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Abstract
Reservoirs and dams are critical infrastructures that play essential roles in flood control, 
hydropower generation, water supply, and navigation. Accurate and reliable dam outflow 
prediction models are important for managing water resources effectively. In this study, we 
explore the application of three deep learning (DL) algorithms, i.e., gated recurrent unit 
(GRU), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), to predict 
outflows for the Buon Tua Srah and Hua Na reservoirs located in Vietnam. An advanced 
optimization framework, named the Bayesian optimization algorithm with a Gaussian pro-
cess, is introduced to simultaneously select the input predictors and hyperparameters of 
DLs. A comprehensive investigation into the performance of three DLs in multistep-ahead 
prediction of outflow of two dams shows that all three models can predict the reservoir out-
flow accurately, especially for short lead-time predictions. The analysis results based on the 
root mean square error, Nash–Sutcliffe efficiency, and Kling–Gupta efficiency indicate that 
BiLSTM and GRU are the most suitable models to diagnose the outflow of Buon Tua Srah 
and Hua Na reservoirs, respectively. Conversely, the results of the similarity assessment 
of 11 hydrological signatures show that LSTM outperforms BiLSTM and GRU in both 
case studies. This result emphasizes the importance of determining the purpose and objec-
tive function when choosing the best model for each case study. Ultimately, these results 
strengthen the potential of DL for efficient and effective reservoir outflow predictions to 
help policymakers and operators manage their water resource system operations better.

Keywords Dam outflow prediction · Long short-term memory · Input predictor selection · 
Hyperparameter optimization

1 Introduction

Reservoirs and dams serve critical functions in mitigating natural disasters including 
droughts and floods, providing potable and irrigation water, and generating electricity. 
As anthropogenic structures requiring human operation, in addition to beneficial impacts, 
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these reservoirs also induce alterations of natural regimes pertaining to flow, sediment 
transport, and the ambient environment. Specifically, dams primarily influence the hydro-
logic regime by changing the magnitude and timing of the discharges downstream, often 
with the intent to mitigate hydrologic extremes (i.e., floods and droughts) (Beiranvand 
and Ashofteh 2023; Döll et  al. 2009). Dams reduce peak discharges by roughly a third 
on average while dampening the daily streafmlow by a similar amount (Graf 2006). The 
optimization of reservoir/dam operations is rendered more complex when accounting for 
numerous influencing factors, including operational expertise, site-specific rule curves, 
intended reservoir uses, human manipulation, precipitation patterns, reservoir inflow, water 
levels, downstream river regimes, and localized release decision-making practices distinct 
to each infrastructure project. Consequently, the streamflows downstream of dams and res-
ervoirs constitute anthropogenically engineered fluxes divergent from natural flow regimes. 
This underscores a principal challenge in accurately modeling dam discharge dynamics, 
which bears critical import for administrating water resources upstream and downstream of 
reservoirs.

Dam outflow is typically a nonlinear and complex process driven by anthropogenic 
and environmental influences that make predicting dam outflow difficult, particularly in 
the context of predicting dam-induced hydrologic responses at diurnal or subdiurnal time 
steps (El-Shafie et al. 2006; Jothiprakash and Magar 2012; Seo et al. 2015). Gutenson et al. 
(2020) classified two approaches for dam outflow prediction, nondata- and data-driven. 
The non-data-driven approach is based on conceptualizing reservoir responses using avail-
able information (e.g., dam water level, inflow, reservoir storage, and outflow) (Beiranvand 
and Ashofteh 2023; Döll et  al. 2009; Gutenson et  al. 2020; Hanasaki et  al. 2006). This 
approach was mainly developed to present the operation of natural reservoirs (Gutenson 
et al. 2020; Han et al. 2020). Conversely, the data-driven approach, also known as machine 
learning or artificial intelligence, can be effectively applied to dynamic nonlinear systems, 
particularly when the governing influence on the system does not follow any deterministic 
model (Coerver et al. 2018; Ehsani et al. 2016; Mohan and Ramsundram 2016; Zhang et al. 
2019). These approaches involve reservoir-related data or specific parameters to build a 
model that can be used as a predictive model.

Recently, data-driven approaches have attracted attention owing to their strong learning 
capabilities and suitability for modeling complex nonlinear processes (Aksoy and Daham-
sheh 2018; Mohandes et al. 2004; Nourani et al. 2014; Shi et al. 2015; Yaseen et al. 2015). 
Many techniques can provide satisfactory results in earth science applications, such as arti-
ficial neural network (ANN), recurrent neural network (RNN), support vector regression, 
genetic programming, multilayer perceptron (MLP), and long short-term memory (LSTM) 
and its variants (e.g., gated recurrent unit, GRU; and bidirectional LSTM, BiLSTM), have 
been proven. The latter techniques, i.e., GRU, LSTM, and BiLSTM (called deep learning, 
DL, hereinafter), overcome the notorious problem of vanilla RNN in addressing the dif-
ficulty in long-range dependency learning (Greff et al. 2017). Therefore, DL models can 
learn the nonlinearity of input variables with an arbitrary length, effectively capture long-
term time dependencies, and provide predictions more accurately than other methods such 
as ANN, RNN, or MLP (Hu et al. 2018; Le et al. 2019; Ni et al. 2020; Xiang et al. 2020). 
Although the effectiveness of DL has been demonstrated, few studies have used it to ensure 
that it can provide reliable predictions in the case of dam outflow.

