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Abstract
Searching for the precise solution of the free surface has remained the main bottleneck 
in analyzing the unconfined seepage problem for earth-rock dams. This paper proposes 
an approach to solve classic earth-rock dams using the smoothed finite element method 
(S-FEM). To overcome the problems of complex calculation and accuracy loss caused by 
integrating the area of intersecting elements in saturated seepage, this paper optimizes the 
shape function calculation by reducing the area integral to a line integral along the ele-
ments. To achieve a balance between efficiency and accuracy, we investigated the distinct 
effects of various smooth elements on computational efficiency, which included computa-
tion time and iteration times. Moreover, we first explored the extensive effect of seepage 
anomalies and their positional changes on hydrological state variables, including head, free 
surface, overflow point, seepage velocity, and fluid pressure. This exploration presented 
could provide a potential for developing multi-parameter seepage inversion and serve as 
constraints for hydro-geophysical inversion.

Keywords Groundwater flow · Heterogeneity · Seepage analysis · Free surface searching · 
Smoothed finite element · Hydrological state variables

1 Introduction

Unconfined seepage analysis is of great significance for many applications such as geo-
technical engineering, groundwater hydrology, hydro-geophysics and the stability of high 
earth-rock dams (Zhang et al. 2017; Yang et al. 2019; Sharma et al. 2021). Seepage flow 
beneath a hydraulic structure is formed by the hydraulic head difference between the 
upstream and downstream sides (Nafiseh et al. 2018). Excessive seepage or pore pressure 
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could have a great potential to cause serious instability of high earth-rock dams (Farzin 
et al. 2020; Rehamnia et al. 2020). Determining the precise position and accurate shape of 
the free surface remains a challenging task in the analysis of unconfined seepage. Its posi-
tion and shape are influenced by various factors throughout the entire process of solving 
saturated seepage problems. In this sense, the unconfined seepage analysis is essentially 
considered a multivariable domain problem with strong nonlinearity and time-varying 
characteristics (Zheng et al. 2005; Butera et al. 2020).

Numerous numerical approaches have been employed to analyze unconfined seep-
age, including the moving-mesh method, meshless method, and the fixed-mesh method. 
By repositioning the boundary elements to alter the solution domain, the moving-mesh 
method has been proven to be one of the most preferred approaches for solving problems 
involving varying domains (Darbandi et  al.  2007; Dai et  al. 2019; Sharma et  al. 2021). 
However, the meshing process of moving-mesh methods is reported to be time-consuming 
because it involves remeshing the model every iteration to address variable domain prob-
lems (Dou et al. 2017). In addition, mesh distortions may be caused by remeshing during 
the iteration process, especially in the presence of non-uniform media or geometric distor-
tions, which can result in a reduction in accuracy that limits its applicability. To address 
the heterogeneity issue of seepage, other meshless methods have also been suggested, such 
as the natural element method (NEM) (Shahrokhabadi and Toufigh 2013), the numerical 
manifold method (NMM) (Zheng et al. 2015), and the moving Kriging meshless method 
(Zhang et al. 2017). However, due to the typical use of local interpolations in the meshless 
method for solution approximation, dealing with intricate boundaries and complex models 
may potentially lead to numerical stability concerns. In fact, the meshless method’s unique 
characteristics necessitate additional steps when obtaining hydrological state variables dur-
ing post-processing compared to conventional finite element method (FEM) and finite dif-
ference method (FDM).

Remeshing can be avoided by using the fixed-mesh method, which reduces the dependence 
on the meshing. Proper formulation of boundary intersecting elements (BIE) is a crucial issue 
with the fixed-mesh method, since the BIE will be divided into different shapes when free sur-
face changing continuously during the whole iterative process. And correspondingly, the syn-
thesis of the stiffness matrix through area integration in the traditional FEM becomes more 
complicated. To address this issue, the residual flow method and variational inequality methods 
have been introduced, which have significantly improved the fixed-mesh method (Desai and Li 
1983; Zheng et al. 2005; Daneshmand and Kazemzadeh-Parsi 2009). The unit decomposition 
techniques such as numerical manifold method (Jiang et al. 2010; Zheng et al. 2015) and scaled 
boundary finite element method (Bazyar and Talebi 2015; Johari and Heydari 2018) have also 
gained attention in the analysis of variable domain problems. In the applications of unconfined 
seepage analysis, however, imposing an accurate essential boundary or medium boundary con-
ditions is infeasible in the course of forming the shape functions. Because the shape function 
in unit decomposition methods does not have the interpolation attribute like the finite element 
shape function, as evidenced by the delta interpolation strategy.

