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Abstract
Accurate flood runoff and water level predictions are crucial research topics due to their 
significance for early warning systems, particularly in improving peak flood level forecasts 
and reducing time lags. This study proposes a novel method, Trend Forecasting Method 
(TFM), to improve model accuracy and overcome the time lag problem due to data scar-
city. The proposed method includes the following steps: (1) select appropriate input factors 
causing flood events, (2) determine the most suitable AI method as the basis for forecasting 
models, (3) a forecasting model using a multi-step-ahead approach and a forecasting model 
with variation in flood depth as input are developed as compared to the selected model 
in Step 2, and (4) according to the rising limb and falling limb of a flood hydrograph, the 
maximum and minimum values predicted by the models above are respectively selected as 
the final outputs. The application to demonstrate the advantages of the proposed method 
was conducted in the Annan District of Tainan City, Taiwan. Of all the models tested, the 
Gated Recurrent Unit (GRU) demonstrated superior accuracy in forecasting flood depths, 
followed by Long Short-Term Memory (LSTM) and Bidirectional LSTM, with the Back 
Propagation Neural Network falling behind. With a Nash–Sutcliffe efficiency coefficient 
(NSE) of 0.56 for the next hour’s forecast, the GRU model’s structure appears particularly 
fitting for flood depth forecast. However, all four models showed time lag issues. TFM 
substantially enhanced the GRU model’s forecast accuracy, mitigating the time lag. TFM 
achieved an NSE of 0.82 for forecasting 10-, 20-, 30-, 40-, 50-, and 60-min lead time. The 
observed flood depths had a 68% probability of consistent rise or fall, validating TFM’s 
underlying hypothesis. Furthermore, including an autoregressive model in TFM reduced 
the time lag problem.
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1  Introduction

Numerous coastal cities worldwide grapple with water-related issues due to the interplay 
between natural and human factors. These issues range from water scarcity and ground 
subsidence to seawater intrusion into aquifers, coastal erosion, and flooding (Schuetze and 
Chelleri 2013). One hundred thirty-six largest coastal cities in the world are particularly 
vulnerable due to a combination of factors, such as climate change, rising sea levels, sub-
sidence from low-lying terrain, ongoing urbanization (Du et al. 2015), high-value assets, 
and bustling economic activities (Meng et  al. 2019). On the other hand, another crucial 
water-related issue is flooding hazards. Cities with high population density and economic 
significance are particularly vulnerable to flood disasters, often stemming from anthro-
pogenic factors such as decreased urban permeability and rapid runoff, coupled with the 
effects of global warming and extreme weather events (Chakrabortty et al. 2023; Roy et al. 
2020). Therefore, addressing such events’ increasing frequency and intensity is crucial to 
safeguarding cities from future threats (Chowdhuri et al. 2020; Imteaz and Hossain 2023; 
Ruidas et al. 2022, 2023).

Flood hazard simulations play a crucial role during intense rainfall to address the issues 
mentioned above, as they aid decision-makers in understanding such disasters. Tradition-
ally, numerous studies have employed physically-based numerical models to simulate the 
extent of flooding at different temporal and spatial scales during storm events. Applying 
such models offers several advantages. For instance, they accurately simulate flood depths 
based on initial and boundary conditions. The output values of these models are rooted in 
physics and mathematical theories, imparting a certain degree of reference value. However, 
they also come with several drawbacks, requiring substantial computational time, exten-
sive data storage, and effective management, mainly when focused on flood forecasting 
rather than mere simulation. Several studies have indicated that flood prediction is crucial 
in enhancing the effectiveness of early warning systems (e.g., Plate 2007).

A significant advancement is the application of AI technology to urban flood prediction. 
These methods consider the results of two-dimensional (2D) hydraulic simulations as a 
database used for training and testing AI models. Compared to the computational resources 
the 2D hydraulic model demands, the trained AI requires significantly fewer resources and 
can deliver results rapidly. These characteristics make it well-suited for real-time flood pre-
diction in flood prevention systems (Hofmann and Schüttrumpf 2021). Accurate forecasts 
provide ample time for both agencies and the public to respond. With the advent of artifi-
cial intelligence (AI), a variety of machine learning and deep learning methods for predict-
ing flood runoff and water levels have been proposed in recent years (Sit et al. 2020; Sun 
et al. 2020). These include Support Vector Machines (Jhong et al. 2017), Back Propagation  
Neural Network (BPNN) (Berkhahn et  al. 2019; Chu et  al. 2020), stacked autoencoder 
with Recurrent Neural Networks (RNN) (Kao et  al. 2021), Long Short-Term Memory 
(LSTM) (Nearing et al. 2022), and Convolutional Neural Network (CNN) (Guo et al. 2021;  
Hosseiny 2021).

Establishing complex and non-linear interdependencies among various hydrological vari-
ables has always been a significant research focus in flood forecasting. For instance, utilizing 
artificial intelligence (AI) to model the non-linear relationships between input variables (such 
as precipitation, temperature, and evapotranspiration) and output variables like river discharge 
or water level enables AI-based forecasting models to predict the future extent of flooding 
accurately. The BPNN is a supervised learning algorithm that refines the network’s perfor-
mance by adjusting the weights of the input, hidden, and output layers. BPNN has been widely 
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used in hydrological modeling, particularly for forecasting river discharges and water levels. 
LSTM, a unique variant of RNN, was introduced by Hochreiter and Schmidhuber (1997) spe-
cifically to circumvent the vanishing gradient problem. It has found extensive use in water 
resources management, including applications in rainfall-runoff simulation (Cui et al. 2021; 
Kratzert et al. 2018), probabilistic streamflow forecasting (Zhu et al. 2020), flood level fore-
casting (Dazzi et  al. 2021), combined sewer overflow monitoring (Palmitessa et  al. 2021), 
and flooding depth (Yang et  al. 2023). While LSTM is extensively utilized, its complexity 
serves as a significant drawback. Gated Recurrent Unit (GRU) was introduced by Cho et al. 
(2014), effectively simplifying the LSTM model. Unlike LSTM, which has three gates in each 
module, GRU only has two: the reset and update gates. Numerous researchers have employed 
GRU for predicting river flow. The Bidirectional LSTM (BiLSTM), a derivative of the bidi-
rectional Elman neural network (Graves and Schmidhuber 2005), establishes both forward and 
backward hidden layers. The input layer feeds into these forward and backward hidden lay-
ers, which jointly compute the predicted value. Kang et al. (2020) utilized BiLSTM to predict 
urban wastewater flow. However, despite the emphasis in the literature on applying the AI 
above methods to various hydrological forecasting studies, the accuracy of most flood predic-
tion models remains limited. Another critical issue is how to further enhance the accuracy of 
flood prediction models based on the characteristics of flood hydrographs.