Although DL models perform well, their complex topology design and hyperparameter 
configuration pose a challenge in building a well-performing DL (Khosravi et  al. 2022; 
Kratzert et  al. 2018). Common methods, such as trial-and-error, grid search, and ran-
dom search, are often used, but they have a slow convergence rate and do not specifically 
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consider the effects of the interaction between hyperparameters (Bergstra and Bengio 
2012). Recently, the Bayesian optimization algorithm (BOA) has received attention owing 
to its higher efficiency compared with other algorithms (grid or random searches) as it can 
acquire satisfactory results with fewer iterations and is more suitable for computationally 
expensive optimization problems (Alizadeh et al. 2021). Another issue in DL applications 
is selecting proper input variables and their sequence lengths (also known as the lookback 
periods or lengths of the time lag) (Adamowski and Sun 2010). These input variables and 
their respective sequence lengths are collectively termed “input predictors” because they 
are fed into DLs as predictors to predict the target outputs. Inappropriate inputs lead to 
nonconvergence in model training and poor reliability of the trained model predictions 
(Bowden et  al.  2005; Latif and Ahmed 2023). This highlights the need for a thorough 
understanding of the underlying physical processes from available data and the effect of 
such data on dam outflow. The most common approach in previous studies was to use trial-
and-error based on multiple scenarios of input combinations, ad hoc selections, or statisti-
cal analyses for critical inputs (Bozorg-Haddad et al. 2016; Sauhats et al. 2016; Yang et al. 
2017a, b). In most previous studies, the selection of principal inputs and hyperparameters 
was performed stepwise separately. Specifically, the hyperparameters were fixed while 
selecting the principal input variables and their sequence lengths. The new hyperparam-
eters are then optimized with the selected principal inputs (Ahmad and Hossain 2019; Tran 
et al. 2021). However, the optimization of the selection of principal inputs is often closely 
related to the hyperparameters of DL models. The number of input predictors used affects 
the model configuration, and vice versa. Thus, such an independent optimization may not 
produce the best-performing model (Alizadeh et al. 2021).

This study aimed to investigate the potential of DL models for predicting dam outflow 
and to develop a unique framework to simultaneously optimize hyperparameters and select 
principal input variables and their sequence lengths for DL models using the BOA. For 
these purposes, three DL models, LSTM, BiLSTM, and GRU, were implemented to iden-
tify which of these models best produced accurate dam outflow. All experiments were con-
ducted using a dataset from two case studies of Buon Tua Srah and Hua Na dams located in 
Vietnam. The rest of this study is organized as follows: Section 2 describes the methodolo-
gies of the three DL models, the BOA, a DL modeling framework, and evaluation metrics. 
Section 3 describes the study area, dataset, and experimental setup. Section 4 presents the 
experimental results and discussion, and a conclusion follows in Section 5.

2  Materials and Methods

2.1  Deep Learning Methods

2.1.1  Long Short‑Term Memory Network (LSTM)

Long Short-Term Memory (LSTM) is a variant of recurrent neural networks (RNNs) that 
mitigates the vanishing gradient problem through a specialized memory cell termed the 
LSTM cell. LSTM cells can retain information over extended time lags and regulate infor-
mation propagation to subsequent cells. This enables LSTM networks to learn long-term 
dependencies inherent in sequential data (Hochreiter and Schmidhuber 1997). The LSTM 
equations are expressed in Section S.1 in supplementary material (SM) file.

403



 V. N. Tran et al.

1 3

2.1.2  Gated Recurrent Unit (GRU)

GRU is a type of gating mechanism used in RNNs with a memory neuron that can 
address the issue of vanishing or exploding gradients (Cho et  al.  2014). By simplify-
ing the structure of LSTM, the GRU architecture has two gates: an update ( zt ) and a 
reset ( rt ). The update gate determines how much information will be retained from the 
state of the previous step ht−1 and flow to the neuron, whereas the reset gate determines 
whether to ignore the previous state and upset the current state. The GRU equations are 
presented in Section S.2 in the SM file.

2.1.3  Bidirectional Long Short‑Term Memory Networks (BiLSTM)

BiLSTM is a deformation structure of LSTM that contains forward and backward LSTM 
layers (Schuster and Paliwal 1997). It can analyze data forward and backward simulta-
neously. Therefore, BiLSTM is better in capturing the future and past information of the 
input sequence compared to LSTM. This type of process is helpful in time-series data 
when we want to understand the data at each timestep (Salehinejad et al. 2017).

