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Abstract
The current study evaluated the accuracy of four machine learning (ML) models and thirteen 
experimental methods calibrated to estimate reference evapotranspiration (ET0) in arid and 
semi-arid regions. Various scenarios were examined utilizing meteorological data and FAO56-
PM as a benchmark. According to the results, the ML models outperformed the experimental 
methods on both daily and monthly scales. Among the ML models, artificial neural networks 
(ANNs), generalized additive model (GAM), random forest (RF), and support vector machine 
(SVM), respectively, demonstrated higher accuracy on a monthly scale, while ANNs, SVM, 
RF, and GAM exhibited greater accuracy on a daily scale. Notably, ANNs and SVM achieved 
high accuracy even with a limited number of variables. Conversely, RF showed improved 
accuracy with an increased number of variables. Comparing the ML and experimental models 
with equivalent inputs revealed that ANN with inputs similar to Valiantzas-1 performed better 
on a monthly scale, while SVM with inputs akin to Valiantzas-3 showed superior performance 
on a daily scale. Our findings suggest that average temperature, wind speed, and sunshine 
hours contribute significantly to the accuracy of ML models. Consequently, these ML models 
can serve as an alternative to the FAO56-PM method for estimating ET0.

Keywords  Reference evapotranspiration · FAO-56PM · Machine learning · Experimental models

1  Introduction

Efficient management of water resources in the agricultural sector is crucial for mit-
igating water crises (Lu et  al. 2023; Roy et  al. 2023), particularly in arid and semi-
arid regions. Iran allocates over 90% of its water resources to agriculture (Alizadeh and 
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Keshavarz 2005; Fathi-Taperasht et al. 2022). Evapotranspiration (ET) plays a vital role 
in optimizing water demand in agriculture, as more than 90% of the water utilized in 
agricultural ecosystems is lost through ET (Shan et al. 2020; Wang et al. 2019). ET also 
constitutes a basis for various calculations in water resources management as well as in 
the design and operation of irrigation and drainage systems (Feng et al. 2017; Yan et al. 
2023). Accurate estimation of ET at the field level can greatly enhance management 
planning for irrigation water, determining the irrigation cycle, estimating the hydromod-
ule of the network (water demand of crops), and predicting crop yield (Allen et al. 1998; 
Bachour et al. 2016; Anderson et al. 2007; Teuling et al. 2009).

Various factors influence ET variations, a complex physical phenomenon comprising 
multiple nonlinear processes (Jovic et al. 2018; Li et al. 2022; Amani and Shafizadeh- 
Moghadam 2023). Over the years, researchers have proposed two general groups of  
ET measuring techniques: point methods and regional methods. Lysimeter, a point 
method, is used to measure ET directly with no assumptions (Holmes 1984) and is a 
benchmark for calibrating other methods (Liu et  al. 2017). Nevertheless, its limited 
availability, high costs, operational challenges, and environmental impact restrict its 
usage (Fan et  al. 2018; WMO 1963; Scanlon et  al. 1997). As a result, mathemati-
cal models that utilize meteorological data to estimate ET have gained popularity  
(Ferreira et al. 2019), and numerous indirect methods for estimating ET based on influ-
ential factors have been developed (Almorox et al. 2015). The Penman–Monteith (PM) 
model modified by the Food and Agriculture Organization (FAO) is widely used as a 
reference for evaluating the performance and calibration of other ET estimation models 
(Allen et al. 1998).

The FAO56-PM model requires a complete set of meteorological data, comprising air 
temperature (maximum temperature  (Tmax), minimum temperature  (Tmin) and average 
temperature (Tm)), relative air humidity (RH), net solar radiation (Rn), wind speed (Ws), 
atmospheric pressure, and soil heat flux (G). However, the cost of collecting this data is 
considerable not only in developed countries (Chu et al. 2017), but also and most particu-
larly in developing countries. Consequently, reliable data may not be consistently avail-
able over consecutive years (Bellido-Jiménez et al. 2021; De Paola and Giugni 2013; Eccel 
2012). Therefore, preferred over the FAO56-PM model are alternative experimental meth-
ods, the most common of which are categorized as temperature-based methods that utilize 
Tmax and Tmin (Hargreaves and Samani 1985; Hargreaves et al. 1985; Blaney and Criddle 
1962), solar radiation-based methods that use the difference between Rn, G, and latent heat 
(λ) (Abtew 1996; Irmak et al. 2003; Makkink 1957; Priestley and Taylor 1972), mass trans-
fer-based methods that employ Dalton’s law and the concept of water vapor flux transfer 
(Penman 1948; WMO 1963), and hybrid methods that combine various parameters such as 
solar radiation(Rs), T (Tm, Tmax, Tmin), and RH (Doorenbos and Pruitt 1977; Valiantzas  
2013a, b). These methods are often complex, nonlinear, influenced by random factors, 
and rely on multiple assumptions. Each method is optimized based on the specific charac-
teristics and unique weather conditions of the area under study (Küçüktopcu et al. 2023). 
Experimental methods for measuring ET, however, are limited to field or catchment-level 
applications. Furthermore, their results are dependent on time and location, hindering gen-
eralization of the findings to other areas. The need to calibrate equation coefficients and 
the inherent uncertainty associated with these methods have further contributed to their 
limitations (Islam and Alam 2021; Kisi et al. 2015).