Incorporating additional input factors, in addition to rainfall and flood depth variables, is 
crucial to enhance the accuracy of flood prediction models. Investigating their impact is also 
essential for improving the performance of these models. In this study, a novel method, the 
Trade Forecasting Method (TFM), is proposed to improve the accuracy of forecasting mod-
els and solve time lag problems. The Annan District of Tainan City, Taiwan, was selected as 
the study area due to its low-lying terrain, which often experiences flooding during typhoons 
and heavy rains. This study explored two issues: (1) Compare the accuracy of BPNN, LSTM, 
GRU, and BiLSTM in forecasting flood depth and (2) Discuss how much our proposed TFM 
could improve the accuracy of model forecasting. The proposed model can be used for urban 
flood forecasting. In this paper, the first chapter serves as an introduction. The second chapter 
outlines the methodology, providing explanations of algorithms and the proposed method. The 
third chapter details the study area, data used, and model development; the fourth, fifth, and 
concluding chapters present results, discussions, and conclusions.

2 � Methodology

2.1 � Back Propagation Neural Network

A BPNN is an artificial neural network that employs a supervised learning algorithm called 
backpropagation for training the network (Najafabadipour et al. 2022). BPNN consists of an 
input layer, one or more hidden layers, and an output layer. Each layer comprises intercon-
nected neurons (nodes or units) that process and transfer information. The network learns by 
adjusting the weights of the connections between neurons to minimize the error between the 
forecasted outputs and the actual target outputs. The net input (netj) is calculated for each node 
in the hidden layer using the formula:

(1)netj =
∑

wij ⋅ xi + bj
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where wij is the weight from the input node i to the hidden node j, xi is the input value, and 
bj is the bias for the hidden node j. An activation function σis applied to netj to get the out-
put (yj) from the hidden nodes:

2.2 � Long Short‑Term Memory

The LSTM model comprises a forget gate, an input gate, and an output gate, each serving 
distinct functions (Kao et al. 2020). LSTM networks are constructed from memory blocks, 
also known as cells. The cell state and hidden state are propagated to the subsequent cell. 
Initially, the current input at time t, denoted as xt, and the output from the previous time 
unit t-1, denoted as ht-1, are fed into the activation function σ. This step determines which 
portion of the previous output should be discarded, a process called the forget gate (ft). The 
corresponding formula is as follows:

where σ is the active function; Wf, Uf are weight matrices; bf is weight bias. After introduc-
ing xt and ht-1 into the network, the input gate it employs an activation function to decide 
whether to disregard or incorporate new information. The cell state C̃t , which signifies the 
content to be updated, is computed using a tanh function.

where Wi, Ui, Wc, and Uc are weight matrices; bi and bc are weight bias. The previous 
cell state Ct-1 is multiplied by ft to ascertain the extent of memory retention from the last 
instance. This outcome is then added to the new memory, derived from it multiplied by C̃t . 
Ultimately, the newly updated memory Ct is outputted.

where ⊙ denotes the Hadamard product. Upon introducing xt and Ct-1 into the network, the 
activation function σ is employed to decide whether to output new information, a process 
known as the output gate ot. Ct is input into the tanh function and multiplied by ot to yield 
the output ht at time t.

where Wo, Uo are weight matrices; bo is weight bias.

2.3 � Gated Recurrent Unit

GRU can also be regarded as a simple variant of LSTM (Xie et  al. 2022). GRU has 
two gating layers: reset gate zt and update gate rt. The reset gate determines how much 

(2)yj = �(netj)

(3)ft = �
(
Wf xt + Uf ht−1 + bf

)

(4)it = �
(
Wixt + Uiht−1 + bi

)

(5)C̃t = tanh
(
Wcxt + Ucht−1 + bc

)

(6)Ct = ft ⊙ Ct−1 + it ⊙
�Ct

(7)ot = �(Woxt + Uoht−1 + bo)

(8)ht = ot ⊙ tanh(Ct)
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information to forget from a previous memory. The function of the update gate is similar 
to the forget gate and input gate of the LSTM unit. It determines how much information 
from previous memory can be passed to the future. The zt and rt formulas are as follows:

where σ is the active function; ht-1 is the output of the last unit; Wz Uz, Wr, and Ur are 
weight matrices; bz and br are weight bias. The hidden state candidate ( ̃ht ) and hidden state 
(ht) at time t can be defined by the following formula:

where Wh and Uh are weight matrices; bh is weight bias.

2.4 � Bidirectional Long Short‑Term Memory

BiLSTM constructs a forward and a backward hidden layer, linking the input layer to 
these forward and backward hidden layers, respectively (Wu et al. 2023). Subsequently, 
the forecasted value is computed collectively. Within the BiLSTM model, the output 
values of the hidden layer are as follows:

In the above, �⃗h
(t)

∈ Rp1×1 represents the output of the hidden layer calculated by the 
forward LSTM, while �⃖h

(t)
∈ Rp1×1 denotes the output of the hidden layer calculated by 

the backward LSTM. The weight matrix of the hidden layer output, as calculated by the 
forward and backward LSTM, can be designated as V ∈ Rk×p1 and Λ ∈ Rk×p2 , respec-
tively, and the input bias weight can be set to by ∈ Rk×1 . The forecasted value of the 
BiLSTM model at time t can be expressed as follows:

where �y(⋅) is generally set as the Softmax function.