2.2  Bayesian Optimization with Gaussian Process

In this section, an optimization framework is presented to simultaneously determine the 
optimal input variables, their sequence lengths, and model hyperparameters. Specifi-
cally, the sequence lengths of candidate inputs are assumed to be hyperparameters with 
values varying between 0 and 30 (days). The value of 0 indicates that the candidate 
input will not be selected as the model input, whereas a value > 0 denotes the sequence 
length of the selected input. Hyperparameter optimization can be considered a black-
box problem, where the objective function of optimization is a black-box model. The 
hyperparameter optimization problem can be expressed as follows:

where X∗ is the set of optimal hyperparameters and U is the feasible search space.
The BOA was used to optimize the hyperparameters and is summarized as follows:

1. Initialize the hyperparameters randomly from their feasible space and evaluate them in 
the true objective function.

2. Build a surrogate model of the objective function/model f (X) based on the initial hyper-
parameters using a Gaussian process.

3. Estimate the next hyperparameters based on a Gaussian process by optimizing an acqui-
sition function.

4. Update the surrogate model with new hyperparameters.
5. Repeat steps 2–4 for N iterations.

In this study, the expected improvement ( EI ) acquisition function (Eq. (2)) is applied 
to select samples that are expected to have an improvement over the present best 
observation.

(1)X∗ = argX∈Umaxf (X)
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where X∗ is the current selected hyperparameters; Φ and ϕ are the cumulative distribution 
and probability density functions of �(Xi)−f (X∗)

�(Xi)
 , respectively; and μ(X) and σ(X) are the 

expected prediction and variance, respectively. Further details on the BOA can be found in 
Shahriari et al. (2015)

2.3  Summary of the DL Modeling Framework

The methodology for dam outflow prediction implemented in this study follows the 
schematic outlined in Fig. 1:

(2)EI
(
Xi

)
=

{(
𝜇
(
Xi

)
− f (X∗)

)
Φ

(
𝜇(Xi)−f (X∗)

𝜎(Xi)

)
+ 𝜎(X)𝜙

(
𝜇(Xi)−f (X∗)

𝜎(Xi)

)
, if 𝜎

(
Xi

)
> 0

0, if 𝜎
(
Xi

)
= 0

Fig. 1  Overview of a modeling framework for dam outflow prediction using Deep learning and Bayesian 
Optimization algorithm to simultaneously optimize hyperparameters, principal input variables and their 
sequence lengths for the DL models
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1. Collect the dataset, including the target output (i.e., dam outflow) and candidate input 
variables (i.e., dam outflow, dam inflow, water level, and precipitation). Any inappropri-
ate or missing values in the collected data should be reviewed carefully.

2. Then, the dataset is normalized to values between 0 and 1 and divided into two sets, 
including “training and validation” and “test” sets. In this study, we set 80% and 20% 
of the total data length for training, validation, and testing. The training and validation 
set was used for searching for the optimal set of model input predictors and hyperpa-
rameters and the testing set was used to evaluate the performance of the trained model 
with optimal inputs and hyperparameters.

3. Given the range of hyperparameters and the training and validation set, BOA and K-fold 
cross-validation are used to optimize the hyperparameters. A K-fold of 10 is selected 
as preferred in previous studies (Jung et al. 2020; Singh and Panda 2011; Yadav and 
Shukla 2016). Specifically, the training and validation set is partitioned into K = 10 
distinct, equitable subsets, or “folds.” Then, an DL model is trained on K-1 folds of the 
data and subsequently validated on the leftover fold. This approach is cycled K times 
with K models, with each fold being used in turn as the validation dataset.

  At each iteration, different sequence lengths for the candidate input variables are gen-
erated and can be used to reconstruct the training and validation set to train and validate 
the DL model. For the stopping criteria of the hyperparameter optimization, we fixed the 
number of iterations in the BOA to 100. That is, the optimization of hyperparameters is 
stopped once the number of BOA iterations reaches 100. The results of this step are the 
optimal values for five hyperparameters, the optimal sequence lengths of four candidate 
input predictors, and an optimal DL model for outflow prediction. This number (100) 
was ad hoc selected to prove the feasibility of the proposed framework and based on the 
experimental design for the BOA of Snoek et al. (2012)

4. The model input in the test set is reconstructed using the optimal sequence lengths and 
used as input to the optimal DL models. Then, the model results are renormalized and 
evaluated with observed dam outflow.

2.4  Study Area and Dataset

This study considers two case studies, including Buon Tua Srah and Hua Na dams located 
in the North Central and South Central regions of Vietnam, respectively (Fig. 2a, b). These 
two dams belong to two intercountry river systems, namely, the Srepok (Fig. 2a) and Chu-
Ma (Fig. 2b) river systems, with controlled areas of 2930 and 5345  km2, respectively. Both 
Buon Tua Srah and Hua Na are multipurpose reservoirs that have roles in generating elec-
tricity, controlling flood downstream, supplying water for irrigation, and regulating against 
drought. The mean annual discharge, design flood discharge, normal water level, and total 
storage of Buon Tua Srah and Hua Na dams are 102 and 94.63  m3/s, 4267 and 5703  m3/s, 
487.5 and 240 m, and 786.9 and 569.36 ×  106  m3, respectively. Buon Tua Srah and Hua Na 
dams started operating in 2011 and 2013, respectively.