The inherent nonlinearity and instability of meteorological variables makes challenging 
the complex phenomenon of ET estimation. Consequently, developing a precise physics-
based formula for making accurate estimations is difficult. Thus, researchers have recently 
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turned their attention to machine learning (ML) as an alternative approach for ET esti-
mation (Krishnashetty et  al. 2021). Numerous studies have demonstrated that ML tech-
niques such as artificial neural networks (ANNs), support vector machines (SVMs), and 
random forest (RF) outperform empirical and semi-empirical methods in estimating ref-
erence evapotranspiration (ET0). ML methods offer advantages such as fast computation, 
high accuracy, and strong generalization capability (Elbeltagi et al. 2021; Feng et al. 2016; 
Mousavi et al. 2015; Abd-Elaty et al. 2023). Kumar et al. (2002) introduced an ANN for 
calculating ET0 that exhibited accuracy comparable to the FAO-56 PM method. Shi et al. 
(2020) investigated daily ET0 in southeastern Australia and demonstrated the superior per-
formance of RF over empirical equations. Rahimi Khoob (2008) developed an ANN model 
based on the Hargreaves method that used monthly data from the Khuzestan Plain of Iran, 
and it outperformed the Hargreaves model. Tabari et al. (2012) simulated ET0 in Iran uti-
lizing several ML methods, all of which outperformed the Blaney-Criddle, Hargreaves, and 
Jensen Haise models. Landeras et  al. (2018) found that ANN models outperformed the 
Hargreaves method when using the same inputs. Rashid Niaghi et al. (2021) simulated ET0 
in a semi-humid climate using gene expression programming (GEP), SVM, ML, and RF 
methods with empirical equations as inputs. They found that the combination of radiation-
based models and the RF model yielded the best performance results across all stations.

Evaluating ML models to reduce input data is crucial because of the significance of 
data availability in estimating ET. Wen et al. (2015) employed SVM and ANN to model 
ET0 using limited meteorological data in arid regions of China and compared their results 
with experimental models like those of Priestly-Taylor and Hargreaves. They found that 
SVM performed best when using Tm, Rs, and Ws data. Mohammadrezapour et al. (2018) 
investigated the performance of SVM, adaptive neuro-fuzzy inference system (ANFIS), 
and GEP utilizing five combinations of inputs to simulate ET0 in southeast Iran from 1970 
to 2010 and found that SVM performed superiorly with inputs consisting of Tm, RH, Ws, 
and sunshine hours (Sshn). Ferreira et al. (2019) evaluated the performance of ANN and 
SVM models in estimating ET0 across Brazil using either Tm and RH data or T (Tmin, 
Tm, Tmax) alone; both models demonstrated acceptable accuracy. Bellido-Jiménez et al. 
(2021) developed various neural intelligence methods, including MLP, generalized regres-
sion neural network (GRNN), extreme learning machine (ELM), SVM, and RF, to estimate 
ET0 using temperature-based data as the only input in southern Spain. They concluded that 
ELM performed superiorly in all scenarios and locations. In general, ML models using 
fewer inputs exhibit comparable performances to the FAO-56PM model and outperform 
experimental methods.