By using the gradient smoothing technique (GST) to reduce the dimension of the sur-
face integral into the line integral along the boundaries, the smoothed finite element method 
(S-FEM) has been proposed and widely used in various engineering applications (Liu et al. 
2007, 2009; He et al. 2011; Xue et al. 2013). With the assistance of the dimension reduc-
tion technique for surface integration, this method eliminates the significant influence of BIE 
shape on the accuracy and efficiency of the integral solution. For the standard cell-based 
smoothed finite element method (CS-FEM), each smoothed subdomain involves field nodes, 
smooth nodes (located at the edge center) and Gaussian points, preserving the FEM meshing 
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strategy while making minor modifications to the current finite element code. Theoretically, 
bilinear Q4 elements can be subdivided into infinite quadrilateral smoothing cells (SC), 
which means that more smoothed elements could represent more accurate solutions. But as 
Liu et al. (2009) pointed out that such subdivision is not generally necessary nor even prefer-
able, a fundamental division of the element into four or less SC is one of the desirable choices 
for solid mechanics problems. By utilizing this feature of CS-FEM, Kazemzadeh-Parsi and 
Daneshmand (2012, 2013) analyzed unconfined seepage and computed the element matrices 
via GST without having to remesh. However, the study focused on analyzing the impact of 
inhomogeneous medium model on the distribution of free surface, while not involving the 
details of the intimate correlation among smoothing cells or the specific impact of anomalies 
and auxiliary structures on the distribution of hydrological state variables, which could be 
very beneficial for practical engineering design.

Within this context, we first used classical models to investigate the specific impact  
of different SCs on computational efficiency, including computation time and iteration 
counts. This investigation could help pinpoint the optimal quantity of SC that achieves a 
trade-off between efficiency and accuracy. At the same time, the validity of the method 
was evaluated through classical model experiments. The testing model was specifically 
designed to explore the impact of factors like the location of anomalies and the magni-
tude of permeability on hydrological state variables, which involve the free surface, over-
flow points, seepage velocity, and fluid pressure. The findings enabled us to gain a deeper 
understanding of how inhomogeneity impacts the hydrological state variables in earth-rock 
dams, which in turn could facilitate the establishment of a theoretical basis for subsequent 
seepage inversion or hydrological-geophysical coupling analyses.

2  Methodology

2.1  Mathematical Description of Seepage Analysis

The unconfined seepage in an earth-rock dam is illustrated in Fig. 1. The problem domain 
is divided into two parts by the free surface AE. The part ΩU above the free surface is 
the unsaturated region and the part ΩS below the free surface is the saturated region, it is 
assumed that the seepage in the problem domain only flows through the saturated region.

In the saturated region of the dam, the water head at any point is mathematically 
expressed as (Darbandi et al. 2007):

(1)h =
p

�g
+ y

Fig. 1  Schematic diagram of 
unconfined seepage of dam
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where h is the piezometric head of seepage, y is the vertical component coordinate, p, ρ 
and g are the fluid pressure, fluid density and gravity acceleration, respectively.

The equation of fluid continuity in the saturated domain is defined as (Bradet and 
Tobita 2002):

According to Darcy’s law, the seepage velocity in the saturated region is:

where kx, ky and kxy are coefficients of the unit hydraulic conductivity k, and vx and vy are 
the components of the discharge velocity vector v. Hereafter we consider only the cases of 
isotropic permeability (kx = ky) and anisotropic permeability (kx ≠ ky) that have the x- and 
y-axis for principal axes (i.e., kxy = 0).

By substituting Eq.  (3) into Eq.  (2), the difference equation of two-dimensional 
unconfined steady seepage can be obtained:

As shown in Fig. 1, the corresponding boundary conditions are as follows:

1. Boundary conditions of AB and CD head of upstream and downstream reservoir water 
are:

2. The bottom boundary BC is impervious, which satisfies the discharge boundary conditions:

where n is the upward normal unit vector. The flow rate in the upward normal direction is 
0.