In this study, the data used to forecast dam outflow included the previous dam out-
flow, dam inflow, water level, and precipitation. These data are favored by most relevant 
studies (Gutenson et al. 2020; Han et al. 2020; Zhang et al. 2018, 2019). The dam opera-
tion data were obtained from the official website of the Vietnam Electricity Corpora-
tion (https:// hochu athuy dien. evn. com. vn). The dataset spans a period of approximately 9 
(01/01/2012–12/31/2020) and 5 (12/01/2015–12/31/2020) years for the Buon Tua Srah and 
Hua Da dams, respectively. The data were partitioned into two sets: 80% and 20% were 
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allocated to the training and validation and testing sets, respectively. The dam operation 
dataset included the daily inflow and outflow of the reservoir and the water level upstream 
of the dam. Daily precipitation data were provided by the National Center for Hydromete-
orological Forecasting, Vietnam Meteorological, and Hydrological Administration (http:// 
www. nchmf. gov. vn). Precipitation data were obtained from two and eight rain gauges near 
the study areas of Buon Tua Srah and Hua Na dams, respectively (Fig. 2a, b).

Fig. 2  Location of the two case studies: a Buon Tua Srah and b Hua Na watersheds located in Central 
Vietnam. Subplot c illustrates a recursive procedure for multi-step-ahead prediction. The prediction results 
are used continuously as input predictors to predict the next-step-ahead target outputs. Qo , Qin , H , and 
Pr represent dam outflow, dam inflow, dam water level, and precipitation, respectively. Gray boxes denote 
input predictors to the DL model, while yellow boxes denote DL model’s output. Green boxe denotes a cor-
relation function between water level ( H ) and reservoir storage ( S ). This function is used to compute H for 
the next time step based on the water balance. Subplot d shows the fitted curves and fitted equations repre-
senting the relationship between water level ( H ) and reservoir storage ( S ) for the two reservoirs using the 
third-degree polynomial functions
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Although the Buon Tua Srah and Hua Na reservoirs were commissioned in 2011 and 
2013, respectively, data acquisition and storage systems were not established until 2012 
and 2015, respectively. As a result, the data used to train the model (especially for the Hua 
Na reservoir) are limited. Clearly, using a short data series affected the performance of 
the model. For DL approaches, 5 years of daily data is considered sufficient to apply such 
models, as has been demonstrated in a previous study (Tang et al. 2023). Therefore, in this 
study, a 5-year daily data series can be considered suitable for applying DL methods.

2.5  Model Configurations

2.5.1  Hyperparameter Setting

In this study, nine hyperparameters were optimized for three DL models using BOA. Four 
hyperparameters have a value range from 0 to 30 and denote the sequence lengths for four 
candidate inputs, including dam outflow ( Qo ), dam inflow ( Qin ), water level ( H ), and pre-
cipitation ( Pr ). The remaining five hyperparameters are for DL configurations, including 
the numbers of hidden layers ( NL ), hidden units ( NU ), and epochs ( NE ); dropout rate ( ND ); 
and batch size ( NB ). The value ranges of these five hyperparameters were [1–3], [64–256], 
[10–300], [0–1], and [64–512]. Additionally, three benchmarking DL models were built 
with fixed hyperparameters that were preferred in previous studies, NL = 1 ; NU = 256 ; 
NE = 30 ; ND = 0.4 ; NB = 512 (Frame et  al. 2021; Kratzert et  al. 2018, 2019). These 
benchmarking models were used to evaluate whether the optimized DL models performed 
well in forecasting the dam outflows.

2.5.2  Modeling Setup for Multistep‑Ahead Outflow Prediction

To predict multistep-ahead (1–6  days ahead) dam outflow, we adopted a recursive pro-
cedure to perform the simulation from all models, as shown in Fig.  2c. Specifically, for 
1-day-ahead prediction, the observed Qo at t-1, Qin , H , and Pr at t will be used to predict 
Qo at t . For longer day-ahead predictions, the previously predicted Qo will be used to pre-
dict Qo at the next time step, and the input H for the next step prediction will be updated 
using the water level ( H)–reservoir storage ( S ) curve represented by Eqs. (3) and (4) and 
equations in Fig. 2d.

where g denotes the ‘relation equation’ between H and S detailed in Fig. 2d. The relation 
equation was formed based the third-degree polynomial function. Equation  (4) is in the 
form of a water balance equation that can be used to calculate the reservoir storage (in 
cubic meters) for the next step (the next day) based on the current reservoir storage and 
dam inflow and outflow.

2.6  Evaluation Metrics

To assess the modeling performance, the accuracy metrics Nash–Sutcliffe efficiency 
( NSE ), root mean square error ( RMSE ), and Kling–Gupta efficiency ( KGE ) were chosen. 

(3)Ht+1 = g
(
St+1

)

(4)St+1 = St +
(
Qint − Qot

)
× 86400
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NSE is traditionally used to evaluate the accuracy and power of deterministic models 
(Pushpalatha et al. 2012). RMSE is one of the most commonly used measures for evaluat-
ing the quality of predictions. It shows how far the predictions fall from the true measured 
values using the Euclidean distance. KGE provides a diagnostically interesting decomposi-
tion of the NSE (and thus the mean square error), which facilitates the analysis of the rela-
tive importance of its different components (correlation, bias, and variability). The formu-
las for NSE, RMSE, and KGE can be found in Section S.3 of the SM.

