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Abstract
Recovering missing data and access to a complete and accurate streamflow data is of great 
importance in water resources management. This article aims to comparatively investigate 
the application of different classical and machine learning-based methods in recovering 
missing streamflow data in three mountainous basins in northern Iran using 26 years of 
data duration extending from 1991 to 2017. These include Taleghan, Karaj, and Latyan 
basins that provide municipal water for the capital Tehran. Two periods of artificial gaps of 
data were considered to avoid possible duration-based impacts that may affect the results. 
For this purpose, several methods are investigated including simple and multiple linear 
regressions (LR & MLR), artificial neural network (ANN) with five different structures, 
support vector regression (SVR), M5 tree and two Adaptive Neuro-Fuzzy Inference System 
(ANFIS) comprising Subtractive (Sub-ANFIS) and fuzzy C-means (FCM-ANFIS) classi-
fication. Although these methods have been used in different problems in the past, but the 
comparison of all these methods and the application of ANFIS using two clustering meth-
ods in missing data is new. Overall, it was noticed that machine learning-based methods 
yield better outputs. For instance, in the Taleghan basin and in the gap during 2014–2017 
period it shows that the evaluation criteria of Root Mean Square Error (RMSE), Nash–Sut-
cliffe Index (NSE) and Coefficient of Determination (R2) for the Sub-ANFIS method are 
1.67 m3∕s , 0.96 and 0.97, respectively, while these values for the LR are 3.46 m3∕s , 0.83 
and 0.87 respectively. Also, in Latyan basin during the gap of 1991–1994, FCM-ANFIS 
was found to be the best method to recover the missing monthly flow data with RMSE, 
NSE and R2 criteria as 3.17 m3∕s , 0.88 and 0.92, respectively. In addition, results indicated 
that using the seasonal index in the artificial neural network model improves the estima-
tions. Finally, a Social Choice (SC) method using the Borda count was employed to evalu-
ate the overall performance of all methods.
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1  Introduction

Engineering studies in hydrology and climatology require the existence of sufficient and 
reliable data such as rainfall, temperature, streamflow, and evapotranspiration (Mwale et al. 
2012). As such, the availability of a reliable source of complete and correct sets of hydro-
logical data is necessary for the development of various purposes, including water supply, 
construction of hydropower plants, flood protection, hydraulic structure design, hydrologi-
cal modeling and climate change projects (Kamwaga et al. 2018).

However, if the order of observing the data information in the time series of hydro-
logical data is interrupted, the problem of time series missing data arises (Yozgatligil et al. 
2013) which is a global problem (Dembélé et al. 2019; Lai and Kuok 2019). In developing 
countries, data often exhibits various deficiencies such as inadequate statistical period, poor 
measurement quality, and missing data, as highlighted by Ilunga and Stephenson (2005), 
Mwale et  al. (2012), and Radi et  al. (2015). Additionally, challenges like lack of aware-
ness, insufficient staff training, and limited focus on measurement and data processing in 
hydrological studies further exacerbate the issue of estimating missing data in developing 
countries.This lack of data can be caused by various factors such as malfunction in measur-
ing instruments and monitoring equipment, absence of supervisor and expert, human errors 
during data entry, manual collection instruments, limited access to measurement locations, 
lack of sufficient number of measuring stations, extreme weather conditions, lack of finan-
cial resources, political wars, accidental loss of data and effects of natural phenomena such 
as earthquakes, landslides, hurricanes, etc. (Elshorbagy et  al. 2000; Harvey et  al. 2010; 
Londhe et al. 2015; Kamwaga et al. 2018; Aguilera et al. 2020).

Missing data is a very prevalent problem in climatology and their presence affects the 
quality of the final results in hydrological studies and water resources management and 
causes unreliable analysis (Tencaliec et al. 2015; Aieb et al. 2019; Fagandini et al. 2023). 
As a result, data recovery and infilling the gaps in the time series of hydrological data is the 
essential and primary step in planning, designing and operating water resources systems 
and various hydrological studies.

In recent years, many studies have been carried out to demonstrate methods to recover 
missing data of various hydro-climatological time series including precipitation (Coulibaly 
and Evora 2007; Faramarzzadeh et al. 2023), temperature (Xia et al. 1999), evapotranspira-
tion (Abudu et al. 2010) and streamflow (Giustarini et al. 2016; Baddoo et al. 2021).

Streamflow data recovery methods may consist of simple classical methods where they 
have been of interest to researchers for a long time. For example, Gyau-Boakye and Schultz 
(1994) used several techniques, including interpolation, recursive regression, autoregressive 
and nonlinear methods, to fill in missing streamflow data in three different catchments in 
Ghana. The results showed that the choice of methods can depend on several factors, such as 
the season, the studied area, and the length of the data gap. On average, regression models can 
provide good results, but in general, the simple methods yield larger deviations between the 
observed and predicted streamflow for long duration gaps. Harvey et al. (2012) used 15 sim-
ple techniques, based on regression, scaling and equipercentile approaches to infilling missing 
streamflow data in the UK. The results of this study indicated the superiority of regression-
based methods over other simple methods. Tencaliec et al. (2015) proposed a hybrid method 
of regression and autoregressive integrated moving average (ARIMA) called Dynamic 
Regression Model to recover missing streamflow data. The results showed that this model 
provides reliable estimates for the missing data for the Durance watershed located in the 
South-East of France. Kamwaga et al. (2018) investigated empirical and regression methods 



1455Comparison of Classical and Machine Learning Methods in…

1 3

to estimate streamflow data in the Little Ruaha basin located in Tanzania. The methods used 
included simple and multiple linear regression, rainfall-runoff relationship using double mass 
curve technique, flow duration matching and drainage-area ratio. The calibration and valida-
tion results showed that the MLR method did better than other methods in recovering missing 
streamflow data.

On the other hand, methods based on machine learning (ML) have gained popularity in 
recent decades in hydrology and water resources management and have been widely used to 
study the droughts (Khan et al. 2020), rainfall-runoff modeling (Mohammadi 2021), forecast-
ing flood (Mosavi et al. 2018) and groundwater problems (Cai et al. 2021). ML methods are 
also used in the recovery of missing data (Zhou et al. 2023).

Ng et al. (2009) developed a hybrid model of generalized regression neural network and 
genetic algorithm (GRNN-GA) to recover missing streamflow data. Their results showed that 
this method is more successful than the k-nearest neighbor (KNN) and multiple imputation 
(MI) methods in infilling streamflow data of Saugeen River in Canada. Dastorani et al. (2010) 
estimated the missing streamflow data in four different basins in Iran using two classical meth-
ods including the normal ratio (NR) and correlation approach and two ML methods of arti-
ficial neural network and adaptive neural fuzzy inference system. The results indicated that 
although in some cases all four methods provide good predictions, the ANFIS model has a 
better ability to predict missing streamflow data, especially in the stations located in the arid 
region with heterogeneous data. Also, ANN model showed better performance than the classi-
cal methods for estimating missing data. Bahrami et al. (2010) in order to estimate the missing 
maximum annual streamflow data in the Sefidrood basin in the northern Iran used the data 
of 16 hydrometric stations and a 28-year period time series. They showed that the ability of 
ANN model is higher than nonlinear regression (NLR) in recovering missing data. Mwale 
et al. (2012) used the self-organizing maps (SOM) approach, which is a form of unsupervised 
ANN, to fill the gaps in rainfall and streamflow data in the Shire River basin of Malawi. Ergün 
and Demirel (2023) used a distributed hydrological model and remote sensing data to estimate 
missing streamflow data. The result showed that if the calibration length is appropriate, this 
model has a good performance in filling the data gap. Others also compared the application of 
some classic and machine learning methods (Souza et al. 2020; Arriagada et al. 2021).

As it can be seen, different methods have been employed in recovering the missing data. 
These are ranging from very simple to relatively sophisticated methods. Nevertheless, a com-
plete evaluation of different methods is necessary which is essential in developing countries 
with great data limitations. Moreover, recent developments in machine learning algorithms 
demand a thorough evaluation and comparison of these methods with the more common clas-
sical and usually regression based methods. In addition, this article seeks to answer the ques-
tion “Are ML methods more efficient than classical methods in recovering missing stream-
flow data?” Finally, this study investigates the effect of some parameters such as the seasonal 
index to determine the suitable methods with high efficiency. Moreover, a social choice (SC) 
approach is introduced and used to determine the superior methods among the lists of solution 
results.

2 � Case Study and Data Set

In this article, three mountainous basins of Taleghan, Karaj, and Latyan that provide 
municipal water demand for the capital Tehran in northern Iran were used to evaluate the 
recovery methods for missing streamflow data. The mountainous terrain and complex 
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topography of these basins often present challenges in obtaining accurate streamflow data, 
leading to gaps in the time series. In such situations, the proposed methodology can be 
applied to resolve this issue within these basins (refer to Fig. 1).

Taleghan basin is located on the southern slopes of the Alborz Mountain. This basin 
with an area of about 1171 km2 has maximum and minimum heights of 4300 m and 1398 
m above sea level (masl), respectively (average height of 2840 m). And it is placed between 
36° 5ˊ to 36° 19ˊ N latitudes and between 50° 25ˊ to 51° 11ˊE longitudes coordinates. The 
existence of the Taleghan Reservoir in this basin, as one of the important sources in the 
supply of drinking water for Tehran and agricultural water demands in the downstream 
areas, has caused the importance of this basin in this region. This basin is placed in the 
semi-humid group with an average annual rainfall of 400 mm and an annual temperature of 
11.4 ◦C . Almost half of this catchment area has a slope above 40%, with weak and moder-
ate vegetation cover.