3. Free surface AE should satisfy two boundary conditions:

4. Seepage surface DE satisfies boundary condition:

2.2  S‑FEM with Fixed Mesh

The whole problem domain is discretized by fixed grid of smoothed finite element, and 
the water head of each node can be obtained by interpolation:

(2)∇ ⋅ � = 0

(3)� =

(

vx
vy

)

= −

(

kx kxy
kxy ky

)

(

�h

�x
�h

�y

)

or � = −� ����(h)

(4)
�
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�h
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)

+
�

�y

(

ky
�h

�y

)

= 0

(5)hAB = H1

(6)hCD = H2

(7)qn = � ⋅ � = 0

(8)qn = 0, h = y

(9)qn ≤ 0, h = y
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where N is the shape function matrix and H is the water head of grid nodes. The head gra-
dient needs to be obtained through solving the governing equation of unconfined seepage 
problem, and the shape function gradient needs to be calculated.

Smooth domains are typically divided by connecting the midpoints of relative line 
segments. Each smooth subdomain is composed of the field nodes, the smooth nodes 
at the center of edges and the Gaussian points. In an effort to seek the optimal balance 
between computational efficiency and accuracy, we specifically focus on the cases of 
SC = 1, 2, and 4 in this study, as illustrated in Fig. 2.

For the classical finite element methods, the gradient matrix of shape function can be 
generally obtained by solving the shape function derivation, while this gradient matrix 
of shape function can also be obtained by introducing the gradient smoothing technique 
into the methodology of our work:

where ∇�(�) is the smooth shape function gradient, ∇�(�) is the gradient of shape func-
tion, Ωs

k
 is the smooth domain, and W(�k − �) is the smooth function (i.e., weight function).

The smooth function employed in our current work is a Heaviside-type function (Xue 
et al. 2013):

where As
k
 is the area of the smooth domain Ωs

k
.

(10)uh(�) = ��

(11)∇�(�) = ∫
Ωs

k

∇�(�)W(�k − �)dΩ

(12)W
(

�k − �
)

=

{

1

As
k

, � ∈ Ωs
k

0, � ∉ Ωs
k

Fig. 2  Division of element into the smoothing cells (SC): a SC = 1; b SC = 2; c SC = 4
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The area integral can be transformed into the line integral by using uses integration by 
parts and then applies Gauss’s divergence theorem, and Eq.  (12) is then substituted into 
Eq. (11):

where Γs
k
 is the boundary of smooth domain Ωs

k
 . n is the out of unit normal vector over Γs

k
 . 

It can be seen from Eq.  (13) that the gradient smoothing technique converts the original 
two-dimensional area integral into a line integral along the boundaries.

By introducing Eq. (13) into Eq. (10), we obtain:

The smoothed matrix can be computed by using only the shape function values at mid-
segment-points (Gauss points) on the each of segments within the smoothing domains. It 
is worthy of note that no derivatives of the shape functions are needed. The shape function 
values at each Gauss point are then calculated through linear interpolation using two end-
points in the segment that contain these Gauss points (Liu and Trung 2016).

The governing equations and boundary conditions are then re-written into the integral 
weak form, and the water head interpolation is employed into the Galerkin weak form of 
the unconfined seepage problem:

where � is the smooth stiffness matrix with the following form:

where k is the matrix of unit hydraulic conductivity coefficient. In this weak form, R is 
related to the natural boundary conditions. According to the boundary conditions, the 
flowing along the outer normal direction of the boundary is 0, namely, R = 0 (Kazemza-
deh-Parsi and Daneshmand 2012).

When employing the fixed-grid method, the free surface divides the solution domain 
into two parts, generating three types of elements, as shown in Fig. 3. The element above 
the free surface is named as the external smooth element, the following element below free 
surface is named as the internal smooth element, and the element passing through the free 
surface is named as the intersecting smooth element.