Additionally, an attempt was made to evaluate the prediction results more comprehen-
sively by analyzing 11 hydrological signatures based on observations and simulations from 
three DL models. This investigation can be used to confirm the effectiveness of the model 
in providing simulations that accurately represent hydrological characteristics and assess 
the physical understandability of each DL model. Hydrological signatures are specific 
characteristics or metrics used to describe and quantify various aspects of hydrological 
processes and conditions in watersheds, rivers, or other water-related systems (McMillan 
2020). These signatures are valuable for understanding and analyzing the behavior of water 
resources and the effects of environmental changes, including climate variability, land use, 
and human activities. Hydrological signatures represent various characteristics of hydro-
logical time series, including magnitude, timing, frequency, duration, and rate of change. 
Eleven hydrological signatures were selected (McMillan 2020), including base-flow index 
(BFI), flow autocorrelation (QAC), overall flow variability (QCV), high-flow event dura-
tion (QHD), high-flow event frequency (QHF), high-flow variability (QHV), low-flow 
event duration (QLD), low-flow event frequency (QLF) (Pushpalatha et al. 2011), low-flow 
variability (QLV), mean flow (QMEAN), and slope of the normalized flow duration curve 
(SFDC).

3  Results

3.1  Optimization of the Principal Inputs and Hyperparameters

Hyperparameters and input predictors must be predetermined to construct DL mod-
els; however, their optimal values to maximize the performance of the trained model are 
unknown. Here, the results of the BOA scheme are presented, which can be a guideline for 
other studies to simultaneously tune the hyperparameters and select the sequence lengths 
of candidate input variables. The results that signify the convergence criteria (RMSE) used 
for determining the performance of models are shown in Fig. 3a, b. Figure 4 presents the 
optimal values of five hyperparameters and sequence lengths of input variables. These 
results are subject to variation depending on the DL proposed but are significantly different 
between case studies.

Figure 3a, b shows that the RMSE for each of the three models decreased as the num-
ber of iterations increased and changed very slightly when the number of iterations was 
larger than 25. In other words, if a larger number of iterations is used for optimization, 
the overall accuracy increases; however, at a certain point, the RMSE becomes stably. 
Figure 3a, b confirmed that the hyperparameters and sequence lengths of input variables 
determined with 25 iterations are suitable for training three DL models. Additionally, 
GRU and LSTM outperformed BiLSTM in providing lower RMSE values for two case 
studies. Specifically, at iteration of 25, the RMSEs obtained using GRU and LSTM are 
lower than those using BiLSTM approximately 2 and 3 times for the case studies of 
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Buon Tua Srah and Hua Na, respectively. For both case studies, the RMSEs of GRU and 
LSTM with 25 iterations are equal to or even lower than those of BiLSTM with N of 
100. GRU and LSTM can build an efficient model with an accurate degree even if they 
use a BOA iteration that is four times smaller than that of BiLSTM.

The optimal results of the hyperparameters and sequence lengths of the input vari-
ables are shown in Fig. 4. Generally, the optimal results vary depending on the model 
type and specific case study. Specifically, the optimal hyperparameters of GRU and 
LSTM seem to be more similar when compared with those of BiLSTM (Fig. 4a–e). For 
example, for both case studies, GRU and LSTM involve two layers, whereas BiLSTM 
needs one layer; the number of epochs for both GRU and LSTM is also higher than that 
for BiLSTM (i.e., ~ 255–280 versus 100 for Buon Tua Srah and 280–300 versus 200 
for Hua Na); the dropout rates for GRU and LSTM are smaller than  10−3 and 5 ×  10−3, 
respectively, for Buon Tua Srah and Hua Na, whereas for BiLSTM, the ND that is higher 
than  10−2 is required. Regarding the optimal input predictors for the three models, 
Fig. 4f–i shows that the optimal results are less similar between models. This result con-
firms that the selection of the input variables and the determination of their sequence 
lengths must be optimized concurrently with the corresponding model configuration and 
independently for each different model type. In previous studies, the input variables and 
their sequence lengths were selected mainly from statistical analysis methods. Then, a 
trial-and-error method or an optimization procedure is conducted to obtain the hyperpa-
rameters (model configuration) of a DL model. These procedures do not assure an opti-
mal model because changing the structure afterward will dramatically affect the perfor-
mance of the model and make the previously optimized input dataset no longer optimal.

Fig. 3  a and b present Trace plots of model performances (i.e., RMSE) for two case studies of the three DL 
models (GRU, LSTM, and BiLSTM) trained by BOA with 100 iterations. c and d show results of a percent-
age ‘difference’ metric (Δ) in Eq. (5) computed for four evaluation metrics between three optimal DL mod-
els and three benchmark DL models
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To compare the degree of performance deterioration between optimal DL and bench-
marking models, another percentage “difference” metric ( Δ ) is computed as

where MetricBOA and MetricBench denote the evaluation metrics  (R2, RMSE, NSE, and 
KGE) of the optimal and benchmarking DL models. Metricideal represents the ideal (per-
fect) values of the metrics of  R2, RMSE, NSE, and KGE, that is 1, 0, 1, and 1, respectively. 