2.5 � Trend Forecasting Method

The process flow of the TFM is illustrated in Fig. 1 and comprises four steps, detailed 
as follows:

(9)zt = �(Wzxt + Uzht−1 + bz)

(10)rt = �(Wrxt + Urht−1 + br)

(11)�ht = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

(12)ht =
(
1 − zt

)
⊙ ht−1 + zt ⊙

�ht

(13)�⃗h
(t)

= �⃗𝜎
(t)
⊙ tanh(�⃗c

(t)
)

(14)�⃖h
(t)

= �⃖𝜎
(t)
⊙ tanh( �⃖c

(t)
)

(15)ŷ(t) = �y

(
a(t)
y

)
= �y(V

⇀

h

(t)

+ Λ
⇀

h

(t)

+ by)
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2.5.1 � Select the Appropriate Factors Causing a Flood

First, the factors that mainly lead to the flooding depth are listed, which the following for-
mula can express:

where D̂t+Δt represents the forecasted flood depth at time t + Δt; Δt is the lead time; and f 
denotes various machine learning methods; the terms X1, X2,…,Xn represent input factors 

(16)D̂t+Δt = f (X1,X2,… ,Xn)

Fig. 1   Flowchart for Trend Forecasting Method (TFM)
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and their lag lengths. For an inundation forecasting model, selecting input factors is cru-
cial, precisely determining the value n in the Eq. (16). In the proposed method, the value n 
can primarily be determined through optimization algorithms or by assessing the correla-
tion between the input and output factors of the model.

2.5.2 � Select the Best Machine Learning Method

Flood depths are forecasted using various machine learning methods. The performance of 
each method is assessed using a specific evaluation index, leading to the selection of the 
most suitable machine learning method, denoted as f’. In this study, to choose the most 
suitable machine learning method, the performance of the flood prediction model can be 
determined through various evaluation metrics. Commonly used evaluation metrics typi-
cally involve calculating errors or correlations between model output values and observed 
values to assess the quality of the model. Therefore, the more diverse the evaluation met-
rics used, the more representative the selected optimal machine learning method becomes.

2.5.3 � Three Flooding Depth Models Based on the Best Machine Learning Method

(a)	 Typical Flooding Depth Model (Model f’)

Model f’ employs the original input and output, which the following formula can 
represent:

where D̂(1)

t+Δt
 denotes the forecasted flood depth by Model f’.

(b)	 Recurrent Flooding Depth Model (Model f’-RD)

Several studies have indicated that incorporating forecast information from each time 
step as model input data can enhance the model’s accuracy (Jhong et al. 2017; Yang et al. 
2019). Consequently, Model f’-RD can be represented by the following formula:

where D̂(2)

t+Δt
 denotes the forecasted flood depth by Model f’-RD.

(c)	 Delta Flooding Depth Model (Model f’-ΔD)

Variations in rainfall either increase or decrease, resulting in flood depth alterations. 
Consequently, the model can establish the relationship between rainfall and the variation 
in flood depth ΔD̂t+Δt at t + Δt. The term ΔD̂t+Δt represents the variation in flood depth 
between the time steps t + Δt-1 and t + Δt. The Model f’-ΔD can be expressed as follows:

D̂
(3)

t+Δt
 represents the current water depth Dt accumulating the changes in flood depth at 

subsequent time steps. The formula is as follows:

(17)D̂
(1)

t+Δt
= f �(X1,X2

,… ,Xn)

(18)D̂
(2)

t+Δt
= f �(D̂t+Δt−1,… D̂t+1,X1,X2

,… ,Xn)

(19)ΔD̂t+Δt = f �(X1,X2,… ,Xn)
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where D̂(3)

t+Δt
 denotes the forecasted flood depth by Model f’-ΔD.

(d)	 Select the forecast value according to the trend

Three different forecasted results for future flood depth predictions can be obtained: 
D̂

(1)

t+Δt
 , D̂(2)

t+Δt
 and D̂(3)

t+Δt
 . The concept of trend forecasting (as illustrated in the step 4 in 

Fig. 1) is introduced. If the flood depth at the current moment is increasing, the likelihood 
of it rising at the next moment may be high. Consequently, the maximum value among the 
three is selected. Conversely, if the flood depth at the current moment is decreasing, the 
chance of it reducing at the next moment is high, leading to the selection of the minimum 
value among the three. The following equation can represent this:

3 � Materials

3.1 � Study Area

The research area is located on one of the local traffic arteries in Annan District, Tainan 
City, Taiwan (23°02′38.6 “N 120°11′35.9” E), as shown in Fig. 2a. The site is centrally 
located and densely populated with buildings. The area is located upstream of the storm 
sewer system, but the low-lying terrain makes it difficult for surface runoff to flow into the 
stormwater sewer system. Flooding often occurs during typhoons and heavy rains, result-
ing in traffic interruptions and flooding buildings.

3.2 � Observed Flooding Depths

The rainfall data in this study is sourced from a rainfall station established by the Tainan 
City Government, with data recorded at ten-minute intervals. The flood depth data, 
recorded at ten-minute intervals, is derived from a Flooding Depth Gauge (FDG) (Model 
Anasystem SenSmart WLS) installed by the Water Resources Planning Branch, Water 
Resources Agency. The FDG measures inundation depth via radio frequency admittance, 
boasting an accuracy of 0.5% of the sensor length (typically 1.5 to 2.0 m). The observed 
data is transmitted to a cloud server every 30 s using Long Range technology. The FDG 
was installed in 2016 and has recorded 781 data across six rainfall events. Three of these 
events were caused by typhoons and tropical depressions, while the other three resulted 
from heavy rains. Five events (comprising 592 data) were used for training, and one event 
(consisting of 189 data) was used for testing, as depicted in Fig. 2b. Event 6 was the test 
event due to its second-highest maximum flooding depth.