(13)

∇�(�) = ∫
Ωs

k

∇�(�)W(�k − �)dΩ

= −∫
Ωs

k

�(�)∇W(�k − �)dΩ +
1

As
k
∫
Γs
k

�(�)�dΓ

=
1

As
k
∫
Γs
k

�(�)�dΓ

(14)∇uh(�) = ��

(15)� =
1

AS
k
∫
ΓS
k

�(�)�dΓ = [ bx by ]

(16)bh =
1

AS
k
∫
ΓS
k

�(�)nh(�)dΓ, h = x, y

(17)�� = �

(18)� = ∫
Ω

�
T
��dΩ
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The intersecting elements are separated by the free surface into different shapes, which 
shows a general n-polygon distribution (e.g., triangles or pentagons), as shown in Fig. 4. 
The greatest advantage of S-FEM lies in the convenience of direct integration along the 
element boundaries without having to consider the influence of element shape. There-
fore, the element integral solution of n-polygon can refer to the quadrilateral case, and the 
Gaussian point function can be calculated by linear interpolation by using two endpoints of 
segment containing the Gauss point.

Hence, in our work, only the area below the free surface is considered, the influence 
of the stiffness matrix that formed by the external smooth elements above the free sur-
face on the solution process is negligible. For the whole solution domain, the stiffness 
matrixes formed by both the internal smooth element and the intersecting smooth element 
are considered:

where Ω1 is the internal smooth element region, Ω2 is the intersecting smooth element region.

(19)� = ∫
Ω1

�
T
�BdΩ + ∫

Ω2

�
T
�BdΩ

Fig. 3  Schematic diagram of three types of smooth elements

Fig. 4  Possible cases of bound-
ary intersecting elements sepa-
rated by the free surface
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The Eq. (19) then can be re-written into the sum of elements integral:

where S1 is the smooth element belongs to Ω1, S2 is the smooth element belongs to Ω2.
In the calculation process, the permeability in each grid is constant, and the gradient matrix 

of smooth function is also a constant matrix, then the overall stiffness matrix is obtained:

where kS is the permeability matrix at centroidal coordinate of the smoothing cell S.
By doing this, the proposed method is capable of optimizing the area integral calculated 

by the previous element stiffness matrixes into the line integral along the element boundaries 
with relatively high precision, which greatly simplifies the internal integration of those ele-
ments that intersect the boundaries. Compared to the conventional FEM, S-FEM alleviates 
difficulties in shape function calculations and precision loss caused by mesh shape distortion.

2.3  Iterative Updating Strategy

As demonstrated, the fundamental purpose of solving unconfined seepage problem is to find 
the dynamic position of free surface. According to the boundary conditions, the position and 
shape of the free surface are updated continuously in the iterations until a certain convergence 
condition is met. The framework of iteration is described as follows:

(i) Select a line segment as the initial free surface, as shown in Fig. 5. The overflow point 
needs to be located on CE, while the initial point is located on BF.

(ii) On CE, a point D is selected as the initial solution of the overflow point of the free surface.
(iii) The line AD formed by connecting points A and D is used as the initial solution of the 

free surface.

(20)� =
∑

S1∈Ω1

∑

S
∫
ΩS

B
T
�BdΩ +

∑

S2∈Ω2

∑

S
∫
ΩS

B
T
�BdΩ

(21)� =
∑

S1∈Ω1

∑

S

(

AS�
T

S
�S�S

)

+
∑

S2∈Ω2

∑

S

(

AS�
T

S
�S�S

)

Fig. 5  Schematic diagram of free 
surface update process
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(iv) The initial free surface AD is cut into a series of control points H1, H2, …, Hn. Select 
a line segment such as BC as the baseline and divide the baseline BC into a series of 
base points G1, G2, …, Gn.

(v) Connection points H1 and G1, points H2 and G2, and points Hn and Gn. A series of rays 
H1G1, H2G2, …, HnGn are obtained. In the iterative process, control points H1, H2, …, 
Hn to form the free surface, and then these control points move along these rays to 
constantly form a new free surface.

After completing the above preparatory work, the assumed initial free surface AD is 
utilized to solve Eq.  (17), and the water head of each node in the solution domain can be 
obtained. The position of control points needs to be modified along the rays to satisfy the 
boundary conditions on the free surface.

The vertical coordinates of control points are:

where yold
i

 , ynew
i

 are the elevation of the i-th key point in the previous iteration and the next 
iteration, respectively. hi is the calculated piezometric head at the control point. � is the 
step size to control the iteration speed, which is set as 0.8 in this study.