The Karaj basin is located on the southern slopes of Central Alborz Mountain, adjacent 
to Taleghan, between latitudes coordinates 35◦ 53′ N and 36◦ 10′ N and between longitudes 
coordinates 50◦ 3′ E and 51◦ 35′ E, upstream of Amirkabir Reservoir. Due to the existence 
of this dam, the Karaj basin is very essential in supplying water demand of Tehran and 
Karaj cities. This basin, has an area of about 1088 km2 , and an average annual rainfall and 
temperature of 247 mm and 11.4 ◦C , and is located in north-western Tehran. The maxi-
mum height of the basin reaches more than 4352 masl, and its lowest level is about 1295 
masl in the dam site.

Fig. 1   Location maps showing the approximate position of the study area: a in Iran, and detailed maps of b 
Latyan, c Taleghan, and d Karaj basins
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Latyan basin has an area of 728 km2 and is located adjacent to Karaj basin between 
35◦ 45′ N and 36◦ 6′ N latitudes and 51◦ 22′ E and 51◦ 55′ E longitudes. It has an average 
annual rainfall and temperature of 320 mm and 11.4 ◦C . The maximum and minimum alti-
tude in this basin is 4297 and 1472 masl; respectively.

The Latyan Reservoir at the outlet of basin provides part of municipal water demand 
for Tehran. All the three reservoirs in the study area also provide water for the agricultural 
fields in the downstream regions.

In order to recover the missing streamflow data, the streamflow data of the hydromet-
ric stations and rain gauge stations of the three basins were used as indicated in Tables 1 
and 2. For this purpose, a common 26 years data duration extending from 1991–1992 to 
2016–2017 water years was selected for the hydrometric and rainfall stations of the basins.

3 � Methodology

This section contains descriptions of streamflow data quality control tests including Stand-
ard Normal Homogeneity (SNH) Test and Mann–Kendall (M–K) Test plus recovering 
models for missing monthly streamflow data such as LR, MLR, ANN, SVR, M5, ANFIS 
models. In addition, the evaluation criteria, the SC method to determine the best model in 
recovering the missing data are also presented.

3.1 � Statistics Quality Control

3.1.1 � Standard Normal Homogeneity Test

The SNH test is one of the most widely used homogeneity tests in hydrologic research, 
which was developed by Alexandersson (1986). The first step in evaluating the effects of 
climate change and human activities on the streamflow is to find a natural, reliable and 

Table 1   The specifications of hydrometric stations

Station 
Number

Station Name Latitude (N) Longitude (E) Elevation (m) Mean Monthly 
Streamflow 
(�3∕s)

Basin

1 Mehran 36
◦

11
′

50
◦

55
′ 2010 2.16 Taleghan

2 Galinak 36
◦

10
′

55
◦

44
′ 1789 12.94

3 Jostan 36
◦

11
′

50
◦

54
′ 1981 8.01

4 Alizan 36
◦

12
′

50
◦

54
′ 1944 1.60

1 Sira1 36
◦

01
′

51
◦

09
′ 1819 12.4 Karaj

2 Sira2 36
◦

02
′

51
◦

09
′ 1833 1.70

3 Gachsar 36
◦

07
′

51
◦

20
′ 2249 3.98

4 Haft Cheshmeh 35
◦

56
′

51
◦

05
′ 1668 1.01

1 Rodak 35
◦

51
′

51
◦

33
′ 1795 10.30 Latyan

2 Latyan 35
◦

47
′

51
◦

41
′ 1547 6.13

3 Najarkela 35
◦

49
′

51
◦

38
′ 1703 0.78

4 Naroon 35
◦

50
′

51
◦

00
′ 1786 0.36
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trend-free period in the data time series, so that there are minimal human activity and 
artificial changes (Mahmood and Jia 2019). SNH test can find and report the time of dis-
continuity and occurrence of heterogeneity in the data series. Equation (1) is employed 
to discover breaking or change points in the time series x1, x2,… , xn:

where,

The statistic Ty is obtained to compare the first y observations average with the aver-
age of n-y observations. The maximum value of Ty is the breaking point in the time 
series.

The null hypothesis (H0) (no change point) is rejected if the test statistic (Tmax) is 
greater than the critical value (which dependents on the numbers of sample).

Here, xi represents the test variable for the year i between 1 and n . x and s are referred 
to mean and standard deviation of a time series, respectively.

(1)Ty = yz1 + (n − y)z2 for y = 1, 2,… , n

(2)z1 =
1

y

∑n

i=1

(xi − x)

s
and z2 =

1

n − y

∑n

i=y+1

(xi − x)

s

(3)Tmax = max
1≤y≤n

Ty

Table 2   The specifications of rain gauge stations

Station 
Number

Station Name Latitude (N) Longitude (E) Elevation (m) Mean Monthly 
Rainfall (mm)

Basin

1 Angeh 36
◦

15
′

50
◦

27
′ 1945 35.10 Taleghan

2 Dizan 36
◦

13
′

50
◦

57
′ 2229 68.51

3 Gatedeh 36
◦

10
′

51
◦

03
′ 2497 89.10

4 Jostan 36
◦

11
′

50
◦

53
′ 1989 45.25

5 Zidasht 36
◦

09
′

50
◦

41
′ 1962 38.63

1 Sade Amirkabir 36
◦

56
′

51
◦

05
′ 1612 34.10 Karaj

2 Sira 36
◦

02
′

51
◦

09
′ 2130 49.53

3 Bilaghan 36
◦

50
′

51
◦

02
′ 1404 23.52

4 Nesa 36
◦

04
′

51
◦

19
′ 2191 56.87

5 Shahrestanak 35
◦

58
′

51
◦

21
′ 2276 52.71

6 Morood 36
◦

01
′

51
◦

09
′ 1827 46.89

1 Rodak 35
◦

50
′

51
◦

33
′ 1705 49.04 Latyan

2 Kandsofla 35
◦

51
′

51
◦

36
′ 1945 42.89

3 Shemshak 36
◦

00
′

51
◦

29
′ 2494 59.09

4 Garmabdar 35
◦

59
′

51
◦

37
′ 2435 56.23

5 Ahar 35
◦

56
′

51
◦

27
′ 2087 54.92

6 Lavasanbozog 35
◦

49
′

51
◦

47
′ 2195 45.01

7 Fasham 35
◦

55
′

51
◦

31
′ 1966 60.31

8 Afjeh 35
◦

51
′

51
◦

41
′ 2048 55.23

9 Latyan 35
◦

46
′

51
◦

41
′ 1580 34.47
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3.1.2 � Mann‑Kendall Test

Mann–Kendall test (Mann 1945; Kendall 1948) recommended by the World Meteoro-
logical Organization, is widely used to determine the time trend of hydrological and 
meteorological data (Abghari et al. 2013; Gebremicael et al. 2017; Ali et al. 2019).

The M–K test statistic (S) for streamflow can be calculated using the Eqs. (4) and (5):

where,

Here, xi and xj are the data values at time i and, respectively, and n represents the 
length of the data set. The positive value of S indicates an increasing trend, and vice 
versa.

The variance of S is calculated by

where, P is the number of tied groups, ti is the number of data value in the Pth group.
Then the standard Z value is calculated according to Eq. (7).

The calculated standardized Z value is compared with the standard normal distribution 
table with two-tailed confidence levels α = 0.05 . Null hypothesis (H0) is rejected if 
|Z| > |||Z1−α∕2

||| , otherwise, H0 is accepted meaning that there is no trend in the time series.

3.2 � Recovery Methods

3.2.1 � Classical Methods

Linear Regression  LR is the simplest method to transfer hydrological information between 
two gauging stations (Salas 1993). In this method, the correlation coefficients between the 
target station and all neighboring stations are first calculated and then ranked. Finally, the 
missing data is estimated using the linear regression equation with the station having the 
highest correlation coefficient (Eq. 8).

(4)S =
∑n−1

i=1
.
∑n

j=i+1
sign(xj − xi)

(5)sign
�
xj − xi

�
=

⎧⎪⎨⎪⎩

+1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

(6)Var(S) =
s(n − 1)(2n + 5) −

∑P

i=1
ti(ti − 1)(2ti + 5)

18

(7)Z =

⎧⎪⎨⎪⎩

S−1√
Var(S)

if S > 0

0 if S = 0
S+1√
Var(S)

if S < 0

(8)Y = �0 + �1x
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Multiple Linear Regression  Finding the correct relationship between a dependent variable 
and several independent variables is a problem in statistical analysis (Tabari et al. 2011). 
MLR, as the general form of LR, is a beneficial and accurate statistical technique that 
expresses the relationships between a dependent variable and several independent variables 
by fitting a linear equation. The linear equation of multiple linear regression appears in the 
form of Eq. (9).

where, Y  is the dependent variable, xi are the independent variables, �0 and �i are the 
parameters of the model and n is the total number of independent variables.