Although ML models excel at unraveling intricate relationships, their effectiveness 
as data-driven models depends on the careful selection of variables, data quality, and 
the optimization of model parameters. Determining these parameters, however, typically 
depends on user expertise and the nature of the input data. In ET estimation, one approach 
for selecting ML variables is to align them with the inputs used in experimental methods. 
Despite numerous studies having explored ET estimation using different variables, few 
have compared ML models to experimental methods for estimation accuracy, identifica-
tion of important variables, and the generalizability and stability of results. In the current 
study, 13 experimental methods and four ML models were examined to estimate ET0 in a 
watershed located in southwestern Iran. The study objectives were: 1) to compare the accu-
racy of ML and experimental models with similar inputs, 2) to assess the accuracy of ML 
models compared to the FAO56-PM model using minimal input data, and 3) to identify the 
variables that influence ET.
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2 � Material and Methods

2.1 � General Methodology

Figure 1 depicts a flowchart illustrating the primary steps of this study. Initially, annual 
precipitation was processed to identify wet, drought, and normal years. Next, meteorolog-
ical data for these periods were gathered and utilized as input for estimating ET0 using 
FAO-56PM, experimental models, and ML models. The results were then assessed using 
three indices: R2 (coefficient of determination), RMSE (root mean square error), and MAE 
(mean absolute error).

2.2 � Study Area

The current study considered the Karkheh Basin located in the southwest of Iran. Cover-
ing an area of 51,000 km2, the basin originates from the Zagros mountain range, flows 
into Horul Azim (Fig. 2), and boasts elevations varying from 3626 (m.a.s.l) in upstream 
regions to -8 (m.a.s.l) in downstream areas. The upper parts of the basin are character-
ized as semi-arid, while the southern part is classified as dry. Average precipitation in the 
region measures 474 mm and daily Tm fluctuate between -13.7 and 45.9 °C. Dam con-
struction and the expansion of agricultural lands, particularly irrigated areas, have been 
an enduring characteristics of this basin.

2.3 � Wet, Drought, and Normal Year Selection

Meteorological data from 15 stations within the Karkheh Basin were procured from the 
National Meteorological Organization of Iran. Table S1, provided in the supplementary file, 
provides the main characteristics of the data. Precipitation data for the years 2000 to 2021 
were analyzed. Average annual precipitation (± SD) was calculated and the mean ± 1SD 
was derived. Wet and drought years were defined as average annual precipitation exceed-
ing the mean ± 1SD average precipitation lower than the mean-1SD, respectively; those 

Fig. 1   General Methodology
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years falling within these two intervals were considered normal (Chow et al. 1971; McCuen 
2016). Thirteen stations reported drought conditions in 2019, eight experienced normal con-
ditions in 2020, and 12 encountered drought in 2021.

Fig. 2   Study area and its location in Iran
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2.4 � ET Estimation Models

2.4.1 � FAO56‑PM

The effectiveness of 13 experimental and four ML models was evaluated using the PM 
equation, specifically the FAO56-PM model (Eq. 1), as the benchmark and calculated as 
(Allen et al. 1998):

where ET0 denotes reference evapotranspiration (mm/day), Rn is the net solar radiation at 
the crop surface (MJ m−2 d−1), G represents soil heat flux (MJ m−2 d−1) (which is typically 
ignored for daily estimates), Ta indicates the daily mean air temperature (°C), u2 represents 
the wind speed at a height of 2 m (m s−1), es signifies the saturation vapor pressure (kPa), 
ea represents the actual vapor pressure (kPa) (obtained using maximum and minimum rela-
tive humidity), ∆ indicates the slope of the vapor pressure curve (kPa ºC−1), and γ denotes 
the psychrometric constant (kPa ºC−1).

2.4.2 � Experimental Methods

The 13 experimental models utilized to estimate ET0 were the Hargreaves-Samani and 
Blaney-Criddle (temperature-based); Penman and WMO (mass transfer-based); Makkink, 
Priestley-Taylor, Jensen-Haise, Abtew, and Irmak (radiation-based); and the Doorenbos-
Pruitt, Valiantzas-1, Valiantzas-2, and Valiantzas-3 (combined approaches) models. These 
models were specifically developed to cater to diverse climatic conditions and geographi-
cal regions. Table 1 presents the equations and references for these experimental models.

2.4.3 � Machine Learning Models

Random Forest  RF, a tree-based model introduced in 2001 (Breiman 2001), was devel-
oped using a base learner called CART which has the capability to model nonlinear and 
complex patterns (Hastie et al. 2009). Unlike CART which can yield significantly different 
trees with minor variations in input data, RF employs the bootstrapping sampling method 
and generates multiple data samples using replacements from the original dataset. Each 
sample is then used to train a CART model, and the final output is determined by aver-
aging the results. This ensemble approach produces more stable outcomes than CART 
(Carter and Liang 2019).