Before performing each iteration, the judgment is continuously performed to determine 
whether the following formula is satisfied:

where � is a small tolerance parameter (e.g.,  10–2).
Noting that once Eq. (24) is satisfied the iteration is terminated, otherwise, the control 

point positions are continuously updated according to Eq. (22).
It should be pointed out that under the control of the above updating strategy, since the 

overflow point is located on the right boundary of the dam model, and the head has been 
given in the boundary conditions, hence, the solution of overflow point is not suitable to 
update its location with the updating strategy, in turn, the locations of overflow point are 
determined by interpolating Hn-1 and Hn in this study.

3  Verification Tests

The proposed algorithm is tested by solving the free surface of classical models for uncon-
fined seepage problems, the novelty and computational efficiency of the algorithm is veri-
fied by comparing with the state-of-the-art techniques (Oden and Kikuchi 1980; Lacy and 
Prevost 1987; Bardet and Tobita 2002; Darbandi et al. 2007; Dai et al. 2019).

(22)ynew
i

= yold
i

+ ��i

(23)�i = hi − yold
i

(24)𝜎 =
|𝜎1| + |𝜎2| +…+ |𝜎n|

n
< 𝜀

(25)Error=|
|

�1
|

|

+ |

|

�2
|

|

+…+ |

|

�n
|
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3.1  Rectangular Dam Model

Model 1 represents a standard and classical homogeneous rectangular dam, with a height 
of 10 m and a width of 5 m. The upstream water head is configured to be 10 m, while the 
downstream water head is set at 2 m. The permeability coefficient is set as 1 m/day, and the 
initial free surface is determined using the Dupuit formula (Dupuit 1863).

To highlight the specific features of different state-of-the-art methods, comparison 
results are presented in Fig. 6(a) to show the position of both the free surface and overflow 
point. As illustrated, the position of the free surface calculated by the proposed method has 
a good coincidence with the measurement data obtained by other methods, which prelimi-
narily verified that the proposed method suitably predicts the position of the free surface, 
as well as the overflow point. It can also be found that the division manner of different 
smooth domains has little influence on the results of the free surface.

In addition, the contour map of water head, velocity vector distribution and fluid pres-
sure are imaged in Fig. 6(b)–(d), which also implies that the zero-pressure contour result 
is well consistent with the free surface. Herein the forward region is divided into 450 units 
and 496 nodes. All simulation tests were performed on the desktop of Dell 8930 with 
Intel(R) Core TM i7-8700 @3.70 GHz and with the physical memory of 64.0 GB under 
Window 10 operating system.

The convergence performance of the proposed method in this study is documented and 
presented in Fig. 7. The results show that the global convergence is consistently and favorably 
improving throughout the entire iterative process. Notably, this global convergence stands in 
stark contrast to techniques that rely on moving grids (Darbandi et al. 2007; Dai et al. 2019). 
The total number of iterations count for SC = 1, SC = 2, and SC = 4 is 9, 9, and 20, respec-
tively. The corresponding running times are 0.43 s, 0.55 s, and 1.18 s, respectively.

In fact, the rate of flow quantity through distinct vertical sections in the dam should be 
theoretically equal by following (Zheng et al. 2015):

where yF is the ordinate of free surface.

(26)Q(x) = ∫
yF

0

vxdy = constant

Fig. 6  Results of homogeneous rectangular dam a Comparison of the free surface assessed from available 
results. b Contour map of water head. c Distribution of velocity vector. d Contour map of fluid pressure
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The distribution of flow quantities along the x-axis in the proposed method is docu-
mented and illustrated in Fig.  8. It’s evident that the flow rates across different vertical 
sections are almost uniform, and the presence of different smooth domains has a minimal 
impact on the computational outcomes.

Fig. 7  Convergence behavior 
of the proposed method for the 
homogeneous rectangular dam

Fig. 8  Flow quantity distribution through the different vertical segments along the x axis
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3.2  Rectangular Dam Model with Interface

The model 2, initially introduced by Oden & Kikuchi (1980), has become a standard bench-
mark for evaluating the accuracy of various numerical methods. This model consists of a 
rectangular dam with an interface located at its midpoint. It’s worth noting that the perme-
ability coefficient is 1 m/day on the left side and 10 m/day on the right. The upstream and 
downstream water head remains the same as in the previous model.

