of managed deficit irrigation as opposed to simply rain-fed agriculture, 
the timing and use of scarce water supplies can have a highly positive impact. (Zhang and 
Oweis, 1999; Solomon and Labuschagne 2003 and Evans et al. 2008). Supplemental irriga-
tion reduces drought vulnerability and enables farmers to make the use of scarce resources 
by working in tandem with in-situ water harvesting techniques like mulch or bunds. There-
fore, one of the most important steps in increasing yields and water productivity in rainfed 
areas is to mitigate the consequences of short-term drought (Rao et al. 2016).

6.11 Integrated Farming System in Rural Areas

In lowland ecosystem, water use efficiency can be enhanced inclusion of fisheries in the 
system. Along the rice cultivation (0.46 kg m− 3) and in the same amount of water increased 
the water productivity many folds by introducing fishery (3.08 kg m− 3) (Palanisami and 
Ramesh 2009). The combination of other farm enterprises like crop with fish production, 
crop along with dairy, etc. gives more revenue per unit quantity of water. When allied enter-
prises and crops were involved, water productivity improved significantly. Dairy produc-
tion among the allied industries uses the least amount of water, producing the highest water 
productivity (Singh et al. 2010).
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7 Watershed Management in Rural Area

The Watershed theory planners may coordinate the use of water, soil and plants in such a 
way that conserves natural resources and maximizes their production by using the water-
shed method (Carrier 2022). The watershed is the proper hydrological unit for technical 
efforts to manage water and soil resources for production and conservation (Gashaw 2015). 
However, watershed management is more challenging because watersheds seldom ever 
coincide with limits established by humans (Table 7). The primary social issue with water-
shed development is that benefits and costs are frequently distributed inequitably, which 
increases the likelihood of disagreement and conflict. Most of the time, watershed projects 
have an unequal cost and benefit distribution, with costs disproportionately borne upstream, 
typically by the poorer farmers, and benefits disproportionately realized downstream, where 
water use is concentrated and richer farmers own the majority of the land. Internalizing 
costs and benefits in a way that includes all stakeholders in a win-win situation is difficult 
(Aglanu 2014).

7.1 Water Rights in Watershed Development

The results of resource governance are essentially shaped by property rights and organiza-
tions for collective action (Sharma et al. 2005). The majority of effective watershed devel-
opment initiatives either add to or generate new surface water bodies. It is difficult to divide 
up the produced resources and ensure their sustainability, especially the groundwater sup-
ply. Everyone in the hamlet, even landless labours and small farmers, received advantages 
equally in the renowned Sukhomajri watershed, creating an incentive for everyone to save 
water. While surface water resources may be somewhat controlled by conveyance, manag-
ing groundwater resources is more challenging (Jakeman et al. 2016). The availability of 
water recharged by an effort in one village may not always be the case in small watersheds 
for the same population (Kerr 2002). Water laws in many nations, including India, expressly 
declare that every landowner has the right to pumping water from under his land as long as 
it does not impede the availability of drinking water. Therefore, project groups can attempt 
to negotiate groundwater sharing agreements but cannot complete landowners who disagree 
to comply. There have been multiple cases where the community lost out on the benefits of 
improved groundwater supplies possible by investment and a small number of wealthy or 

Table 7 Watersheds and management focus relevance to hydrology (Darghouth et al. 2008; Chandrakar et al. 
2016; www.worldbank.org/water)
Type of watershed Influence of land use on 

hydrology
Typical management focus

Micro-watershed Very strong Participatory planning: BMPs; site design
Sub-watershed Very strong

to strong
Stream classification; land use planning /zoning 
land, water resources and stakeholders’ management

Watershed Strong to moderate Watershed-based zoning; land use and water 
resources planning; stakeholder management; policy 
norms, regulations and incentives

Sub-basin Moderate to weak Basin planning; stakeholder management policy, 
legal framework and incentives

Basin Weak to very weak Basin planning; stakeholder management policy, 
legal framework and stakeholders incentives
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important farmers for their own use or even sale to the neighbouring farms (Rosenzweig 
and Binswanger 1992).