Artificial Neural Networks  Multiple ANNs with different architectures have been developed 
for various applications; among them, the multilayer perceptron is widely utilized. Regard-
less of the architecture, a learning algorithm is employed to discover the relationships between 
independent and dependent variables. The learning process entails adjusting the weights to 
minimize prediction error. During the ANN training phase, the learning algorithm optimizes 
the weights by reducing the prediction error through a repetitive procedure called backpropa-
gation, which computes the difference between the predicted and the actual output of the net-
work (Rumelhart et al. 1986). The direction and magnitude of the weight adjustments are deter-
mined by the partial derivative of the error with respect to each weight (Hecht-Nielsen 1992).
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Support Vector Machine  SVM performs well when the available training data is limited (Mantero  
et  al.  2005). This algorithm maps each data instance onto an n-dimensional space, where the 
dimensions represent the features or independent variables, and then separates them using a line or 
plane (Cortes and Vapnik 1995). In certain cases, separation is improved by transforming the sam-
ples to a higher-dimensional space using kernels. Commonly employed kernels include sigmoid, 
linear, radial basis function (rbf), and polynomial ones. The support vector acts as an optimal 
boundary that effectively separates the data groups, aiming to maximize the margin with the data.

Generalized Additive Model  GAM is suitable for situations in which the relationship between 
independent variables and the response variable is complex and non-linear, such as in environ-
mental processes. GAM is a non-parametric extension of a generalized linear model (Hastie 
and Tibshirani  1990)  that offers explicit  insight into the relationships between variables. It 
allows the response curve to be determined by the observed data utilizing splines, i.e., math-
ematical functions that offer flexibility in fitting intricate curves to the data. Splines divide the 
curve into smaller, simpler segments, enabling the representation of the non-linear relationship 
between independent variables and the response variable (Hastie and Tibshirani 1990).

2.4.4 � Variable Selection for ET Estimation

The efficacy of ML models can be affected by the existence of collinearity among independent 
variables. In this research, collinearity among variables was examined daily and monthly and 
input variables were selected using variable clustering and variance inflation factor (VIF). Vari-
able clustering is advantageous in feature selection, as it allows for the identification of representa-
tive variables within each cluster, which can then be chosen for subsequent analysis or modeling 
purposes. VIF quantifies the degree of multicollinearity; a VIF value of 1 indicates no collinearity, 
while a value exceeding 5 is considered indicative of high multicollinearity (O’brien 2007).

2.5 � Model Evaluation

RMSE, MAE, and R2 (Eqs. 2–4) were used to assess the performance of both experimental 
and ML models. RMSE indicates an overall measure of the error, MAE indicates the aver-
age absolute error, and R2 indicates the relationship between the observed and predicted val-
ues. R2 should be as close to one as possible, and RMSE and MAE should be close to zero.

where Pi is the predicted value of ET0, Pavg represents the predicted mean ET0, Qi denotes 
the observed value, Qavg shows the mean observed ET0, and n is the number of data.

(2)RMSE =

√
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3 � Results and Discussion

3.1 � Evaluation of Experimental Models

Different experimental models based on FAO56-PM were assessed using daily and monthly 
data for normal, drought, and wet years. The combined models exhibited higher accuracy 
on both daily and monthly scales (Figs. 3 and 4). Conversely, the mass transfer-based mod-
els displayed low accuracy. The temperature-based Blaney-Criddle method showed supe-
rior accuracy on both daily and monthly scales, potentially because of its incorporation of 
Ws in the calculation of constants a and b. Among the radiation-based models, the Abtew 
method (RMSE: 0.78, R2: 0.93 and MAE: 0.57) and Priestley-Taylor (RMSE: 1.57, R2: 
0.90 and MAE: 1.17) achieved the highest and lowest accuracy, respectively on a monthly 
scale. On a daily scale, Priestley-Taylor was the most accurate (RMSE: 1.41, R2: 0.79 and 
MAE: 1.02), whereas the Jensen-Haise model was the least accurate (RMSE: 8.81, R2: 
0.88 and MAE: 6.85). In the combined models, the Valiantzas-3 method demonstrated 

Fig. 3   Experimental models for estimating ET0 at the daily interval
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the highest accuracy, while Doorenbos and Pruitt’s method exhibited the lowest accuracy 
on both daily and monthly scales. According to Fig.  4, the Valiantzas-3 and -1, Abtew, 
Makkink, and Jensen-Haise models showed higher monthly accuracy compared with other 
methods, while the Valiantzas-3, Blaney-Criddle, Valiantzas-2, and Priestley-Taylor mod-
els showed the most accuracy on a daily scale. The experimental models performed differ-
ently across various time scales. Because Valiantzas-3 and Valiantzas-1 required Ws and 
RH, the Abtew and Makkink models which require the least input were selected for the 
monthly scale. The Valiantzas-2 and Priestley-Taylor models were found to be most suit-
able for the daily scale, because Valiantzas-3 and Blaney-Criddle models incorporate Ws 
in their inputs.