3.2.2 � Machine Learning Methods

Artificial Neural Network  The artificial neural network is a mathematical model inspired 
by the neural network in the human brain and was first introduced by McCulloch and Pitts 
(1943). ANN has the ability to learn and recognize the nonlinear relationship between 
input and output parameters, solving complex problems on large scales. This ability of the 
ANN makes it attractive for hydrological modeling and water resources studies (Belayneh 
et  al. 2016). There are different structures ANN including multilayer perceptron (MLP), 
radial basis function networks (RBF) and recurrent neural networks (RNN) (Khazaee Poul 
et al. 2019) but the most common ANN structure used in engineering science, especially 
in hydrology research, is the MLP (Mekanik et al. 2013; Ahmadi et al. 2019). MLP is a 
feedforward neural network consisting of three layers: an input layer, one or two hidden 
layers, and an output layer (Fig. 2) and information moves forward from the input layer to 
the output layer (Khan et al. 2021).

According to Kolmogorov theorem, the two hidden layers in the neural network can 
model any problem, provided that the number of neurons in the hidden layer is sufficient 
(MacLeod 1999). However, in most hydrological systems, it is sufficient to use a hidden 
layer with the appropriate number of neurons (Dariane and Karami 2014).

Equation (10) represents the MLP neural network.

where, xi and yj are the input and output of the neural network, respectively. Indexes i , k 
and j refer to the input, hidden and output layers, respectively. wk is the weight between 
neurons in the input and hidden layers and wj is the weight between neurons in the hid-
den and output layers. bk and bj are the biases associated with the neurons of the hidden 
and output layers, respectively. f1 and f2 are the activation functions of hidden and output 
layers, respectively. In this study, due to nonlinear relationships in hydrology, the sigmoid 
activation function (Eq. 11) was used in the hidden layer (Uysal and Şorman 2017) and the 
linear transfer function (Eq. 12) in the output layer (Tongal and Booij 2018).

(9)Y = �0 +
∑n

i=1
�ixi

(10)yj = f2

[∑K

k=1
wjf1

(∑I

i=1
wkxi + bk

)
+ bj

]

(11)f1(x) =
2

1 + exp(−2x)
− 1
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Also, the Levenberg–Marquardt (LM) algorithm is used to train the ANN. This algo-
rithm is the most common optimization algorithm used in ANN, which is suitable for non-
linear and dynamic relationships of hydrological processes and can perform better than the 
gradient back-propagation algorithm (Asadi et al. 2013; Tongal and Booij 2018).

In this study, in order to recover streamflow missing data by ANN, a three-layer MLP 
network was built consisting of one hidden layer. The number of neurons in the hidden 
layer is determined by the trial and error method. Also, five different structures were con-
sidered in the input data to the neural network. The purpose of using these different struc-
tures is to show the effect of rainfall and seasonal index on infilling missing streamflow 
data.

Flow in a basin has an annual and seasonal cycle. Entering the information related to 
this cycle in the input of the neural network can improve its performance by providing 
more information to the model. This information was done by entering two time series 
(which represent 12 months of the annual cycle) according to the oscillation of two sine 
and cosine curves (Fig. 3) in the neural network (Nilsson et al. 2006).

Finally, the five input structures of the neural network are as it follows:

ANN(1): Using of monthly streamflow data of neighboring hydrometric stations in the 
basin.
ANN(2): Adding the seasonal index to ANN(1).
ANN(3): Using the monthly rainfall data of all stations in the basin.
ANN(4): Adding the seasonal index to ANN(3).

(12)f2(x) = x

Fig. 2   A three layer ANN structure
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ANN(5): Using the monthly rainfall data of all stations and monthly streamflow data 
of neighboring stations in the basin along with the seasonal index (i.e., a combina-
tion of ANN2&4).

Support Vector Regression  SVM is one of the most popular machine learning algorithms 
developed by Vapnik (1998) and has wide applications in hydrological research (Raghav-
endra and Deka 2014). Support Vector Regression which is an observation-based modeling 
technique developed based on statistical learning theory uses the principle of SVM to solve 
regression problems. In other words, SVR uses the principle of structural risk minimiza-
tion to describe the pattern between the predictor and predicted values.

If the data set isX =
{
xi, yi ∶ i = 1,… , n

}
 , where xi are the input vector,yi is the target 

vector and n is the size of the data set. Then the general function of SVR is according to 
Eq. (13).

where, w is the weight vector, b is the bias, and �(.) is a non-linear transformation function 
to map the input space into the feature space. The target of SVR is to find the values of w 
and b so that the values of f

(
xi
)
 can be determined by minimizing the empirical risk for 

regression efficiency. For this purpose, it uses the loss function L�
(
yi, f

(
xi
))

 , where L� is 
defined as Vapnik’s ɛ—insensitive loss function (Vapnik 1998, 1999).

Therefore, the regression problem can be expressed as an optimization problem 
according to Eq. (15).

(13)f
(
xi
)
= w.�

(
xi
)
+ b

(14)L�
(
yi, f

(
xi
))

=

{
0 if

|||(yi − f
(
xi
)
)
||| ≤ �

|||(yi − f
(
xi
)
)
||| − � otherwise

Fig. 3   Cyclic seasonal index
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�i and �∗
i
 are slack variables that are used to measure the deviation of training samples with 

an error greater than � . In the above Equation, the constant C is an integer and positive 
number that determines a penalty when a training error occurs, and its values are between 
zero and infinity. For example, if the constant C tends towards infinity, irrespective of the 
penalty, the result will be a complex model (Cherkassky and Ma 2004). The schematic of 
SVR structure is presented in Fig. 4. The above optimization formula can be written as a 
dual problem and solved by Eq. (16)

where, �i and �∗
i
 are Lagrange multipliers, which are positive real constants and k

(
x, xi

)
 is 

kernel function.
The kernel functions that are implemented by the SVR includes linear, polynomial, sig-

moid and radial basis function (RBF) (Mohammadi and Mehdizadeh 2020). In this study, the 
RBF type is used, and its mathematical relationship is according to Eq. (17). Where xi and 
xj display the vectors in the input space and � shows the Gaussian noise level of standard 
deviation.

(15)

min
w,b,�i,�

∗
i

1

2
��w��2 + C

n∑
i=1

(�i + �∗
i
)

Subject to yi − f
�
xi
�
≤ � + �i

f
�
xi
�
− yi ≤ � + �∗

i

�i, �
∗
i
≥ 0, i = 1,… , n

(16)f
(
xi
)
=
∑n

i=1

(
�i − �∗

i

)
k
(
x, xi

)
+ b

(17)k
�
xi, xj

�
= exp

�
−

1

2�2
‖xi − xj‖2
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M5 Tree  The M5 tree model was first proposed by Quinlan (1992). This model is based 
on a decision tree, but unlike the decision tree used for classification, M5 tree has linear 
regression functions that can be used for quantitative data (Rahimikhoob et al. 2013). The 
structure of this model is similar to that of an inverted tree, so that the root is at the top and 
the leaves are at the bottom (Keshtegar and Kisi 2018). Linear regressions in M5 model 
are relationships between independent and dependent variables that produce the regression 
bonds in its leaves.

The M5 model divides the data space into smaller sub-spaces using the divide-and-
conquer method (Rezaie-balf et al. 2017). The production of the M5 model tree consists 
of two stages; 1. Growth and 2. Pruning (see Fig. 5).

The Growth stage, also called the Splitting stage, divides the input space into several 
classes using linear regression models and minimizing the errors between the meas-
ured and predicted values (Heddam and Kisi 2018). The process of splitting in each 
node is repeated many times until it reaches the leaf. This process stops in this model 
when the class values of all samples reaching a node change slightly, or only a few sam-
ples remain (Singh et al. 2010). This division criterion is based on Standard Deviation 
Reduction (SDR), according to the following Equation.

where, T  shows a set of examples that reach the node; Ti denotes the subset of examples 
after splitting, and sd is the standard deviation. Finally, after checking all the splits, the 
one that maximizes the expected error reduction is selected for split in the node by the M5 
model (Quinlan 1992).

The splitting process sometimes results in a large tree that looks like a tree that needs 
to be pruned. In the pruning stage, sub-tree nodes are replaced by linear regression 
functions and transformed into leaf nodes (Ghaemi et al. 2019).

(18)SDR = sd(T) −
∑ ||Ti||

|T| sd(Ti)

Fig. 5   M5 model tree with four linear regression models at the leaves



1465Comparison of Classical and Machine Learning Methods in…

1 3

Adaptive Neuro‑Fuzzy Inference System  Adaptive Neuro-Fuzzy Inference System or 
ANFIS for short was first introduced by Jang (1993). ANFIS is a powerful combination of 
artificial neural networks with fuzzy logic. For this reason, ANFIS has advantages such as 
the ability to manage large amounts of input data with high uncertainty (Anusree and Var-
ghese 2016), the potential for modeling nonlinear systems such as hydrological processes 
(Mosavi et al. 2018) and increasing the accuracy of estimation and forecast (Zare and Koch 
2018). On the contrary, a drawback of ANFIS is the significant amount of time required for 
training and determining parameters for its structure (Chang and Chang 2006).

Among the different types of fuzzy models, the Takagi–Sugeno (Takagi and Sugeno 
1985) model is the most widely used due to its high computational efficiency. The fuzzy 
model based on the first-order Takagi–Sugeno model with two fuzzy IF–THEN rules 
can be expressed as

This method consists of two inputs, two rules and one output. Where, x and y are 
inputs, Ai and Bi are fuzzy sets and pi , qi i and ri are design parameters. This system has 
five layers as shown in Fig. 6.