The initial free surface is still determined using the Dupuit formula. Figure  9(a) dis-
plays the comparative outcomes of free surface determination using various numerical 
techniques for this classic model. The contour map of water head, velocity vector distribu-
tion, and fluid pressure for this model is presented in Fig. 9(b)–(d). It demonstrates that in 
regions with low permeability, seepage velocity is relatively slow, and water head varia-
tions are minimal, resulting in a dense contour distribution. Conversely, in areas with high 
permeability, seepage velocity is higher, water head changes dramatically, and the contour 
distribution is relatively sparse. Significant fluid pressure changes can be observed, par-
ticularly at the boundaries of different permeability zones.

3.3  Right‑Angle Trapezoidal Dam Model

The model 3 is constructed as a right-angled trapezoidal dam with a base width of 7 m and 
top width of 2 m. The upstream water head is set at 5 m, while the downstream water head 
is set at 1 m, and the permeability coefficient is set as 1 m/day.

As depicted in Fig. 10(a), a structured-grid scheme has been employed for calculat-
ing the free surface within this third classical model. The results obtained through our 
GST-based S-FEM exhibit strong concordance with those from other methodologies, as 
demonstrated in Fig.  10(b). Figure  10(c)–(e) display the contour maps of water head, 
velocity vector distribution, and fluid pressure for this model. Figure 10(c) reveals that 
water head contour lines intersect the free surface perpendicularly. Figure 10(d) illus-
trates that in the vicinity of the free surface, the seepage velocity is aligned parallel to 
it, directed towards the overflow point, while maintaining a zero outer normal velocity, 

Fig. 9  Results of rectangular dam model with interface a  Comparison of the free surface assessed 
from available results. b Contour map of water head. c Distribution of velocity vector. d Contour map 
of fluid pressure
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consistent with the free surface boundary condition outlined in Eq. (8). Additionally, the 
zero-pressure lines consistently coincide with the free surface, as shown in Fig. 10(e).

3.4  Isosceles Trapezoidal Dam Model

The model 4 is designed as an isosceles trapezoidal dam with a top side length of 4 m, 
a bottom side length of 14 m, and a height of 6 m. The upstream water head and the 
downstream water head are set as 5 m and 1 m, respectively. The permeability coeffi-
cient within the solution domain is maintained at 1 m/day.

Fig. 10  Results of right-angle trapezoidal dam model a Schematic diagram of meshing. b Comparison of 
the free surface assessed from available results. c Contour map of water head. d Distribution of velocity 
vector. e Contour map of fluid pressure

Fig. 11  Results of Isosceles trapezoidal dam model a  Schematic diagram of meshing and comparison of 
the free surface with initial free surface. b Contour map of water head. c Distribution of velocity vector. d 
Contour map of fluid pressure
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Figure 11(a) illustrates the schematic diagram of meshing and a comparison of the 
free surface against the initial free surface. Figure 11(b)–(d) display the contour maps 
of water head, velocity vector distribution, and the fluid pressure for this model. The 
outcomes are similar to those of model 3.

In earth-rock dams, the position of free surface is always affected by different perme-
ability of rock blocks to varying degrees (Lacy and Prevost 1987). Namely, ignoring the 
influence of permeability anomalies may leads to a biased free surface searching result 
especially in real applications, which regarding both the accurate shape and exact posi-
tion of free surface. More importantly, permeability anomalies interpretation based on 
the searching results is also a significant part of the multi-parameters seepage inversion 
regarding water head, free surface solution, overflow point, seepage velocity and fluid 
pressure. Within this context and for the first attempt, we further explored these specific 
impacts in an effort to improve the accuracy and practicability of multi-parameter seep-
age inversion.

4  Exploratory Tests

4.1  Rectangular Dam Model with a Single Anomaly

The first exploratory tests model introduces different permeability anomalies of low or 
high permeability into the model 1. To emphasize the effect of anomaly placement on the 
free surface, two distinct models with different anomaly positions are created, denoted as 
Example 1 and Example 2. The coordinates of the anomaly in Example 1 and Example 
2 are [2, 8.43; 3, 8.43; 3, 7.7; 2, 7.7], [1, 2.2; 2, 2.2; 2, 1.1; 1, 1.1], respectively. These 
models are illustrated in Fig. 12(a) and (b). The black dotted box delineates the area of the 
anomaly. The permeability of background area is set as 1 m/day. Four distinct permeability 
anomalies, namely cases 1 to 4, are detailed in Table 1. Boundary conditions and model 
meshing remain consistent with those of the rectangular dam model in Section 3.1.