(20)D̂
(3)

t+Δt
= Dt +

Δt∑
i=1

ΔD̂t+i

(21)

{
Dt − Dt−1 ≥ 0�Dt+Δt = max

(
�D
(1)

t+Δt
, �D

(2)

t+Δt
, �D

(3)

t+Δt

)

Dt − Dt−1 < 0�Dt+Δt = min(�D
(1)

t+Δt
, �D

(2)

t+Δt
, �D

(3)

t+Δt
)
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Fig. 2   a Location of the study area in Annan District, Tainan City, Taiwan b Observed flooding events for 
model training and testing
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3.3 � Model Development

Figure  2b demonstrates a strong correlation between rainfall and flooding depth. Con-
sequently, this study used Dt,Rt,Rt−1,… ,Rt−(LR−1)

 as X in formula (16). Here, Dt rep-
resents the real-time observed flood depth, Rt is the real-time observed rainfall, and 
Rt−1,… ,Rt−(LR−1) are the observed antecedent rainfalls. LR is the lag length of rainfall 
(10  min). The correlation coefficient between flood depth and rainfall for different LR 
values was calculated to identify an appropriate LR. Then, the trial and error method was 
employed to determine the optimal LR. Consequently, this study selected LR as 6. Moreo-
ver, the water depth was forecasted for the next 10, 20, 30, 40, 50, and 60 min; hence Δt 
was set as 6. The initial experiment evaluated the flood depth forecasting ability of the 
BPNN, LSTM, and BiLSTM models.

This study employed four AI models, specifically BPNN, LSTM, GRU, and BiLSTM, 
to evaluate flood depth forecasting. The general forms of the LSTM, GRU, and BiLSTM 
models are presented as follows:

This study computed the evaluation indicators for the four models, with GRU demon-
strating superior performance (refer to Sect. 4.1 for details). Based on Eqs. (18) and (19), 
Models GRU-RD and GRU-ΔD were respectively developed. The general forms of Models 
GRU-RD and GRU-ΔD are presented as follows:

Because the actual flooding depth must be greater than or equal to zero, if the forecasted 
flood depth was negative in this study, it was regarded as a 0 value. The Maximum Fore-
casting Method (MFM) and Average Forecasting Method (AFM) were adopted to assess 
the improvements provided by the proposed TFM, allowing for a direct comparison with 
TFM. Based on the MFM, the maximum value amongD̂(1)

t+Δt
,D̂(2)

t+Δt
 , and , D̂(3)

t+Δt
 is used as the 

forecast value, which the following equation can represent:

The concept of AFM involves using the average value of the three forecasted values as 
the final value. The following equation can represent this:

If the warning authorities exhibit a tendency toward safety and conservatism, they are 
inclined to opt for the maximum forecasted values. In the MFM method, the maximum 
value amongD̂(1)

t+Δt
, D̂(2)

t+Δt
 , and D̂(3)

t+Δt
 is selected as the model output. Additionally, the appli-

cation of the AFM method is justified by the prevalence of the mean as a statistical method. 

(22)

Model BPNN D̂t+Δt = fBPNN(Dt,Rt,Rt−1,… ,Rt−(LR−1)
)

Model LSTM D̂t+Δt = fLSTM(Dt,Rt,Rt−1,… ,Rt−(LR−1)
)

Model GRU D̂t+Δt = fGRU(Dt,Rt,Rt−1,… ,Rt−(LR−1)
)

Model BiLSTM D̂t+Δt = fBiLSTM(Dt,Rt,Rt−1,… ,Rt−(LR−1)
)

(23)Model GRU − RD D̂t+Δt = fGRU(D̂t+Δt−1,… D̂t+1,Dt,Rt
,Rt−1,… ,Rt−(LRD−1)

)

(24)Model GRU − ΔD ΔD̂t+Δt = fGRU(Dt,Rt,Rt−1,… ,Rt−(LRD−1)
)

(25)D̂t+Δt = max(D̂
(1)

t+Δt
, D̂

(2)

t+Δt
, D̂

(3)

t+Δt
)

(26)D̂t+Δt =
D̂

(1)

t+Δt
+ D̂

(2)

t+Δt
+ D̂

(3)

t+Δt

3
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In the AFM method, the average value amongD̂(1)

t+Δt
,  D̂(2)

t+Δt
 , and D̂(3)

t+Δt
 is selected as the 

model output. Finally, the model output values selected by the TFM, MFM, and AFM are  
compared.

The models were developed using Python 3.8 and the Keras library. Data normalization 
was achieved using the Max–min Scaler. Hyperparameters for the models were optimized 
through trial and error, meaning the models have been run several times. All models were 
assigned the same hyperparameters to facilitate the comparison of structural differences 
between models. Each model had three hidden layers and 20 neurons. The batch size was 
set to 10, and the dropout rate was 0.2. The loss function used was Mean Squared Error 
(MSE), and the activation function was tanh. The program was compiled using the Adam 
optimizer, and the number of epochs was set to 120.

3.4 � Evaluation of Model Performance

In this study, the Root Mean Square Error (RMSE), coefficient of determination (R2), and 
Nash–Sutcliffe model efficiency coefficient (NSE) were used to evaluate the overall fore-
casting performance of the model. EDp and ETp were also used to assess the model’s fore-
casting performance for peak values. RMSE represents the error between forecasted and 
observed values. A model can forecast more accurately when the RMSE is closer to 0. 
R2 is often used to assess the linear correlation between the model’s and the target’s out-
put. R2 ranges from 0 to 1. A model can forecast more accurately when its R2 is closer to 
1. NSE is commonly used to evaluate hydrological forecasting models. NSE values range 
from negative infinity to 1. A model with an NSE value closer to 1 can make more accurate 
forecasts. Models with an NSE value of less than 0 demonstrate poorer performance than 
those that only produce the mean. EDp evaluates the error between the forecasted peak and 
the observed peak, while ETp assesses the error between the forecasted peak occurrence 
time and the observed peak occurrence time. The smaller the absolute values of EDp and 
ETp, the better the model’s performance. The evaluation indices can be calculated using the 
following formulas:

(27)RMSE =

[
1

n

n∑
i=1

[
Dfor(ti) − Dobs(ti)

]2
]1∕2

(28)R2 =

⎡
⎢⎢⎢⎣

∑N

t=1
(Dfor

�
ti
�
− Dfor

�
ti
�
)(Dobs

�
ti
�
− Dobs

�
ti
�
)

�∑N

t=1
(Dfor

�
ti
�
− Dfor

�
ti
�
)
2∑N

t=1
(Dobs

�
ti
�
− Dobs

�
ti
�
)
2

⎤
⎥⎥⎥⎦

2

(29)NSE = 1 −

∑n

i=1

�
Dfor

�
ti
�
− Dobs

�
ti
��2

∑n

i=1

�
Dobs

�
ti
�
− Dobs

�
ti
��2

(30)EDp =
Dp,for − Dp,obs

Dp,obs

× 100%
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where Dfor

(
ti
)
 and Dobs

(
ti
)
 represent the i-th forecasted and observed values, respectively. 