In the system, the inputs are expressed in a fuzzy form. For this purpose, member-
ship functions (MFs) are defined for each entry. The number and type of MFs in the 
construction section of the ANFIS model, are determined by clustering methods. There-
fore, clustering methods are a powerful tools for classify the inputs into groups in train 
section of the ANFIS model and establish relationships between inputs and output space 
(Benmouiza and Cheknane 2019). The clustering methods include K-means, mountain, 
subtractive and Fuzzy C-means clustering. In this study, subtractive and FCM clustering 
methods were used.

(19)Rule 1 ∶ if x is A1 and y is B1 then f1 = p1x + q1y + r1

(20)Rule 2 ∶ if x is A2 and y is B2 then f1 = p2x + q2y + r2

Fig. 6   ANFIS structure
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Subtractive Clustering Method  Subtractive clustering method is a modification of the 
mountain method introduced by Yager and Filev (1994). Then, (Chiu 1994) proposed Sub-
tractive clustering method to reduce the complications of the mountain clustering method 
to determine the number and cluster center. This algorithm is an iterative process that 
assumes that each data point has the potential to be the cluster center. So that by measuring 
the data potential of the neighboring data points that point, the potential of each data point 
is calculated. Finally, the data that have the highest potential values among all the data are 
selected as cluster center. Then, the number of cluster is determined by determining the 
optimal value of the radius.

Choosing a suitable effective radius is crucial to determining the number of clusters. If 
the radius is considered short, a large number of clusters will be created, and the rules will 
increase accordingly (Cobaner 2011).

Fuzzy C-Means Clustering FCM clustering algorithm is a modified version of k-means 
clustering and was first introduced by Bezdek† (1973). This clustering method is used to 
produce less fuzzy rules and avoid the “curse of dimensionality” problem in ANFIS model 
(Zare and Koch 2018). According to this algorithm, after determining the cluster centers, 
each data point with a certain degree of membership belongs to a specific cluster, which 
degree of membership can be between zero and one.

3.3 � Evaluation Criteria

In this study, to compare the performance of missing streamflow data estimation methods, 
three evaluation criteria, including Root Mean Square Error, Nash–Sutcliffe index (Nash 
and Sutcliffe 1970) and Coefficient of determination (Legates and McCabe Jr. 1999) are 
used. The details of these evaluation criteria are described in Table 3.

The Root Mean Square Error (RMSE) is a measure used to assess the level of agree-
ment between a model’s predictions and the actual observed data. When the RMSE 
value is zero, it indicates a perfect match between the model’s output and the observed 
data. Conversely, as the RMSE value approaches infinity, it signifies a significant dis-
parity between the model’s output and the observed data, indicating poor performance 
of the model. If the value of the NSE index is equal 1, the model has the best perfor-
mance and it means that the output of the model matches the observed data. If the 
value of the NSE index is equal to or zero, the model has the accuracy of the average 

Table 3   Recovery methods accuracy criteria

Where, N represents the number of data, O
i
 and P

i
 represents monthly observed flow and the predicted flow 
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of the observation data. Negative NSE index values occur when the performance of the 
average observed data is better than the performance of the desired model.

R2, or the coefficient of determination, is a statistical measure used to assess the 
goodness of fit of a regression model. It indicates the proportion of variance in the 
dependent variable that is explained by the independent variables. A value of 0 sug-
gests that the model does not explain any variance, indicating a poor fit, while a value 
of 1 indicates a perfect fit where the model explains all the variance. Therefore, R2 is 
a useful tool for evaluating the effectiveness of a regression model in explaining the 
variability of the dependent variable.

3.4 � Social Choice

Comparing data recovery methods and identifying the best performing one among sev-
eral different methods may cause confusion and errors. In such problems, considering 
the improvement of the performance of only one criterion among all data recovery 
methods, it is possible to distance ourselves from the improvement of other evalua-
tion criteria. Social choice methods can help solve this problem. So that by applying 
the calculated values of all the evaluation criteria in the process of comparing the data 
recovery methods, the final result is error-free.

The main idea of the SC approach was first introduced during the French Revolu-
tion by two French mathematicians and scientists, Jean-Charles de Borda count and 
Condorcet. Two centuries later, it was revived by the winner Nobel Prize in Economics 
in 1972 named Arrow. So that by giving priority to the candidates, it turned it into a 
democratic voting system. The SC approach seeks the best choice and, as far as pos-
sible, applies the preferences of decision makers equally in the final decision making 
process (Arrow 1951; Arrow et  al. 2010). SC theory includes five approaches called 
Plurality voting, Hare system, Borda count, Pairwise comparisons voting and Approval 
voting (Srdjevic 2007).

Among these methods, the Borda count method is an efficient method for solving 
water resources management and hydrology problems and in various fields including 
water resource quality management (Zolfagharipoor and Ahmadi 2016), developing 
suitable algorithms for the optimal performance of multi-reservoir systems (Karami 
and Dariane 2018), determining the appropriate crop pattern for the proper manage-
ment of water resources (Dariane et al. 2021), and streamflow modeling (Dariane and 
Behbahani 2022).

To enhance the comparison of streamflow data recovery methods and identify the 
superior method, the Borda count method was employed. This method assigns can-
didate i a score equal to the number of candidates lower than candidate i . So that if n 
candidates participate in the voting, the score of candidate i is equal to n − i . Finally, 
the winner is the candidate with the highest number of wins. For example, suppose five 
candidates participated in the election. In that case, four points will be assigned to the 
first-ranked candidate, three points to the second-ranked candidate, two points to the 
third-ranked candidate, one point to the fourth-ranked candidate and zero points to the 
fifth-ranked candidate (Karami and Dariane 2018).

The flowchart of the proposed method to recover the missing streamflow data is 
presented in Fig. 7.
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4 � Results and Discussion

Monthly streamflow data in three basins of Karaj, Taleghan, and Latyan are available in 
a 26-year time series. SNH and M–K tests were used to determine the breaking points 
and trends in the time series of hydrometric stations. The null hypothesis ( H0 ) means the 
homogeneity of the data in the SNH test, and the randomness and absence of any trend or 
serial correlation structure among the observed data in the M–K test. These two tests were 
performed and the P-value was calculated for each time series of the hydrometric station. 
If the P-value is greater than the significance level (α), the null hypothesis is confirmed. 
Otherwise, the alternative hypothesis ( H1 ) is replaced, meaning there is heterogeneity and 
trend in the data. Table 4 shows the p values for each hydrometric station used in this study. 

Fig. 7   The flowchart of the proposed methodology

Table 4   Results of SNH test and 
M–K test of selected hydrometric 
stations at α = 0.05

Basin Station SNHT MK
p-value p-value

Taleghan Mehran 0.56 0.88
Galinak 0.36 0.84
Jostan 0.24 0.98
Alizan 0.47 0.10

Karaj Sira1 0.48 0.47
Sira2 0.36 0.42
Gachsar 0.50 0.48
Haft Cheshmeh 0.14 0.35

Latyan Rodak 0.22 0.94
Latyan 0.60 0.05
Najarkela 0.14 0.37
Narvoon 0.12 0.79
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The results show that the streamflow data of all hydrometric stations are without break-
points and trends. In other words, the time series does not show any impact related to cli-
mate change and human activities. It should be noted that if the hydrometric station data 
has a trend and a breakpoint, it will be removed from the data set.

It should be mentioned that Jostan, Sira1, and Rodak stations are target stations in 
Taleghan, Karaj, and Latyan basins, respectively. The target station is the station that has 
missing data in its data time series.

Two artificial gaps with 36 months duration were created in the target stations. The arti-
ficial gap of the first period is between October 1991 to September 1994, and the second 
artificial gap is between October 2014 to September 2017. The purpose of creating two 
gaps is to compare the performance of methods in different periods with probably different 
conditions in order to decrease the impact of possible specific hydrometeorological condi-
tions in a single period on the results. This can help to draw more accurate and reliable 
conclusions.

As mentioned earlier, estimation of missing data in artificial gaps was done by LR, 
MLR, ANN, SVR, M5, FCM-ANFIS and Sub-ANFIS models. It is worthwhile to mention 
that each of the five structures of the neural network model was executed 20 times, and the 
average of these 20 executions is presented as the representative performance for the neural 
network models.

According to Borda method, the results of the evaluated criteria of all the methods used 
to recover the streamflow data are ranked in each gap period and in each basin. The best 
recovery method is determined based on the total score of each method. In this way, first 
the results of each of the evaluation criteria, including RMSE, NSE, and R2 , were sorted 
separately from low to high. The lower the value of the RMSE evaluation criterion calcu-
lated for each method (in m3∕s ), the higher efficiency of that method for recovering data. 
On the contrary, the higher the calculated value of NSE and R2 measures, the better the 
performance of that method. Accordingly, the lowest RMSE criterion and the highest value 
of NSE and R2 evaluation criteria were assigned the first rank when ranking the evalu-
ation criteria. In the same way, each of the evaluation criteria of data recovery methods 
is ranked. In this study, 11 recovery methods were used and ranked from 1 to 11. After 
ranking, a value should be assigned to each rank. This value is equivalent to the number of 
ranks below it. For example, due to the use of 11 methods, the first rank of each evaluation 
criterion is given a point equal to 10. This process continues until the lowest rank, so the 
evaluation criterion with rank 11 is given a score equal to zero. Then the method with the 
highest summation of evaluation criteria points (Borda count) is the winner. For a more 
accurate comparison of the obtained results, after ranking the methods in each basin and 
in each gap, the methods were classified into three groups A, B and C. Group A includes 
methods 1 to 4 in the ranking according to Borda count approach, i.e. the best group, group 
B includes methods 5 to 8, i.e. the average group, and group C includes the last three meth-
ods, i.e. the weak group.