(5)Δ = −
||MetricBOA − Metricideal

|| − ||MetricBench − Metricideal
||

||MetricBench − Metricideal
||

× 100

Fig. 4  Results of the optimal hyperparameters and principal input predictors for the three DL models 
(GRU, LSTM, and BiLSTM) for two case studies
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The positive (or negative) values of Δ indicate that the prediction results of the optimal DL 
model are more (or less) accurate than those computed using the benchmarking model. 
The results of Δ for the comparisons between optimal and benchmarking DL models are 
illustrated in Fig.  3c, d. First, the results of Δ between all comparison pairs are mostly 
positive, revealing that the optimal DL models outperform the benchmarking models by up 
to 60% and 90% for both Buon Tua Srah and Hua Na case studies, respectively. For both 
case studies, the four metrics of GRU and LSTM perform better than those of their bench-
marking models by up to 30%–60% and 50%–90%, respectively. The results obtained from 
the optimal BiLSTM model are more accurate than those obtained from the benchmarking 
BiLSTM model at approximately 0%–30% for four metrics over both case studies. In sum-
mary, the optimal DL models using the proposed approach have proven to be superior to 
the benchmarking DL models in providing accurate forecasting results.

3.2  Dam Outflow Predictions

Three DL models trained using optimal hyperparameters and input predictors were applied 
to the test set to predict 1- to 6-day-ahead outflows of the Buon Tua Srah and Hua Da 
reservoirs. The multistep-ahead prediction scheme is described in Section 2.5.2. Overall, 
the performance of three DLs are different regarding the lead times and case studies. In 
this section, the prediction skills of the three DL models are comparatively analyzed, and 
conclusions are drawn from the following two perspectives: the predictive performances 
with different lead times and the ability to replicate the hydrological signatures of the DL 
models.

3.2.1  Predictability Skills According to Lead‑Time Predictions

The predictions of two dam outflows with two different lead times of 1 and 6 days are pre-
sented in Fig. 5. As expected, the forecasting performances of the three models decrease 
with increasing lead times. It is noted that the increasing of prediction error for longer time 
ahead is inevitable. Specifically, in the case study of Buon Tua Srah, the ranges of degrada-
tion of RMSE, NSE, and KGE reported in Fig. 6 at a lead time of 6 days compared with 
those at a lead time of 1 day are approximately 2 to 3, 6–9, and 6–12 times, respectively. 
In the case study of Buon Tua Srah, these ranges are 2 to 3, 2 to 3, and 3 to 4 times. Inter-
estingly, three DL models show comparable results for 1-day predictions with consistent 
hydrograph patterns and with the  R2 values that are higher than 0.8 (Fig. 5). Performance 
differences between models are evident with longer lead times predictions.

Comparing the simulated hydrographs with observations, especially for long lead-time 
predictions, the overall variation and magnitude of the predicted outflow using BiLSTM 
agree more closely with observations than the results produced by other models for the 
case study of Buon Tua Srah. Conversely, for Hua Na outflow, GRU outperforms both 
LSTM and BiLSTM. Quantitatively, at a lead-time prediction of 6 days, BiLSTM has an 
 R2 of 0.48 for the Buon Tua Srah case study, which is higher than the  R2 of 0.31 and 
0.11 produced by GRU and LSTM, respectively. Conversely, for the Hua Na case study, 
GRU has an  R2 of 0.33, which is higher than the  R2 of 0.26 and 0.18 produced by LSTM 
and BiLSTM, respectively. The results produced by RMSE, NSE, and KGE reported in 
Fig.  6 confirm that the predictions from BiLSTM and GRU are closest to the observa-
tions for Buon Tua Srah and Hua Na case studies, respectively. For the first case study, 
BiLSTM has RMSE, NSE, and KGE of 29  m3/s, − 0.15, and 0.73, respectively; all metrics 
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were significantly improved to an RMSE of 35 and 40  m3/s, NSE of − 0.14 and − 1.2, and 
KGE of 0.65 and 0.47 obtained from GRU and LSTM, respectively (Fig. 6a). Conversely, 
for the second case study of Hua Na dam, the prediction results of GRU are more accurate 
(approximately 5% and 8% of RMSE, 20% and 23% of NSE, and 23% and 25% of GRE) 
compared to those of LSTM and BiLSTM, respectively.

3.2.2  Predictability Skills According to Hydrological Signature Replication

Evaluation metrics such as RMSE, NSE, and KGE are applied to assess the general trend 
and similarity of the forecast results with observed data, but they fail to describe the hydro-
logical characteristics. In optimizing the operation of dams, one of the important objec-
tives is to retain the basic hydrological signatures in relation to the natural environment 
and aquatic ecosystem. In this study, 11 important and well-known hydrological signatures 
suggested by McMillan (2020) were used for a standard assessment of the ability of the DL 
model to replicate hydrological characteristics. These 11 signatures represent the character-
istics of streamflow, including magnitude, timing, frequency, duration, and rate of change.