7.2 Managing Rainwater for Improved Livelihoods

Around 60% of the world’s food output comes from the 80% of the agricultural area that 
receives rain (Oweis and Hachum 2009). Farmers in these areas cannot make significant 
investments in rainfed agriculture due to the unpredictable nature of the weather and their 
precarious socioeconomic situation. It is feasible to increase production through enhanced 
rain WUE in rainfed regions by using a comprehensive and collaborative consortium strat-
egy (Wani et al. 2003). A road map for better livelihoods is provided by the convergence 
of watershed activities such as agriculture, horticulture, livestock, fisheries, poultry, and 
microenterprises to add value to rural produce (Table 8). Numerous bright spots have been 
developed under various agro-ecologies as a result of in-situ and ex-situ rainwater conser-
vation using various cutting-edge methods and improving rainwater-use efficiency through 
supplementary irrigation. Additionally, there is a need to look into and research various 
alternatives to support micro businesses at the village level and paths for market connec-
tions for rural commodities (Haggblade et al. 2007).

7.3 Integrating Watershed Management Institutions

Watersheds are natural physical units, but through time, institutions crucial to their manage-
ment have developed that do not precisely adhere to their physical limits. These institutions 
interact in various action contexts to support or restrain those who manage watersheds. 
Again, various elements (physical, social, and cultural) impact the arena, but institutions 
are a unifying component and a key motivator for decision-making (Young 1999). Agents 
engage with one another when making judgments inside and between several venues, and 
institutions integrate with many complicated ways to support and limit judgments. It will 
be easier to appreciate the intricacy and interconnections of institutions in different fields if 
you are aware of the institutions involved. Various factors affect resource management in 
watershed, yet the institutional solutions offered are frequently out of step with the actual 
situation (Tallis and Polasky 2009). By establishing new institutions, external organiza-
tions (NGOs, donors and state governments) impose various conceptions and requirements 
(carried through money). Rarely do these financial organizations try to analyze and fix the 
institutional flaws in the current distributive governance system. The process progressively 
excludes the poor who are trapped between the macro (formal) and micro (informal). To 
solve them, numerous institutions must effectively resolve issues like education, a lack of 
possibilities for earning money, overcoming natural limitations, and, most crucially, societal 
pressures that have frequently contributed to their poverty (Migdal 2015).

Table 8 Impact of watershed management practice on production and productivity
Watershed Reduction in soil 

loss (%)
Increased produc-
tion area (%)

Crop production and 
productivity increment 
(%)

Reference 
studies

Gereb Shilina 50 5 5–20 Gebregzi-
abher 2012; 
Gashaw 
2015

Goha Cheri 75 5–20 20–50
Bedesa Kela 35 5–20 5–20
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8 Conclusions

Improving water allocation and efficiency is crucial for meeting current food demand and 
ensuring future growth. Water usage efficiency is essential for the sustainability of rural 
communities worldwide. This can be achieved by increasing agricultural water productiv-
ity, reducing water outflows, improving soil and water management techniques, increas-
ing soil water storage, and redistributing water from low to high priority uses. Advanced 
irrigation techniques and the integration of fisheries, dairy operations, and other businesses 
can further enhance productivity and water use efficiency in agriculture. Positive public 
policy is needed to establish a favorable socio-economic environment. Soil moisture con-
servation practices, rainwater harvesting, and the use of anti-transparent materials can help 
reduce crop ET demands and enhance crop yield efficiency. Integrated farming systems are 
sustainable approaches to efficient water use in rural areas, generating income for farmers 
throughout the year. Watershed management in rural areas helps to establish the right socio-
economic conditions and boost the WUE in the agriculture.

The review paper calls for a holistic and integrated approach to address water scarcity 
in rural agriculture. It highlights the significance of adopting sustainable water manage-
ment practices, technological interventions, and supportive policies to ensure the long-
term sustainability of water resources, thereby securing the future of agriculture and rural 
livelihoods.
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