The described process was implemented on the results of the evaluation criteria obtained 
from the application of the methods on the missing data. Also for example, Table 5 shows 
the ranking results and Borda points for gap 1991–1994 and 2014–2017 and in Jostan sta-
tion located in Taleghan. Borda count values are the rank of the total points of the evalua-
tion indices for each method.

Table 5 shows that in the first artificial gap (1991–1994) in Taleghan basin, the FCM-
ANFIS method with RMSE, NSE and R2 criteria equal to 2.500, 0.945 and 0.952, respec-
tively, is the best method to estimate the missing flow data. According to Table 5, in the 
second artificial gap in this basin, the sub-ANFIS method is the best method with RMSE, 
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NSE and R2 criteria of 1.666, 0.964, and 0.967 respectively. As a result, ANFIS model is 
the best method to recover the monthly flow data of the Taleghan basin compared to other 
methods. 

It is worthwhile to mention that all methods use streamflow data from surrounding 
hydrometric stations except the ANN(3) and ANN(4) where only surrounding precipita-
tion data are used. Also, ANN(5) uses both precipitation and streamflow data from sur-
rounding stations. Therefore, it is not surprising to see that LR and MLR performs better 
than ANN(3) and ANN(4). ANN(5) suffers from precipitation inputs that not only do not 
help effectively the model performance but also introduce excessive parameters resulting in 
worse outputs than the ANN(2) that only uses streamflow data. 

The importance of utilizing the seasonal index becomes evident when comparing mod-
els with and without it. For example, when comparing the results of ANN(1) with ANN(2), 
and ANN(3) with ANN(4), the effectiveness of the seasonal index becomes apparent. The 
seasonal nature of streamflow in basins strongly impacts the accuracy of peak streamflow 
estimation by the ANN(1) and ANN(3) models. However, the addition of seasonal index 
as input to the neural network resulted in a significant improvement in estimating missing 
values. In Fig. 8, the peak streamflow in Karaj basin is depicted, showing that the data esti-
mated by ANN(2) and ANN(4) align more closely with the observed peak streamflow data 
compared to the other two neural network models.

Table 5   Results of Borda count for data estimation methods in Taleghan basin

Gaps Method Test period point Sum of
points

Borda
count

Group

periods RMSE NSE R2 RMSE NSE R2

1991
to
1994

LR 4.02 0.86 0.90 3 3 4 10 7 B
MLR 5.26 0.75 0.86 2 2 2 6 8 B
ANN(1) 3.40 0.89 0.90 4 4 3 11 6 B
ANN(2) 2.92 0.92 0.93 7 7 7 21 3 A
ANN(3) 10.15 0.08 0.13 0 0 0 0 10 C
ANN(4) 5.36 0.74 0.78 1 1 1 3 9 C
ANN(5) 2.91 0.92 0.93 8 6 6 20 4 A
SVR 3.08 0.91 0.95 5 5 9 19 5 B
M5 2.69 0.93 0.94 9 9 8 26 2 A
Sub-ANFIS 2.99 0.92 0.92 6 8 5 19 5 B
FCM-ANFIS 2.50 0.95 0.95 10 10 10 30 1 A

2014
to
2017

LR 3.46 0.83 0.87 2 2 2 6 7 B
MLR 2.55 0.91 0.92 4 5 4 13 5 B
ANN(1) 2.66 0.90 0.90 3 3 3 9 6 B
ANN(2) 2.40 0.91 0.92 6 6 5 17 4 A
ANN(3) 9.36 -0.43 0.18 0 0 0 0 9 C
ANN(4) 4.14 0.76 0.78 1 1 1 3 8 B
ANN(5) 2.52 0.91 0.91 5 4 8 17 4 A
SVR 2.38 0.93 0.94 8 8 9 25 2 A
M5 2.40 0.92 0.93 7 7 6 20 3 A
Sub-ANFIS 1.67 0.96 0.97 10 10 10 30 1 A
FCM-ANFIS 2.10 0.94 0.94 9 9 7 25 2 A
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As it can be seen from Table 6, there are similarities and some differences among the 
performance of methods in different basins and different periods. However, it is noticeable 
that ANFIS methods as well as SVR are superior in most cases. Also, it is interesting to 
note that simple classic methods of LR and MLR are in some cases and overall better than 
some machine learning methods when proper inputs are used. In other words, selecting 
proper inputs (i.e., streamflow here) is more important than using more advanced method 

Fig. 8   Observed and estimated streamflow in Sira1 station Karaj basin, in the period 2014–2017

Table 6   Results of Borda count-based grouping for all basins

A* is the first rank among recovery methods in each basin and gap

Gap Method Taleghan Karaj Latyan Taleghan Karaj Latyan Overall
periods Borda count Group rating

1991
to
1994

LR 7 3 4 B A A B
MLR 8 4 7 B A B B
ANN(1) 6 7 9 B B C B
ANN(2) 3 5 3 A B A A
ANN(3) 10 11 11 C C C C
ANN(4) 9 10 10 C C C C
ANN(5) 4 8 5 A B B B
SVR 5 2 2 B A A A
M5 2 6 8 A B B B
Sub-ANFIS 5 9 6 B C B B
FCM-ANFIS 1 1 1 A* A* A* A

2014
to
2017

LR 7 9 9 B C C B
MLR 5 7 7 B B B B
ANN(1) 6 5 6 B B B B
ANN(2) 4 4 3 A A A A
ANN(3) 9 10 11 C C C C
ANN(4) 8 8 8 B B B B
ANN(5) 4 7 4 A B A B
SVR 2 1 1 A A* A* A
M5 3 6 10 A B C B
Sub-ANFIS 1 2 5 A* A B A
FCM-ANFIS 2 3 2 A A A A
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(i.e., ANN compared to LR or MLR). LR does well in the first gap period in all three 
basins but it gives poor results in the second period in two basins, which is an indication 
that it is unable to handle data variations during specific periods (i.e., wet or dry condi-
tions). MLR overcomes this problem by using more streamflow variables. M5 behaves dif-
ferently not only in different periods but also in different basins. It shows good results in 
Taleghan but performs poorly in other two basins.

Figures 8 and 9 clearly show that method ANN(3) has very little accuracy in recovery 
the base flow and peak flow data. It also supports the finding in evaluation figures esti-
mated earlier. This issue was clearly identified by comparing structures 1 and 2. Addition-
ally, ANN(5) exhibits poorer results compared to ANN(2) in the recovery of peak stream-
flow data. This is due to the rainfall variable contributing to an increase in network error, 
similar to the conditions observed for structures 3 and 4.

On the other hand, ANN(5) works better than ANN(3) and ANN(4), because, in this 
situation, the presence of the flow variable improves the performance of the network and 
helps the learning process ANN. In general, the ANN(2) model performs better than other 
ANN models, and the two input variables of flow and seasonal index make the neural net-
work perform well. Therefore, the use of ANN(5), in addition to increasing the volume of 
calculations, also leads to weaker results.

Figure 8 shows the data estimated by the classical methods have less agreement with the 
data observed in the peak streamflows. This issue shows the uncertainty of classical meth-
ods in peak streamflow data recovering.

Based on the results from Table 5, it is evident that the FCM-ANFIS method outper-
forms the classic LR (MLR) method in estimating missing data during the first artificial 
gap (1991–1994) in the Taleghan basin. The FCM-ANFIS method achieved RMSE, NSE, 
and R2 criteria of 2.50, 0.95, and 0.95 respectively, while the classic LR (MLR) method 
showed inferior performance with RMSE, NSE, and R2 criteria of 4.02 (5.26), 0.86 (0.75), 
and 0.90 (0.86) respectively.

Similarly, during the second artificial gap (2014–2017), the sub-ANFIS method dem-
onstrated superior performance with RMSE, NSE, and R2 criteria of 1.67, 0.96, and 0.97 
respectively. On the other hand, the LR and MLR methods performed worse with NSE 
values of 0.83 and 0.91 in estimating missing streamflow data.

These results reinforce the overall ranking in Table  6, indicating that machine learn-
ing methods, particularly FCM-ANFIS and sub-ANFIS, are recommended for estimating 
missing data in both the first and second artificial gaps. Therefore, it is advisable to utilize 
machine learning methods in such situations based on the findings.

Fig. 9   Observed and estimated streamflow in Jostan station Taleghan basin, in the period 1991–1994
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In addition, Figs.  8 and 9 shows that the data estimated by sub-ANFIS and FCM-
ANFIS models have a good match with the observed peak streamflow data. The perfor-
mance of the methods based on machine learning, especially the ANFIS model, is very 
satisfactory when the river flow increases.

Figure 10 shows the membership percentage of recovery methods in groups A, B and 
C in this study. These results are based on the outputs obtained in three areas and two 
gap periods.

According to Fig. 10 ANN(2), SVR, and FCM-ANFIS methods are placed in group 
A more than other models, and none of them are seen in group C in any of the cases in 
this research. Thus, the FCM-ANFIS method is always among the top 4 methods. Also 
ANN(3) is always one of the weakest recovery methods (i.e., group C).