Fig. 5  Comparisons of outflow predictions at LT  = 1-day (a-b) and 6-day (c-d) of three DL models (GRU, 
LSTM, and BiLSTM) with observations (black lines) for two case studies using test set (20% of total data)
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The outflow simulation results of reservoirs with lead times of 1 and 6 days are used to 
calculate 11 hydrological signatures and are compared with those computed from observa-
tions. The detailed results of 11 signatures are shown in Tables S.1 and S.2 in the SM file. 
The results of evaluating the similarity and difference of these signatures between simula-
tions and observations are shown in Fig. 7 via a relative difference (RD) metric computed 
as follows:

where HSSIM and HSOBS denote the hydrological signatures computed from the simulations 
of three models and observations, respectively. The ideal value of RD is 0, which denotes 
the similarity between results from DL models and observations.

The RD results reported in Fig. 7 show that the simulation results of three models with 
a lead time of 1 day can replicate nine hydrological signatures quite well with RDs that are 
mostly close to 0 and < 20% for both case studies, except for QLF and QLD. Conversely, 
for 6 days of lead-time predictions, due to the less accurate predictions as mentioned in 
Section 3.2.1, the hydrological signatures compared with those computed from observa-
tions are less similar with larger RD values, e.g., QCV, QHD, SFDC, QLF, and QLD. For 
both lead-time predictions, the simulation results of three models can present six hydro-
logical signatures that are close to those from the observations, with RDs < 5%, including 

(6)RD =
||HSSIM − HSOBS

||
HSOBS

× 100

Fig. 6  Evaluation metrics (RMSE, NSE, and KGE) of three DL models for 1 to 6-day ahead outflow predic-
tions of the two case studies

414



Data‑Driven Dam Outflow Prediction Using Deep Learning with…

1 3

QMEAN, BFI, QHF, HFD, HFI, and QAC, whereas the ability to replicate QLF and QLD 
is the worst with RDs that varied between 20 and 100%. These two signatures represent 
the frequency and duration of low flows that are greatly influenced by the dam operating 
regimes and are extremely elusive with various uncertainties.

Interestingly, different from Section 3.2.1, where GRU was concluded to be superior to 
both LSTM and BiLSTM, here LSTM provides more accurate hydrological signatures than 
GRU and BiLSTM. Specifically, for Buon Tua Srah dam, the RD values of QLF and QLD 
from LSTM are smaller than those computed from GRU and BiLSTM, i.e., 40% versus 
78% and 99% (for QLF) and 30% versus 41% and 66% (for QLF) (Fig. 7a). Conversely, for 
the Hua Na case study, for most indicators, the RD values of QVC, QLF, and SFDC from 
LSTM are significantly smaller than those computed from GRU and BiLSTM, and other 
indicators have almost comparable values, except for QLD. The aforementioned results 
highlight that using hydrological signatures as evaluation metrics can serve as an effective 
approach for selecting appropriate DL models tailored to specific objectives. The findings 
in Section 3.2 demonstrate that the optimal model is contingent on the specific case study 
and intended model application, for example, to achieve high overall accuracy or reliably 
capture pertinent hydrological characteristics.

Fig. 7  Relative difference of 11 hydrological signatures computed from observation and simulations of 
GRU, LSTM, and BiLSTM with one (a-c) and six (b-d) -day ahead predictions over the test set for two case 
studies
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4  Discussions

4.1  Is the Proposed Framework Necessary in Constructing the DL Model?

This study proposes an optimization framework that uses the BOA to determine the 
optimal inputs and hyperparameters of DL models. The framework and investigation 
of model performance in Section  3 revealed that optimizing the inputs and hyperpa-
rameters of DL models separately is inappropriate. Consequently, the imperative of this 
proposed framework is underscored. First, it provides a global optimization solution 
that considers all interactions between potential inputs and hyperparameters to build the 
best DL model instead of just examining each component as in previous studies (Ali-
zadeh et  al. 2021; Tran et  al. 2021; Zhang et  al. 2018). Second, the proposed frame-
work improves efficiency using the BOA to help the optimization converge faster than 
that using trial-and-error or grid search methods. Additionally, it reduces the amount 
of work required by eliminating the need for tasks such as data correlation analysis and 
providing criteria for selecting inputs.

Additionally, this automatic optimization framework can solve the difficulty of select-
ing inputs when the data have low correlation. Correlation analysis (e.g., cross-correlation 
function, CCF, or partial autocorrelation function) is often preferred to identify the most 
correlated data that are selected for the input of data-driven models (Ahmad and Hossain 
2019; Tran et  al. 2021; Yang et  al. 2017a, b). However, there are many candidate input 
predictors that have very low linear correlations with the target data. It is difficult for mod-
elers to choose the right one, for example, water level or precipitation in Fig. S.1 in the 
SM file with a CCF factor < 0.2. The low correlation does not mean there is no correlation, 
and nonlinear and nonmonotonic relationships are hardly detected with available statistical 
techniques, especially for dam outflow application (Altman and Krzywinski 2015; Good-
win and Leech 2006). The proposed framework eliminates correlation analysis steps, and 
all candidate inputs can be fed into the model and optimized through the BOA. The opti-
mized inputs will be based on the performance of the trained model and not on the correla-
tion between the inputs and target outputs, like in traditional analysis methods.