Dfor

(
ti
)
 and Dobs

(
ti
)
 are the mean values of the forecasted and observed values, respec-

tively. Dp,for and Dp,obs represent the forecasted and observed peak values, respectively, 
while Tfor

p  and Tobs
p

 denote the occurrence times for the forecasted and observed peak val-
ues, respectively.

4 � Results and Discussion

4.1 � Comparative Analysis of the Flood Forecasting Models Based on the BPNN, 
LSTM, GRU, and BiLSTM

Table 1 details BPNN, LSTM, GRU, and BiLSTM training and testing outcomes in flood 
depth forecasting. Figure  3a–c compare these models during the testing phase. As lead  
time extended, all models’ RMSE increased, and their R2 and NSE decreased, thus reduc-
ing forecasting precision. This trend corroborates Yang et al. (2023) findings from forecast-
ing flood depth in Rende District, Tainan City, Taiwan, using BPNN, RNN, and LSTM.

BPNN exhibited notably higher RMSE and significantly lower R2 and NSE than LSTM. 
Figure 4c–f demonstrate BPNN’s fewer black points compared to LSTM’s blue points at 
water depths below 150  mm, becoming comparable beyond this threshold. Particularly 
under 150 mm, BPNN’s forecasts were substantially inferior to LSTM’s. This reflects Yang 
et al. (2023) similar findings on BPNN versus LSTM. The fluctuation in flood depth cor-
responds to the hydrological process where initial rainfall runoff is managed by ditches and 
sewers, causing no initial flooding. However, as runoff exceeds these capacities, flooding 
ensues. Post-rainfall, as runoff decreases, so does flooding. LSTM, adept at capturing such  
time series and long-term dependencies, consistently surpasses BPNN, especially over 
longer forecast lead times.

Figures 3a–c and 4a–f show that GRU, with slightly lower RMSE and marginally higher 
R2 and NSE than LSTM, forecasted flood depths more accurately. While LSTM units have 
three gates (input, forget, output) (Ding et al. 2020), GRU units have only two (update and 
reset), lacking an output gate and using the hidden state as output (Kao et al. 2020). This 
makes GRUs simpler and potentially less prone to overfitting in linear systems. Despite 
the task and data dictating the choice between LSTM and GRU, our experiments suggest a 
slight superiority of GRU in flood depth forecasting.

Figures 3a–c and 4a–f show BiLSTM’s slightly higher RMSE and lower R2 and NSE 
than LSTM, indicating LSTM’s marginally better forecast accuracy. While both models are 
tailored for sequential data, BiLSTM, which processes data forward and backward, offers 
enhanced context understanding, which is beneficial for tasks like language modeling 
(Vatanchi et al. 2023). However, for applications like flood depth forecasting, where future 
context is less critical and past rainfall predominantly influences changes, our experiments 
reveal that LSTM outperforms BiLSTM.

Figure 3d–e show EDp and ETp for LSTM, GRU, and BiLSTM, with most EDp values 
being negative, indicating underestimated flood peaks. BPNN’s average EDp was -3.11%, 
slightly outperforming LSTM (-9.32%), GRU (-9.89%), and BiLSTM (-8.36%) in peak 
prediction. ETp for the models ranged from 10 to 60  min across six forecasts, showing 
time lags. Inputs included Dt and past rainfall, with Dt having a more significant impact. 

(31)ETp = Tp,for − Tp,obs
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Balancing recent and historical data is essential to prevent overlooking long-term trends 
and reacting to short-term noise, which can cause forecast lags. While real-time data is 
critical, incorporating a broader historical context is necessary to capture patterns over 

Table 1   Evaluation indexes of the models

a The forecasted results of GRU and GRU-RD are the same for D̂
t+1 forecasting

Model Lead Training Testing
time RMSE (mm) R2 NSE RMSE (mm) R2 NSE EDp

(%)
ETp
(min)

BPNN 1 0.02 0.99 0.99 16 0.96 0.96 0.36 10
2 0.04 0.98 0.98 27 0.89 0.87 -3.02 20
3 0.05 0.97 0.97 38 0.77 0.75 1.24 30
4 0.07 0.94 0.94 44 0.68 0.65 -2.90 40
5 0.08 0.93 0.92 54 0.57 0.49 -6.65 50
6 0.08 0.92 0.92 57 0.49 0.42 -7.69 60

LSTM 1 0.03 0.99 0.99 15 0.96 0.96 -6.45 10
2 0.05 0.97 0.97 24 0.90 0.89 -8.13 20
3 0.07 0.94 0.94 34 0.83 0.80 -11.56 30
4 0.08 0.92 0.92 40 0.73 0.71 -10.39 40
5 0.09 0.90 0.90 45 0.65 0.63 -10.39 50
6 0.10 0.88 0.88 51 0.56 0.54 -8.98 60

GRU​ 1a 0.03 0.99 0.99 14 0.96 0.96 -5.84 10
2 0.05 0.97 0.97 23 0.91 0.90 -7.88 20
3 0.07 0.94 0.94 32 0.84 0.82 -12.22 30
4 0.08 0.92 0.92 39 0.75 0.72 -9.90 40
5 0.09 0.90 0.90 45 0.66 0.64 -9.90 50
6 0.10 0.88 0.87 49 0.58 0.56 -13.59 60

BiLSTM 1 0.03 0.99 0.99 17 0.96 0.95 -2.01 10
2 0.05 0.97 0.97 26 0.90 0.88 -4.28 20
3 0.07 0.95 0.94 33 0.82 0.81 -4.65 30
4 0.08 0.92 0.92 41 0.72 0.70 -14.04 40
5 0.09 0.90 0.89 46 0.64 0.62 -14.04 50
6 0.10 0.89 0.88 54 0.55 0.48 -11.15 60