More detailed investigations show that the new M5 method is less than the classic 
LR method in group C. As a result, compared to the classic LR method, it has a higher 
accuracy in recovering missing data. Also, this method has a better performance than 
MLR in recovering streamflow data in all basins, and it is mostly included in group A.

On the other hand, according to Fig. 10, the MLR method has better results than the 
LR method. It can be concluded that the use of data from neighboring stations com-
pared to a neighboring station with high correlation, increases the accuracy of estimated 
data in regression methods. Furthermore, the FCM-ANFIS method consistently belongs 
to group A, unlike the sub-ANFIS method. Therefore, the selection of an appropriate 
clustering method can significantly impact the final results.

Although the difference between the results of ANN, SVR and FCM-ANFIS models 
is not significant, the results obtained by ANFIS models are mainly superior among 
other models. The results from three basins demonstrate the effectiveness of machine 
learning based methods in estimating missing streamflow data. This finding is consistent 
with previous studies by Jing et al. (2022), Zhou et al. (2023), and Kim et al. (2015). It 
is important to note that there is no single best model for all situations, as the selection 

Fig. 10   Membership percentage of missing data recovery methods in A, B and C groups
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of appropriate infilling methods depends on various factors such as the length of the 
gap, available data length, and the topographical and climatic conditions of the region.

5 � Conclusion

In the present study, the performance of 11 models, including LR, MLR, ANN, SVR, 
M5, FCM-ANFIS and Sub-ANFIS, was evaluated in retrieving monthly streamflow data 
in three basins in Alborz mountainous regions in northern Iran. Models were evaluated 
using 26 years of data extending from 1991 to 2017, two periods of artificial gaps of data 
were considered to overcome possible duration-based climate conditions that may affect 
the results. Overall, as expected it was noticed that machine learning-based methods yield 
better outputs compared to classical methods.

Also, it is interesting to note that simple classic methods of LR and MLR were bet-
ter than some machine learning methods when proper inputs are used. In other words, 
it was shown that selecting proper inputs (i.e., streamflow here) is more important than 
using more advanced method (i.e., ANN compared to LR or MLR). Additionally, the sig-
nificance of using the seasonal index was demonstrated by comparing the results of similar 
models with and without the seasonal index. For instance, during the first artificial gap 
(1991–1994) in the Taleghan basin, the values of RMSE, NSE, and R2 in estimating the 
missing data using the ANN(1) model were 3.40, 0.89, and 0.90, respectively. However, 
these values improved when the seasonal index was added to the artificial neural network 
(ANN (2)), resulting in values of 2.92, 0.91, and 0.93, respectively. This improvement was 
also observed in other basins.

Additionally, it has been observed that methods utilizing streamflow data from sur-
rounding stations outperform those using rainfall data for estimating streamflow at the tar-
get station. For example, during the first artificial gap (1991–1994) in the Taleghan basin, 
the performance metrics for estimating streamflow using rainfall data (ANN(3)) resulted 
in RMSE of 10.15, NSE of 0.08, and R2 of 0.13, which are inferior to the performance of 
ANN(1) utilizing streamflow data from surrounding stations.

In order to compare the recovery methods of streamflow data and determine the meth-
ods with superior performance, Borda count method was used. Due to the large number of 
models and stations investigated, Borda count method was used to summarize the general 
results. For a more accurate comparison of the obtained results, after ranking the methods 
in each basin and in each gap, the methods were classified into three groups A, B and C. 
It was found that ANFIS methods as well as SVR are superior in most cases. The ANFIS 
method with FCM clustering consistently ranks in group A across all basins, indicating the 
significance of selecting the right clustering approach for the ANFIS model. 5M behaves 
differently in different basins and thus is not a reliable method for the area.

Author Contributions  Both authors contributed to the study in all levels and original draft preparation. The 
study is the result of a graduate level thesis and was guided by Alireza Borhani Dariane as the advisor of 
Matineh Imani Borhan (student).

Funding  No funding was used in this research.

Availability of Data and Materials  All authors made sure that all data and materials support our published 
claims and comply with field standards.



1475Comparison of Classical and Machine Learning Methods in…

1 3

Declarations 

Competing Interest  The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

References

Abghari H, Tabari H, Hosseinzadeh Talaee P (2013) River flow trends in the west of Iran during the past 
40years: Impact of precipitation variability. Glob Planet Change 101:52–60. https://​doi.​org/​10.​1016/j.​
glopl​acha.​2012.​12.​003

Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. 
J Irrig Drain Eng 136:317–325

Aguilera H, Guardiola-Albert C, Serrano-Hidalgo C (2020) Estimating extremely large amounts of missing 
precipitation data. J Hydroinformatics 22:578–592. https://​doi.​org/​10.​2166/​hydro.​2020.​127

Ahmadi M, Moeini A, Ahmadi H et al (2019) Comparison of the performance of SWAT, IHACRES and 
artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Phys 
Chem Earth Parts a/b/c 111:65–77. https://​doi.​org/​10.​1016/j.​pce.​2019.​05.​002

Aieb A, Madani K, Scarpa M et al (2019) A new approach for processing climate missing databases applied 
to daily rainfall data in Soummam watershed. Algeria. Heliyon 5:e01247. https://​doi.​org/​10.​1016/j.​
heliy​on.​2019.​e01247

Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675. https://​doi.​
org/​10.​1002/​joc.​33700​60607

Ali R, Kuriqi A, Abubaker S, Kisi O (2019) Long-term trends and seasonality detection of the observed 
flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 11

Anusree K, Varghese KO (2016) Streamflow prediction of karuvannur river basin using ANFIS, ANN and 
MNLR models. Procedia Technol 24:101–108. https://​doi.​org/​10.​1016/j.​protcy.​2016.​05.​015

Arriagada P, Karelovic B, Link O (2021) Automatic gap-filling of daily streamflow time series in data-
scarce regions using a machine learning algorithm. J Hydrol 598:126454. https://​doi.​org/​10.​1016/j.​
jhydr​ol.​2021.​126454

Arrow KJ (1951) Social Choice and Individual Values. John Wiley Sons Inc, Nueva York
Arrow KJ, Sen A, Suzumura K (2010) Handbook of social choice and welfare. Elsevier
Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rain-

fall–runoff process modeling. Neurocomputing 121:470–480. https://​doi.​org/​10.​1016/j.​neucom.​2013.​
05.​023

Baddoo TD, Li Z, Odai SN et al (2021) Comparison of missing data infilling mechanisms for recovering a 
real-world single station streamflow observation. Int J Environ Res Public Health 18

Bahrami J, Kavianpour MR, Abdi MS et al (2010) A comparison between artificial neural network method 
and nonlinear regression method to estimate the missing hydrometric data. J Hydroinformatics 
13:245–254. https://​doi.​org/​10.​2166/​hydro.​2010.​069

Belayneh A, Adamowski J, Khalil B, Quilty J (2016) Coupling machine learning methods with wavelet 
transforms and the bootstrap and boosting ensemble approaches for drought prediction. Atmos Res 
172–173:37–47. https://​doi.​org/​10.​1016/j.​atmos​res.​2015.​12.​017

Benmouiza K, Cheknane A (2019) Clustered ANFIS network using fuzzy c-means, subtractive clustering, 
and grid partitioning for hourly solar radiation forecasting. Theor Appl Climatol 137:31–43. https://​
doi.​org/​10.​1007/​s00704-​018-​2576-4

Bezdek† JC (1973) Cluster Validity with Fuzzy Sets. J Cybern 3:58–73. https://​doi.​org/​10.​1080/​01969​
72730​85460​47

Cai H, Shi H, Liu S, Babovic V (2021) Impacts of regional characteristics on improving the accuracy of 
groundwater level prediction using machine learning: The case of central eastern continental United 
States. J Hydrol Reg Stud 37:100930. https://​doi.​org/​10.​1016/j.​ejrh.​2021.​100930

Chang F-J, Chang Y-T (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reser-
voir. Adv Water Resour 29:1–10. https://​doi.​org/​10.​1016/j.​advwa​tres.​2005.​04.​015

Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regres-
sion. Neural Netw 17:113–126. https://​doi.​org/​10.​1016/​S0893-​6080(03)​00169-2

Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2:267–278. 
https://​doi.​org/​10.​3233/​IFS-​1994-​2306

https://doi.org/10.1016/j.gloplacha.2012.12.003
https://doi.org/10.1016/j.gloplacha.2012.12.003
https://doi.org/10.2166/hydro.2020.127
https://doi.org/10.1016/j.pce.2019.05.002
https://doi.org/10.1016/j.heliyon.2019.e01247
https://doi.org/10.1016/j.heliyon.2019.e01247
https://doi.org/10.1002/joc.3370060607
https://doi.org/10.1002/joc.3370060607
https://doi.org/10.1016/j.protcy.2016.05.015
https://doi.org/10.1016/j.jhydrol.2021.126454
https://doi.org/10.1016/j.jhydrol.2021.126454
https://doi.org/10.1016/j.neucom.2013.05.023
https://doi.org/10.1016/j.neucom.2013.05.023
https://doi.org/10.2166/hydro.2010.069
https://doi.org/10.1016/j.atmosres.2015.12.017
https://doi.org/10.1007/s00704-018-2576-4
https://doi.org/10.1007/s00704-018-2576-4
https://doi.org/10.1080/01969727308546047
https://doi.org/10.1080/01969727308546047
https://doi.org/10.1016/j.ejrh.2021.100930
https://doi.org/10.1016/j.advwatres.2005.04.015
https://doi.org/10.1016/S0893-6080(03)00169-2
https://doi.org/10.3233/IFS-1994-2306