Figure 12(a) demonstrates the impact on the free surface when the anomaly is located 
in close proximity to the free surface. Interestingly, when the permeability of the anom-
aly surpasses that of the background medium, the free surface curve tends to bend 
towards the anomaly. Conversely, when the permeability of the anomaly is lower than 
that of the background medium, the free surface curve bends away from the anomaly. 
The degree of influence becomes more pronounced as the contrast between anomaly 
and background permeabilities increases. Figure 12(b) illustrates that when the anomaly 
is located at a significant distance from the free surface, its influence on the free surface 
diminishes. However, as shown in Table 1, the position of the overflow point is affected 
by the anomaly, whether it is positioned near or far from the free surface.

Figures 13 and 14 depict the alterations in seepage velocity distribution caused by 
various permeability anomalies. These figures reveal that, as abnormal permeability 
gradually transitions from values lower than the background permeability to higher val-
ues, seepage velocity within the anomalous region notably increases. The shift in flow 
direction evolves from repulsion (primarily attributed to low permeability anomalies) to 
aggregation (primarily induced by the presence of high permeability anomalies).

Comparing the results between Example 1 and 2, one can find that when the anom-
aly is situated in close proximity to the free surface, its influence on seepage veloc-
ity is relatively limited. This can be attributed to the relatively low seepage velocity 
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magnitude in the immediate vicinity of the free surface, while its effect on the free sur-
face is more pronounced. Conversely, when the anomaly is located far away from the 
free surface, its position has a more pronounced effect on the seepage velocity, with a 
lesser effect on the free surface.

4.2  Rectangular Dam Model with Multiple Anomalies

The second exploratory test model aims to investigate the specific effects of multiple 
anomalies on hydrologic state variable, encompassing water head, flow velocity, and fluid 
pressure. The positions of three anomalies are illustrated in Fig. 15, with the red dotted box 
indicating high permeability (k = 10 m/day) and the blue dotted box representing low per-
meability (k = 0.1 m/day). The coordinates of the three anomalies are [1, 1.97; 1.67, 1.97; 

Table 1  Overflow point position 
(Examples 1 and 2) for different 
cases of permeability considered 
in the rectangle dam

Case number Permeability 
(meter/day)

Overflow point position /m

Example 1 Example 2

Case 1 0.1 6.3288 6.4116
Case 2 0.5 6.3896 6.4369
Case 3 3.0 6.5334 6.4537
Case 4 10.0 6.6301 6.4884
Background 1.0 6.4635 6.4635

Fig. 12  Location of the anomaly and the free surface result a Example 1. b Example 2
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1.67, 8.43; 1, 8.43], [2.33, 6.97; 3.33, 6.97; 3.33, 6.23; 2.33, 6.23], [1, 2.2; 2, 2.2; 2, 1.1; 1, 
1.1], respectively. The permeability of background area is set as 1 m/day. Boundary condi-
tions and model meshing remain consistent with those of the model 1 in Section 3.1.

As depicted in Fig. 15(a) and (c), the trends in free surface and seepage velocity vari-
ations in the multi-anomaly model closely resemble those observed in the single-anomaly 
model. Figure 15(b) and (d) demonstrate that, due to the attractive properties, the existence 
of high permeability anomalies significantly increases the seepage velocity in the high per-
meability area. This leads to a sparser distribution of water head and fluid pressure con-
tours. Conversely, the existence of low permeability anomalies, which may have a repul-
sive effect on seepage, results in a significant decrease in seepage velocity within the low 
permeability area, causing a denser distribution of water head and fluid pressure contours.

Fig. 13  Comparison of seepage velocity for different cases of permeability in the rectangle dam (Example 
1): a Case 1, k = 0.1 m/day; b Case 2, k = 0.5 m/day; c Case 3, k = 3 m/day; d Case 4, k = 10 m/day

Fig. 14  Comparison of seepage velocity for different cases of permeability in the rectangle dam (Example 
2): a Case 1, k = 0.1 m/day; b Case 2, k = 0.5 m/day; c Case 3, k = 3 m/day; d Case 4, k = 10 m/day
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4.3  Trapezoidal Dam Model with Anomalies

The third model features an isosceles trapezoidal dam with two distinct permeability 
anomalies, as depicted in Fig. 16(a). The red dotted box corresponds to a high perme-
ability anomaly (k = 10 m/day), while the blue dotted box represents a low permeability 
anomaly (k = 0.1 m/day). The coordinates of the two anomalies are [5.66, 3.2; 6.55, 3.2; 
6.44, 2; 5.43, 2], [8.2, 2.4; 9.24, 2.4; 9.54, 1.6; 8.37, 1.6], respectively. The permeability 
of background area is set as 1 m/day. Boundary conditions and model meshing remain 
consistent with those of the trapezoid dam model in Section 3.4.