4.2  Challenges of DL Applications for Dam Outflow Prediction

Although the implementation and analysis of experiments are valid for the presented scope 
of the experimental design, modelers must proceed with caution when this approach is 
extended to more case studies of the dam outflow prediction. In this section, we discuss the 
challenges that should be addressed in DL applications related to dam outflow forecasting 
in future studies. A primary concern is the growing anthropogenic influence on dam oper-
ations, which proves more arduous to comprehend and foresee than natural hydrological 
forcings, particularly under extreme conditions such as flooding or drought. While previous 
studies have demonstrated superior performance of data-driven approaches, including DL, 
compared to conventional non-data-driven methods (Gutenson et  al. 2020; Zhang et  al. 
2018), reservations persist regarding the efficacy of DLs in furnishing realistic forecasts 
under the aforementioned conditions. This concern would be ameliorated given sufficient 
data pertaining to dam operations for model training purposes. However, the perennial 
issue of data paucity and limited data sharing in reservoir operations persists, attributable 
to numerous constraints of a political nature.
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Secondly, a well-established characteristic and challenge of DL and data-driven models 
is the inability to extrapolate beyond the domain encompassed by the training data (Frame 
et al. 2021; Kratzert et al. 2019; Tran et al. 2023a, b; Zhao et al. 2019). Fundamentally, 
DLs possess uniqueness to the particular training data space. Theoretically, this limita-
tion would be surmounted given sufficient training data encompassing even rare extreme 
events. However, comprehensively collecting observational data of exceptional phenomena 
presents difficulties. Recently, Tran and Kim (2022) proposed three strategies to augment 
the predictive capability for extreme events where adequate data is lacking and such events 
deviate substantially from the training distribution. Firstly, high-fidelity samples informed 
by physical relationships or operating guidelines contingent on relevant factors should be 
leveraged to ensure robust learning when training samples are sparse. Data generated per 
governing equations codifying dam operating rules can potentiate physical process com-
prehension in deep learning. Secondly, extrapolation aptitude may be enhanced by expand-
ing the prediction space through incorporating input noise and parameter uncertainty. 
Finally, hybrid models combining deep learning with techniques exhibiting extrapolation 
capabilities warrant exploration.

Finally, it is certain that uncertainties intrinsically persist within all predictions, includ-
ing DL-based dam outflow predictions. Despite substantial progress in DL for hydrological 
modeling, prediction uncertainties from DL architectures have garnered significant atten-
tion in contemporary literature (Fang et  al. 2020; Kasiviswanathan and Sudheer 2012; 
Srivastav et  al.  2007; Tran et  al.  2023). These uncertainties primarily stem from learn-
able model parameters and inputs (Fang et al. 2020). A prevalent technique to represent 
input uncertainty involves injecting noise adhering to prescribed distributions, generating 
an ensemble of perturbed inputs to derive ensemble predictions (Fang et al. 2020; Tran and 
Kim 2022). Conversely, Monte Carlo dropout is preferred for evaluating uncertainties from 
learnable parameters, randomly omitting neural network units to construct an ensemble of 
models with diverse parameters, also used for ensemble prediction (Gal and Ghahramani 
2016).

5  Conclusions

This study investigated the efficacy of three deep learning architectures for daily discharge 
prediction at the Buon Tua Srah and Hua Na dams in Vietnam. The deep learning models 
were coupled with Bayesian optimization to enable efficient hyperparameter tuning and 
input variable selection. Notably, Bayesian optimization simultaneously optimized five 
hyperparameters, input variables, and sequence lengths, expediting model training. The 
key conclusions regarding the utility of Bayesian optimization and performance of the deep 
learning models are summarized as follows.

An optimization framework based on Bayesian optimization with Gaussian processes 
was proposed to concurrently optimize hyperparameters, input variables, and sequence 
lengths for the deep learning models. This framework holistically accounts for interactions 
between potential inputs and deep learning architectures, as parameterized by hyperparam-
eters, thereby determining the optimal input variables, lags, and hyperparameters. Compact 
objective function values were achieved, circumventing discrete optimization of individual 
factors as in prior works and obviating exhaustive trial-and-error. Moreover, the framework 
automatically selects input variables and lags from the provided candidate set, absolving 
manual data analysis and input screening.
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A comprehensive assessment of three deep learning architectures (GRU, LSTM, and 
BiLSTM) was conducted for multi-step dam discharge prediction. Overall, the results 
demonstrated that all models furnish accurate simulations, corroborating the capability for 
multi-step ahead forecasting. However, model rankings depended on performance metrics 
and case studies. The BiLSTM and GRU models achieved the lowest RMSE, NSE, and 
KGE for the Buon Tua Srah and Hua Na dams, respectively. However, the LSTM repli-
cated the most hydrological signatures accurately for both dams, underscoring the need to 
consider modeling objectives during model selection.
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