GRU-RD 1a 0.03 0.99 0.99 14 0.96 0.96 -5.84 10
2 0.03 0.99 0.99 15 0.97 0.96 -9.16 10
3 0.04 0.99 0.98 16 0.95 0.95 -8.68 10
4 0.04 0.99 0.98 22 0.93 0.91 -18.27 10
5 0.03 0.99 0.99 24 0.90 0.90 -13.39 20
6 0.04 0.99 0.98 29 0.88 0.85 -20.30 30

GRU-ΔD 1 6.44 1.00 1.00 15 0.96 0.96 -2.01 10
2 3.73 1.00 1.00 23 0.91 0.90 -3.94 20
3 4.43 1.00 1.00 31 0.84 0.83 -5.47 30
4 3.75 1.00 1.00 38 0.75 0.74 -6.56 40
5 3.84 1.00 1.00 45 0.66 0.64 -8.20 50
6 3.16 1.00 1.00 50 0.57 0.54 -9.87 60
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Fig. 3   a RMSE of BPNN, LSTM, GRU, and BiLSTM; b R2 of BPNN, LSTM, GRU, and BiLSTM; c NSE 
of BPNN, LSTM, GRU, and BiLSTM; d  EDp of BPNN, LSTM, GRU, and BiLSTM; e ETp of BPNN, 
LSTM, GRU, and BiLSTM
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time. An overly focused model on recent data may miss future trends (Bollerslev et  al. 
1994; Box et al. 2015; Hyndman and Athanasopoulos 2018; Zhang et al. 1998).

4.2 � Improvement of Model Accuracy Due to the Use of GRU, GRU‑ΔD, and GRU‑RD

Table 1 compares flood depth forecasts for GRU, GRU-RD, and GRU-ΔD. GRU-ΔD had 
slightly higher RMSE but similar R2 and NSE values to GRU, indicating comparable accu-
racy. GRU-ΔD’s average EDp of -6.0% surpassed GRU’s -9.2%, making it more effective 
in peak depth prediction, though both had similar time lags. Meanwhile, GRU-RD showed 
lower RMSE and higher R2 and NSE than GRU, enhancing accuracy. Although its -12.6% 
EDp suggests slightly reduced peak forecasting precision compared to GRU’s -9.2%. How-
ever, GRU-RD’s smaller ETp indicates improved time lag. GRU-RD’s feedback loops, 
which pass previous inputs and outputs to the next step, account for this reduced lag. These 
results are consistent with findings by Nanda et al. (2016) and Yang et al. (2019).

In time series forecasting, autoregressive modeling, which uses previous outputs as 
inputs, effectively reduces time lag by capturing the time-dependent structure. This respon-
siveness is crucial for non-stationary series where statistics vary over time, enhancing fore-
cast accuracy by integrating recent information and minimizing error. It also captures non-
linear relationships in complex dynamics (Brockwell and Davis 2016; Chatfield and Xing 
2019; Hyndman and Athanasopoulos 2018; Zhang et al. 1998).

4.3 � Improvement of Model Accuracy Due to the Use of the Proposed TFM

Figure 5a–c show GRU’s RMSE as notably higher and R2 and NSE as significantly lower 
than AFM, MFM, and TFM. GRU’s forecasts, as Fig. 6d–f depict, notably underestimated 
actual values, a shortcoming mitigated by applying AFM, MFM, and TFM. TFM demon-
strated smaller RMSE and larger R2 and NSE than AFM, indicating superior performance 
as shown in Figs. 5a–c and 6b–f. During the test event, flood depth rose or fell continu-
ously in 49 steps and discontinuously in 23, confirming a 68% probability of continued 
rise or fall, supporting the TFM hypothesis. While AFM and TFM showed similar forecast 
biases (EDp), AFM exhibited a time lag in peak forecasts, unlike TFM. Consequently, TFM 
more accurately predicts flood peaks without noticeable time lag.

Figure  5a–c show that TFM outperformed MFM in early forecasts (T + 1-T + 4) with 
lower RMSE and higher R2 and NSE, while MFM excelled in later forecasts (T + 5 and 
T + 6). Figure 6b–f depict MFM’s significant overestimation by selecting maximum val-
ues from various forecasts. Despite MFM’s smaller EDp indicating better peak predictions, 
it had time lags, unlike TFM, which could predict flood peaks without noticeable delays 
(Fig. 5d–e). Overall, TFM was the most accurate for flood depth, followed by MFM and 
AFM. While MFM led in peak forecasting, its time lags were a drawback, whereas TFM, 
though slightly less accurate, predicted flood peaks without significant time lag.

4.4 � Limitations of the Work and Future Research

This study’s limited observational data includes six rainfall events and 781 records. 
Enhancements could consist of using additional deep learning models to generate more 
data. Future work utilizing the GRU model might explore more complex models and 
extend the current 60-min lead time to longer periods.
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Fig. 4   Scatter diagrams of BPNN, LSTM, GRU, and BiLSTM for a T + 1, b T + 2, c T + 3, d T + 4, e T + 5, 
and f T + 6 forecasting

▸
Fig. 5   a RMSE of GRU, AFM, MFM and TFM; b R2 of GRU, AFM, MFM and TFM; c NSE of GRU, 
AFM, MFM and TFM; d EDp of GRU, AFM, MFM and TFM; e ETp of GRU, AFM, MFM and TFM
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4.5 � Impact and Usefulness of Work Concerning Water Resources Management

The proposed TFM is versatile and applicable to various hydrological forecasts like stream-
flow, flood stage, and sewer water depth, and it is especially effective in predicting contin-
uous hydrograph trends. By integrating TFM, multimodal forecasting becomes more accu-
rate. Furthermore, integrating this model into Tainan City’s flood response system could 
preemptively warn residents and authorities, triggering preventive actions like installing 
barriers, closing roads, and deploying water pumps, thereby enhancing flood management.