Figure 16 (a) depicts the model diagram and free surface outcomes. Figure 16(b)–(d) 
illustrate the distribution of water head, seepage velocity, and fluid pressure, respec-
tively. It is evident that in trapezoidal dams, high and low permeability anomalies have a 
consistent impact on water head, seepage velocity, and fluid pressure.

Fig. 15  Rectangle dam with multiple anomalies a  Schematic diagram of model and free surface result. 
b Contour map of water head. c Distribution of velocity vector. d Contour map of fluid pressure

Fig. 16  Trapezoidal dam model with anomalies a Schematic diagram of model and free surface result. b 
Contour map of water head. c Distribution of velocity vector. d Contour map of fluid pressure
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4.4  Trapezoidal Dam Model with Core Wall and Leakage Path

Finally, to evaluate the method’s performance and practicality in complex model 
applications, we investigate a common scenario of dam seepage failure. As shown in 
Fig.  17(a), we constructed a model of an isosceles trapezoidal earth-rock dam with a 
core wall and thoughtfully designed leakage path through the core wall. The coordinates 
of the core wall are [6.5, 6; 7.5, 6; 9, 0; 5, 0], and the coordinates of the leakage path 
are [5.8, 3.2; 8.4, 2.4; 8.5, 2; 5.75, 3]. This specially designed model could reveal the 
common seepage features of the in-site dams. The permeability of core wall and leakage 
passageway are set as 0.1 m/day, 1 m/day, respectively.

Figure 17(a) presents the free surface results. It can be found that there are two dis-
tinct inflection points on the free surface at the interface between the core wall and the 
dam. As observed in Fig. 17(c), the flow velocity within the low-permeability core wall 
significantly decreases, while the velocity within the leakage pathway exhibits an appar-
ent increase, indicating a trend of concentrated seepage towards the leakage pathway. In 
Fig. 17(b) and (d), the contour distributions of water head and fluid pressure follow the 
patterns that similar to those discussed earlier.

5  Discussion

The experimental findings demonstrate that the SFEM can be utilized not only for saturated 
seepage problems but also for more complicated seepage scenarios. This could provide a via-
ble option for addressing the computational efficiency and accuracy challenges in free surface 
search. For instance, in intricate three-dimensional seepage problems, GTS’ characteristics 
enable the reduction of dimensional integrals. By doing this, computational complexity can be 
reduced while ensuring the accuracy of solutions. More importantly, conducting multi-parameter 
seepage inversion is made possible by relevant findings on the impact of seepage anomalies and 
the dam’s auxiliary structures on hydrological state variables. Furthermore, it could serve as con-
straints for hydro-geophysical inversion, which will be the focus of our future work.

Fig. 17  Trapezoidal dam model with core wall and leakage path a Schematic diagram of model and free sur-
face result. b Contour map of water head. c Distribution of velocity vector. d Contour map of fluid pressure
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6  Conclusions

In this paper, we employed the S-FEM to accurately solve the free surface of unconfined 
seepage fields in both homogeneous and heterogeneous earth-rock dams. A thorough anal-
ysis is conducted to determine a suitable balance between efficiency and accuracy regard-
ing the impact of SC on the solution. The feasibility and effectiveness of the proposed 
method are validated by comparisons with the results of classical models in references.

A potential contribution of this work is the comprehensive consideration of specific 
interactions between the location of anomalies and the magnitude of permeability on 
hydrological state variables, including the overflow point, seepage velocity, and fluid pres-
sure. This analysis represents an impact exploration that could provide insights into the 
coupled and combined effects of anomaly characteristics on various hydrological param-
eters. More importantly, the proposed methodology improves the capacity to maintain high 
accuracy of the solution with a preferable search efficiency in handling the complicated 
cases of heterogeneous dam applications. The commercialization of precise dimension 
detecting of leakage anomalies within the heterogeneous earth dam could be facilitated by 
this contribution.
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