1476	 A. B. Dariane, M. I. Borhan 

1 3

Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J  
Hydrol 398:292–302. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2010.​12.​030

Coulibaly P, Evora ND (2007) Comparison of neural network methods for infilling missing daily weather 
records. J Hydrol 341:27–41. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2007.​04.​020

Dariane AB, Behbahani MM (2022) Development of an efficient input selection method for NN based 
streamflow model. J Appl Water Eng Res 11:127–140. https://​doi.​org/​10.​1080/​23249​676.​2022. 
​20886​31

Dariane AB, Ghasemi M, Karami F et al (2021) Crop pattern optimization in a multi-reservoir system by 
combining many-objective and social choice methods. Agric Water Manag 257:107162. https://​doi.​
org/​10.​1016/j.​agwat.​2021.​107162

Dariane AB, Karami F (2014) Deriving hedging rules of multi-reservoir system by online evolving neu-
ral networks. Water Resour Manag 28:3651–3665. https://​doi.​org/​10.​1007/​s11269-​014-​0693-0

Dastorani MT, Moghadamnia A, Piri J, Rico-Ramirez M (2010) Application of ANN and ANFIS models  
for reconstructing missing flow data. Environ Monit Assess 166:421–434. https://​doi.​org/​10.​1007/​
s10661-​009-​1012-8

Dembélé M, Oriani F, Tumbulto J et  al (2019) Gap-filling of daily streamflow time series using Direct  
Sampling in various hydroclimatic settings. J Hydrol 569:573–586. https://​doi.​org/​10.​1016/j.​jhydr​ol.​
2018.​11.​076

Elshorbagy AA, Panu US, Simonovic SP (2000) Group-based estimation of missing hydrological data: I. 
Approach and general methodology. Hydrol Sci J 45:849–866. https://​doi.​org/​10.​1080/​02626​66000​
94923​88

Ergün E, Demirel MC (2023) On the use of distributed hydrologic model for filling large gaps at dif-
ferent parts of the streamflow data. Eng Sci Technol an Int J 37:101321. https://​doi.​org/​10.​1016/j.​ 
jestch.​2022.​101321

Fagandini C, Todaro V, Tanda MG et al (2023) Missing rainfall daily data: a comparison among gap-filling 
approaches. Math Geosci. https://​doi.​org/​10.​1007/​s11004-​023-​10078-6

Faramarzzadeh M, Ehsani MR, Akbari M et al (2023) Application of machine learning and remote sens-
ing for gap-filling daily precipitation data of a sparsely gauged basin in East Africa. Environ Pro-
cess 10:8. https://​doi.​org/​10.​1007/​s40710-​023-​00625-y

Gebremicael TG, Mohamed YA, Hagos EY (2017) Temporal and spatial changes of rainfall and stream-
flow in the Upper Tekezē-Atbara river basin, Ethiopia. Hydrol Earth Syst Sci 21:2127–2142

Ghaemi A, Rezaie-Balf M, Adamowski J et  al (2019) On the applicability of maximum overlap discrete 
wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. 
Agric for Meteorol 278:107647. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2019.​107647

Giustarini L, Parisot O, Ghoniem M et al (2016) A user-driven case-based reasoning tool for infilling miss-
ing values in daily mean river flow records. Environ Model Softw 82:308–320. https://​doi.​org/​10.​
1016/j.​envso​ft.​2016.​04.​013

Gyau-Boakye P, Schultz GA (1994) Filling gaps in runoff time series in West Africa. Hydrol Sci J  
39:621–636. https://​doi.​org/​10.​1080/​02626​66940​94927​84

Harvey CL, Dixon H, Hannaford J (2010) Developing best practice for infilling daily river flow data. Role 
Hydrol Manag Consequences a Chang Glob Environ 816–823

Harvey CL, Dixon H, Hannaford J (2012) An appraisal of the performance of data-infilling methods for 
application to daily mean river flow records in the UK. Hydrol Res 43:618–636. https://​doi.​org/​10.​
2166/​nh.​2012.​110

Heddam S, Kisi O (2018) Modelling daily dissolved oxygen concentration using least square support  
vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 559:499– 
509. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2018.​02.​061

Ilunga M, Stephenson D (2005) Infilling streamflow data using feed-forward back-propagation (BP) arti-
ficial neural networks: application of standard BP and Pseudo Mac Laurin power series BP tech-
niques. Water SA 31:171–176

Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 
23:665–685. https://​doi.​org/​10.​1109/​21.​256541

Jing X, Luo J, Wang J et al (2022) A multi-imputation method to deal with hydro-meteorological miss-
ing values by integrating chain equations and random forest. Water Resour Manag 36:1159–1173. 
https://​doi.​org/​10.​1007/​s11269-​021-​03037-5

Kamwaga S, Mulungu DMM, Valimba P (2018) Assessment of empirical and regression methods for  
infilling missing streamflow data in Little Ruaha catchment Tanzania. Phys Chem Earth Parts a/b/c 
106:17–28. https://​doi.​org/​10.​1016/j.​pce.​2018.​05.​008

https://doi.org/10.1016/j.jhydrol.2010.12.030
https://doi.org/10.1016/j.jhydrol.2007.04.020
https://doi.org/10.1080/23249676.2022.2088631
https://doi.org/10.1080/23249676.2022.2088631
https://doi.org/10.1016/j.agwat.2021.107162
https://doi.org/10.1016/j.agwat.2021.107162
https://doi.org/10.1007/s11269-014-0693-0
https://doi.org/10.1007/s10661-009-1012-8
https://doi.org/10.1007/s10661-009-1012-8
https://doi.org/10.1016/j.jhydrol.2018.11.076
https://doi.org/10.1016/j.jhydrol.2018.11.076
https://doi.org/10.1080/02626660009492388
https://doi.org/10.1080/02626660009492388
https://doi.org/10.1016/j.jestch.2022.101321
https://doi.org/10.1016/j.jestch.2022.101321
https://doi.org/10.1007/s11004-023-10078-6
https://doi.org/10.1007/s40710-023-00625-y
https://doi.org/10.1016/j.agrformet.2019.107647
https://doi.org/10.1016/j.envsoft.2016.04.013
https://doi.org/10.1016/j.envsoft.2016.04.013
https://doi.org/10.1080/02626669409492784
https://doi.org/10.2166/nh.2012.110
https://doi.org/10.2166/nh.2012.110
https://doi.org/10.1016/j.jhydrol.2018.02.061
https://doi.org/10.1109/21.256541
https://doi.org/10.1007/s11269-021-03037-5
https://doi.org/10.1016/j.pce.2018.05.008


1477Comparison of Classical and Machine Learning Methods in…

1 3

Karami F, Dariane AB (2018) Many-objective multi-scenario algorithm for optimal reservoir opera-
tion under future uncertainties. Water Resour Manag 32:3887–3902. https://​doi.​org/​10.​1007/​
s11269-​018-​2025-2

Kendall MG (1948) Rank correlation methods
Keshtegar B, Kisi O (2018) RM5Tree: Radial basis M5 model tree for accurate structural reliability anal-

ysis. Reliab Eng Syst Saf 180:49–61. https://​doi.​org/​10.​1016/j.​ress.​2018.​06.​027
Khan MT, Shoaib M, Hammad M et al (2021) Application of machine learning techniques in rainfall–runoff 

modelling of the soan river basin, Pakistan. Water 13
Khan N, Sachindra DA, Shahid S et al (2020) Prediction of droughts over Pakistan using machine learn-

ing algorithms. Adv Water Resour 139:103562. https://​doi.​org/​10.​1016/j.​advwa​tres.​2020.​103562
Khazaee Poul A, Shourian M, Ebrahimi H (2019) A comparative study of MLR, KNN, ANN and ANFIS 

models with wavelet transform in monthly stream flow prediction. Water Resour Manag 33:2907–
2923. https://​doi.​org/​10.​1007/​s11269-​019-​02273-0

Kim M, Baek S, Ligaray M et al (2015) Comparative studies of different imputation methods for recovering 
streamflow observation. Water 7:6847–6860

Lai WY, Kuok KK (2019) A study on bayesian principal component analysis for addressing missing 
rainfall data. Water Resour Manag 33:2615–2628. https://​doi.​org/​10.​1007/​s11269-​019-​02209-8

Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydro-
climatic model validation. Water Resour Res 35:233–241. https://​doi.​org/​10.​1029/​1998W​R9000​18

Londhe S, Dixit P, Shah S, Narkhede S (2015) Infilling of missing daily rainfall records using artificial neu-
ral network. ISH J Hydraul Eng 21:255–264. https://​doi.​org/​10.​1080/​09715​010.​2015.​10161​26

MacLeod C (1999) The synthesis of artificial neural networks using single string evolutionary tech-
niques. PhD Dissertation, The Robert Gordon University, Aberdeen, Scotland

Mahmood R, Jia S (2019) Assessment of hydro-climatic trends and causes of dramatically declining stream 
flow to Lake Chad, Africa, using a hydrological approach. Sci Total Environ 675:122–140. https://​doi.​
org/​10.​1016/j.​scito​tenv.​2019.​04.​219

Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc 245–259
McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math 

Biophys 5:115–133. https://​doi.​org/​10.​1007/​BF024​78259
Mekanik F, Imteaz MA, Gato-Trinidad S, Elmahdi A (2013) Multiple regression and Artificial Neural Net-

work for long-term rainfall forecasting using large scale climate modes. J Hydrol 503:11–21. https://​
doi.​org/​10.​1016/j.​jhydr​ol.​2013.​08.​035

Mohammadi B (2021) A review on the applications of machine learning for runoff modeling. Sustain Water 
Resour Manag 7:98. https://​doi.​org/​10.​1007/​s40899-​021-​00584-y

Mohammadi B, Mehdizadeh S (2020) Modeling daily reference evapotranspiration via a novel approach 
based on support vector regression coupled with whale optimization algorithm. Agric Water Manag 
237:106145. https://​doi.​org/​10.​1016/j.​agwat.​2020.​106145

Mosavi A, Ozturk P, Chau K (2018) Flood Prediction using machine learning models: Literature review. 
Water 10

Mwale FD, Adeloye AJ, Rustum R (2012) Infilling of missing rainfall and streamflow data in the Shire 
River basin, Malawi – A self organizing map approach. Phys Chem Earth Parts a/b/c 50–52:34–43. 
https://​doi.​org/​10.​1016/j.​pce.​2012.​09.​006

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — A discussion of 
principles. J Hydrol 10:282–290. https://​doi.​org/​10.​1016/​0022-​1694(70)​90255-6

Ng WW, Panu US, Lennox WC (2009) Comparative studies in problems of missing extreme daily stream-
flow records. J Hydrol Eng 14:91–100

Nilsson P, Uvo CB, Berndtsson R (2006) Monthly runoff simulation: Comparing and combining conceptual 
and neural network models. J Hydrol 321:344–363. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2005.​08.​007

Quinlan JR (1992) Learning with continuous classes. In: 5th Australian joint conference on artificial intel-
ligence. World Scientific, pp 343–348

Radi NFA, Zakaria R, Azman MA (2015) Estimation of missing rainfall data using spatial interpolation and 
imputation methods. AIP Conf Proc 1643:42–48. https://​doi.​org/​10.​1063/1.​49074​23

Raghavendra NS, Deka PC (2014) Support vector machine applications in the field of hydrology: A review. 
Appl Soft Comput 19:372–386. https://​doi.​org/​10.​1016/j.​asoc.​2014.​02.​002

Rahimikhoob A, Asadi M, Mashal M (2013) A comparison between conventional and m5 model tree meth-
ods for converting pan evaporation to reference evapotranspiration for semi-arid region. Water Resour 
Manag 27:4815–4826. https://​doi.​org/​10.​1007/​s11269-​013-​0440-y

Rezaie-balf M, Naganna SR, Ghaemi A, Deka PC (2017) Wavelet coupled MARS and M5 Model Tree 
approaches for groundwater level forecasting. J Hydrol 553:356–373. https://​doi.​org/​10.​1016/j.​jhydr​ol.​
2017.​08.​006

https://doi.org/10.1007/s11269-018-2025-2
https://doi.org/10.1007/s11269-018-2025-2
https://doi.org/10.1016/j.ress.2018.06.027
https://doi.org/10.1016/j.advwatres.2020.103562
https://doi.org/10.1007/s11269-019-02273-0
https://doi.org/10.1007/s11269-019-02209-8
https://doi.org/10.1029/1998WR900018
https://doi.org/10.1080/09715010.2015.1016126
https://doi.org/10.1016/j.scitotenv.2019.04.219
https://doi.org/10.1016/j.scitotenv.2019.04.219
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.jhydrol.2013.08.035
https://doi.org/10.1016/j.jhydrol.2013.08.035
https://doi.org/10.1007/s40899-021-00584-y
https://doi.org/10.1016/j.agwat.2020.106145
https://doi.org/10.1016/j.pce.2012.09.006
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.jhydrol.2005.08.007
https://doi.org/10.1063/1.4907423
https://doi.org/10.1016/j.asoc.2014.02.002
https://doi.org/10.1007/s11269-013-0440-y
https://doi.org/10.1016/j.jhydrol.2017.08.006
https://doi.org/10.1016/j.jhydrol.2017.08.006


1478	 A. B. Dariane, M. I. Borhan 

1 3

Salas JD (1993) Analysis and modelling of hydrological time series. Handb Hydrol 19
Singh KK, Pal M, Singh VP (2010) Estimation of mean annual flood in indian catchments using back-

propagation neural network and M5 model tree. Water Resour Manag 24:2007–2019. https://​doi.​org/​
10.​1007/​s11269-​009-​9535-x

Souza GRD, Bello IP, Corrêa FV, Oliveira LFCD (2020) Artificial neural networks for filling missing 
streamflow data in Rio do carmo basin, minas gerais, Brazil. Braz Arch Biol Technol 63

Srdjevic B (2007) Linking analytic hierarchy process and social choice methods to support group decision-
making in water management. Decis Support Syst 42:2261–2273. https://​doi.​org/​10.​1016/j.​dss.​2006.​
08.​001

Tabari H, Sabziparvar A-A, Ahmadi M (2011) Comparison of artificial neural network and multivariate lin-
ear regression methods for estimation of daily soil temperature in an arid region. Meteorol Atmos Phys 
110:135–142. https://​doi.​org/​10.​1007/​s00703-​010-​0110-z

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. 
IEEE Trans Syst Man Cybern SMC 15:116–132. https://​doi.​org/​10.​1109/​TSMC.​1985.​63133​99

Tencaliec P, Favre A-C, Prieur C, Mathevet T (2015) Reconstruction of missing daily streamflow data using 
dynamic regression models. Water Resour Res 51:9447–9463. https://​doi.​org/​10.​1002/​2015W​R0173​99

Tongal H, Booij MJ (2018) Simulation and forecasting of streamflows using machine learning models cou-
pled with base flow separation. J Hydrol 564:266–282. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2018.​07.​004

Uysal G, Şorman AÜ (2017) Monthly streamflow estimation using wavelet-artificial neural network model: 
A case study on Çamlıdere dam basin, Turkey. Procedia Comput Sci 120:237–244. https://​doi.​org/​10.​
1016/j.​procs.​2017.​11.​234

Vapnik V (1998) Statistical Learning Theory Wiley New York 1:2
Vapnik V (1999) The nature of statistical learning theory. Springer science & business media
Xia Y, Fabian P, Stohl A, Winterhalter M (1999) Forest climatology: estimation of missing values for 

Bavaria, Germany. Agric for Meteorol 96:131–144. https://​doi.​org/​10.​1016/​S0168-​1923(99)​00056-8
Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 

24:1279–1284. https://​doi.​org/​10.​1109/​21.​299710
Yozgatligil C, Aslan S, Iyigun C, Batmaz I (2013) Comparison of missing value imputation methods in time 

series: the case of Turkish meteorological data. Theor Appl Climatol 112:143–167. https://​doi.​org/​10.​
1007/​s00704-​012-​0723-x

Zare M, Koch M (2018) Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid 
Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. J 
Hydro-Environment Res 18:63–76. https://​doi.​org/​10.​1016/j.​jher.​2017.​11.​004

Zhou Y, Tang Q, Zhao G (2023) Gap infilling of daily streamflow data using a machine learning algo-
rithm (MissForest) for impact assessment of human activities. J Hydrol 627:130404. https://​doi.​org/​10.​
1016/j.​jhydr​ol.​2023.​130404

Zolfagharipoor MA, Ahmadi A (2016) A decision-making framework for river water quality management 
under uncertainty: Application of social choice rules. J Environ Manag 183:152–163. https://​doi.​org/​
10.​1016/j.​jenvm​an.​2016.​07.​094

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a 
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1007/s11269-009-9535-x
https://doi.org/10.1007/s11269-009-9535-x
https://doi.org/10.1016/j.dss.2006.08.001
https://doi.org/10.1016/j.dss.2006.08.001
https://doi.org/10.1007/s00703-010-0110-z
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1002/2015WR017399
https://doi.org/10.1016/j.jhydrol.2018.07.004
https://doi.org/10.1016/j.procs.2017.11.234
https://doi.org/10.1016/j.procs.2017.11.234
https://doi.org/10.1016/S0168-1923(99)00056-8
https://doi.org/10.1109/21.299710
https://doi.org/10.1007/s00704-012-0723-x
https://doi.org/10.1007/s00704-012-0723-x
https://doi.org/10.1016/j.jher.2017.11.004
https://doi.org/10.1016/j.jhydrol.2023.130404
https://doi.org/10.1016/j.jhydrol.2023.130404
https://doi.org/10.1016/j.jenvman.2016.07.094
https://doi.org/10.1016/j.jenvman.2016.07.094

	Comparison of Classical and Machine Learning Methods in Estimation of Missing Streamflow Data
	Abstract
	1 Introduction
	2 Case Study and Data Set
	3 Methodology
	3.1 Statistics Quality Control
	3.1.1 Standard Normal Homogeneity Test
	3.1.2 Mann-Kendall Test

	3.2 Recovery Methods
	3.2.1 Classical Methods
	3.2.2 Machine Learning Methods

	3.3 Evaluation Criteria
	3.4 Social Choice

	4 Results and Discussion
	5 Conclusion
	References