5 � Conclusions

This study aimed to improve model accuracy and overcome the time lag problem. The pro-
posed Trend Forecasting Method (TFM) has achieved this purpose. First, the appropriate 
input factors causing flood events and the most suitable AI algorithm were determined to 
construct the forecasting models. Second, the forecasting models, respectively using the 
multi-step-ahead approach and the variation in flood depth as input, were developed to 
investigate the relationships between the input and output variables of models predicting 
flooding depths at different lead times and the improvement of flood prediction concern-
ing the variation between the current and the previous time step in flooding depth. Then, 
based on a flood hydrograph’s rising and falling limb, the maximum and minimum values 
predicted by the models above were chosen as the final outputs, respectively.

The benefits of the proposed method were showcased through its implementation in the 
Annan District of Tainan City, Taiwan. The research results indicated that the GRU exhib-
ited the highest accuracy among all examined models, with LSTM, BiLSTM, and BPNN 
following that order. Despite all models demonstrating time delay issues, GRU has shown 
the best empirical performance, while BPNN excels in peak forecast. Based on the selec-
tion of the GRU-based forecasting model, the proposed method enhanced the prediction 
accuracy of the original GRU model, addressing issues such as the time lag commonly 
encountered in time series forecasting. Moreover, it enabled a more accurate prediction 
of flood peaks. Based on the findings of this study, the proposed method applies to vari-
ous hydrologically related time series forecasting domains, particularly those requiring 
improved accuracy in predictive models for time series or long-term dependencies. Addi-
tionally, AI-related models demand substantial-high-quality historical observational data 
for training and testing. Due to limitations in available observational data, future research 
could involve updating datasets with more observations and exploring integrating new 
models to refine the proposed method, thereby enhancing predictive accuracy and extend-
ing the lead time of predictions.

Acknowledgements  We acknowledge the National Science and Technology Council of Taiwan (Grant 
numbers: MOST 109-2625-M-035-007-MY3 and NSTC 112-2625-M-011-001 -) for granting support. 
The authors thank the Water Resources Planning Branch, Water Resources Agency, Ministry of Economic 
Affairs for providing relevant data and Mr. George Chih-Yu Chen for his assistance in the English editing. 
The authors also thank Tsung-Tang Tsai for his invaluable work developing AI models. During the prepara-
tion of this work the authors used GPT-4 in order to English editing.

Fig. 6   Scatter diagrams of GRU, AFM, MFM, and TFM for a T + 1, b T + 2, c T + 3, d T + 4, e T + 5, and f 
T + 6 forecasting
▸



1378	 S.-Y. Yang et al.

1 3

Authors Contributions  Song-Yue Yang: Conceptualization, Methodology, Visualization, Writing – original 
draft, Funding acquisition; You-Da Jhong: Writing – review & editing; Bing-Chen Jhong: Conceptualiza-
tion, Supervision, Writing – review & editing; Yun-Yang Lin: Data curation, Software.

Funding  This research project is funded by the National Science and Technology Council, Taiwan (grant 
numbers: MOST 109–2625-M-035–007-MY3 and NSTC 112–2625-M-011–001 -).

Availability of Data and Materials  The raw/processed data required to reproduce these findings cannot be 
shared at this time as the data also forms part of an ongoing study.

Declarations 

Ethical Approval  The authors will comply with all academic norms by the journal of Water Resources Man-
agement.

Consent to Participate  All authors agreed to join this research.

Consent to Publish  All authors agreed with the content and that all have explicit consent to submit.

Competing Interests  The authors have no relevant financial or non-financial interests to disclose.

References

Berkhahn S, Fuchs L, Neuweiler I (2019) An ensemble neural network model for real-time prediction of 
urban floods. J Hydrol 575:743–754

Bollerslev T, Engle RF, Nelson DB (1994) ARCH models. Handb Econ 4:2959–3038
Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John 

Wiley & Sons
Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting. Springer, New York
Chakrabortty R, Pal SC, Ruidas D, Roy P, Saha A, Chowdhuri I (2023) Living with floods using state-

of-the-art and geospatial techniques: flood mitigation alternatives, management measures, and policy 
recommendations. Water 15:558

Chatfield C, Xing H (2019) The analysis of time series: an introduction with R. CRC Press
Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning 

phrase representations using RNN encoder-decoder for statistical machine translation arXiv preprint 
arXiv:​1406.​1078

Chowdhuri I, Pal SC, Chakrabortty R (2020) Flood susceptibility mapping by ensemble evidential belief 
function and binomial logistic regression model on river basin of eastern India. Adv Space Res 
65:1466–1489

Chu H, Wu W, Wang QJ, Nathan R, Wei J (2020) An ANN-based emulation modelling framework for 
flood inundation modelling: Application, challenges and future directions. Environ Modell Softw 
124:104587

Cui Z, Zhou Y, Guo S, Wang J, Ba H, He S (2021) A novel hybrid XAJ-LSTM model for multi-step-ahead 
flood forecasting. Hydrol Res 52:1436–1454

Dazzi S, Vacondio R, Mignosa P (2021) Flood stage forecasting using machine-learning methods: a case 
study on the Parma River (Italy). Water 13:1612

Ding Y, Zhu Y, Feng J, Zhang P, Cheng Z (2020) Interpretable spatio-temporal attention LSTM model for 
flood forecasting. Neurocomputing 403:348–359

Du S, Van Rompaey A, Shi P, Ja W (2015) A dual effect of urban expansion on flood risk in the Pearl River 
Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat Hazards 77:111–128

Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and other 
neural network architectures. Neural Netw 18:602–610

Guo Z, Leitão JP, Simões NE, Moosavi V (2021) Data-driven flood emulation: Speeding up urban flood 
predictions by deep convolutional neural networks. J Flood Risk Manag 14:e12684

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780

https://arxiv.org/abs/1406.1078


1379Enhancing Flooding Depth Forecasting Accuracy in an Urban Area…

1 3

Hofmann J, Schüttrumpf H (2021) floodGAN: Using deep adversarial learning to predict pluvial flooding in 
real time. Water 13:2255

Hosseiny H (2021) A deep learning model for predicting river flood depth and extent. Environ Modell 
Softw 145:105186

Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts
Imteaz MA, Hossain I (2023) Climate change impacts on ‘seasonality index’and its potential implications 

on rainwater savings. Water Resour Manag 37:2593–2606
Jhong BC, Wang JH, Lin GF (2017) An integrated two-stage support vector machine approach to forecast 

inundation maps during typhoons. J Hydrol 547:236–252
Kang H, Yang S, Huang J, Oh J (2020) Time series prediction of wastewater flow rate by bidirectional 

LSTM deep learning. Int J Control Autom Syst 18:3023–3030
Kao IF, Liou JY, Lee MH, Chang FJ (2021) Fusing stacked autoencoder and long short-term memory for 

regional multistep-ahead flood inundation forecasts. J Hydrol 598:126371
Kao IF, Zhou Y, Chang LC, Chang FJ (2020) Exploring a Long Short-Term Memory based Encoder-

Decoder framework for multi-step-ahead flood forecasting. J Hydrol 583:124631
Kratzert F, Klotz D, Brenner C, Schulz K, Herrnegger M (2018) Rainfall–runoff modelling using long 

short-term memory (LSTM) networks. Hydrol Earth Syst Sci 22:6005–6022
Meng M, Dąbrowski M, Tai Y, Stead D, Chan F (2019) Collaborative spatial planning in the face of flood 

risk in delta cities: A policy framing perspective. Environ Sci Policy 96:95–104
Najafabadipour A, Kamali G, Nezamabadi-Pour H (2022) Application of artificial intelligence tech-

niques for the determination of groundwater level using spatio–temporal parameters. ACS Omega 
7:10751–10764

Nanda T, Sahoo B, Beria H, Chatterjee C (2016) A wavelet-based non-linear autoregressive with exogenous 
inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based 
rainfall products. J Hydrol 539:57–73

Nearing GS, Klotz D, Frame JM et al (2022) Data assimilation and autoregression for using near-real-time 
streamflow observations in long short-term memory networks. Hydrol Earth Syst Sci 26:5493–5513

Palmitessa R, Mikkelsen PS, Borup M, Law AW (2021) Soft sensing of water depth in combined sewers 
using LSTM neural networks with missing observations. J Hydro-Environ Res 38:106–116

Plate EJ (2007) Early warning and flood forecasting for large rivers with the lower Mekong as example. J 
Hydro-Environ Res 1:80–94

Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Malik S, Das B (2020) Threats of climate and land use change 
on future flood susceptibility. J Clean Prod 272:122757

Ruidas D, Chakrabortty R, Islam ARMT, Saha A, Pal SC (2022) A novel hybrid of meta-optimization 
approach for flash flood-susceptibility assessment in a monsoon-dominated watershed. Eastern India 
Environ Earth Sci 81:145

Ruidas D, Saha A, Islam ARMT, Costache R, Pal SC (2023) Development of geo-environmental factors 
controlled flash flood hazard map for emergency relief operation in complex hydro-geomorphic envi-
ronment of tropical river, India. Environ Sci Pollut Res 30:106951–106966

Schuetze T, Chelleri L (2013) Integrating decentralized rainwater management in urban planning and 
design: Flood resilient and sustainable water management using the example of coastal cities in the 
Netherlands and Taiwan. Water 5:593–616

Sit M, Demiray BZ, Xiang Z, Ewing GJ, Sermet Y, Demir I (2020) A comprehensive review of deep learn-
ing applications in hydrology and water resources. Water Sci Technol 82:2635–2670

Sun W, Bocchini P, Davison BD (2020) Applications of artificial intelligence for disaster management. Nat 
Hazards 103:2631–2689

Vatanchi SM, Etemadfard H, Maghrebi MF, Shad R (2023) A comparative study on forecasting of long-
term daily streamflow using ANN, ANFIS, BiLSTM, and CNN-GRU-LSTM. Water Resour Manag 
37:4769–4785

Wu J, Wang Z, Hu Y, Tao S, Dong J (2023) Runoff forecasting using convolutional neural networks and 
optimized bi-directional long short-term memory. Water Resour Manag 37:937–953

Xie H, Randall M, Chau K-w (2022) Green roof hydrological modelling with GRU and LSTM networks. 
Water Resour Manag 36:1107–1122

Yang SY, Jhong BC, Jhong YD, Tsai TT, Chen CS (2023) Long short-term memory integrating moving aver-
age method for flood inundation depth forecasting based on observed data in urban area. Nat Hazards 
116:2339–2361

Yang S, Yang D, Chen J, Zhao B (2019) Real-time reservoir operation using recurrent neural networks and 
inflow forecast from a distributed hydrological model. J Hydrol 579:124229



1380	 S.-Y. Yang et al.

1 3

Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: The state of the art. Int J 
Forecast 14:35–62

Zhu S, Luo X, Yuan X, Xu Z (2020) An improved long short-term memory network for streamflow fore-
casting in the upper Yangtze River. Stoch Environ Res Risk Assess 34:1313–1329

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	Enhancing Flooding Depth Forecasting Accuracy in an Urban Area Using a Novel Trend Forecasting Method
	Abstract
	1 Introduction
	2 Methodology
	2.1 Back Propagation Neural Network
	2.2 Long Short-Term Memory
	2.3 Gated Recurrent Unit
	2.4 Bidirectional Long Short-Term Memory
	2.5 Trend Forecasting Method
	2.5.1 Select the Appropriate Factors Causing a Flood
	2.5.2 Select the Best Machine Learning Method
	2.5.3 Three Flooding Depth Models Based on the Best Machine Learning Method


	3 Materials
	3.1 Study Area
	3.2 Observed Flooding Depths
	3.3 Model Development
	3.4 Evaluation of Model Performance

	4 Results and Discussion
	4.1 Comparative Analysis of the Flood Forecasting Models Based on the BPNN, LSTM, GRU, and BiLSTM
	4.2 Improvement of Model Accuracy Due to the Use of GRU, GRU-ΔD, and GRU-RD
	4.3 Improvement of Model Accuracy Due to the Use of the Proposed TFM
	4.4 Limitations of the Work and Future Research
	4.5 Impact and Usefulness of Work Concerning Water Resources Management

	5 Conclusions
	Acknowledgements 
	References