Figure  4 presents a performance comparison between the FAO56-PM and various 
experimental models on the daily scale. As illustrated, the Valiantzas-3, Blaney-Criddle, 
Valiantzas-2, and Priestley-Taylor models exhibited superior performances for daily ET0 
estimation compared to the other models for daily, and thus, the Valiantzas-2 and Priestley-
Taylor models were considered the optimal choices. Figures 3 and 4 show the results from 
evaluations of 13 experimental models on daily and monthly scales, respectively. Among 

Fig. 4   Experimental models for estimating ET0 at the monthly interval
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these models, the Valiantzas-3, Valiantzas-1, and Abtew models demonstrated superior 
performances on the monthly scale. The Abtew model utilizes RS and Tmax as inputs, 
while the Valiantzas-1 model incorporates Rs, Tm, and RH as inputs. As the model requir-
ing the minimum monthly ET0 data, Abtew was deemed more suitable. It also benefits 
from a simpler equation.

3.2 � Variable Selection for Machine Learning Models

Based on VIF analysis, Ws, vapor-pressure deficit (VPD), and Sshn demonstrated the 
least collinearity (Table 2); however, why temperature was excluded from the daily and 
monthly scales is inexplicable, considering its crucial role in ET estimation. The results 
were further investigated using the variable clustering method, and Fig. 5 presents the 
outcomes, where one variable from each group falling below the 0.8 dashed line should 
be chosen. Tm was selected from the group of variables (Tsoil, Tm, Tmax, Tmin), 
because Tmin and Tmax only represent specific times of the day and cannot adequately 
capture the Tm for water consumption throughout the entire day. Furthermore, meas-
uring Tmin and Tmax may require specific instruments that are not universally avail-
able. Average relative humidity (RHm) was chosen from the group of relative humid-
ity variables (RHm, minimum relative humidity (RHmin), maximum relative humidity 
(RHmax)), because it reflects the capacity of air to hold water vapor, and higher relative 
humidity indicates a closer proximity to saturation, resulting in lower ET. Rhmax rep-
resents the maximum relative humidity recorded during the day or month, leading to a 
lower estimation of ET. Conversely, RHmin causes overestimation. VPD was selected 

Table 2   Variable selection using VIF

VIF Analyzis

Removed Daily Monthly

thresh 10 Tmax, Tm, RHm Tm, Tmax, Tmin, RHm
5 Tm, Tmax, Tmin, RHm Tm, Tmax, Tmin, RHm, Sshn
3 Tm, Tmax, Tmin, RHm, Rhmin Tm, Tmax, Tmin, RHm, Sshn

Fig. 5   Variable selection using the variable clustering method
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from the group (VPD and mean pressure (Pm)), as it directly indicates the atmosphere’s 
ability to accept water vapor. Based on theoretical considerations and the results of both 
methods, Tm, RHm, VPD, Sshn, and Ws were chosen for modeling ET estimation.

Apart from selecting variables statistically, the availability, low cost, and measurement 
accuracy of each variable must also be considered. Therefore, various combinations were 
explored for ET estimation (Table  3). Furthermore, to compare the outputs of the ML 
models and experimental methods, the input variables of experimental methods were also 
examined to be used as input for ML models.

3.3 � ML Models for ET Estimation

The current study assessed the use of RF, SVM, ANN, and GAM models for estimating 
ET using different combinations of input variables. The findings are presented in three 
sections: models utilizing input data similar to the FAO56-PM, models employing diverse 
input combinations, and models incorporating inputs similar to the experimental methods.

3.3.1 � ML Models for ET Estimation Using the Same Input as FAO56‑PM

Figure  6 shows the performance comparison of RF, SVM, ANN, and GAM models on 
daily and monthly scales using the same inputs as the FAO56-PM model. As seen, all 

Table 3   Combinations of input 
variables for ET estimation using 
ML models

NO Variabel NO Variabel

1 Tm, Ws 7 Tm, Ws, Sshn, VPD
2 Tm, RH 8 Tm, Sshn, RHm, VPD
3 Tmax, Tmin 9 Tm, RHm, Ws, VPD
4 Tm,Ws, Sshn 10 Ws, Sshn, RHm, VPD
5 Tm, Ws, RHm 11 Tm, Ws, Sshn, RHm, VPD
6 Ws, VPD, Sshn 12 All Variabels

Fig. 6   ET estimation using the ML models A: ANN daily, B: GAM daily, C: RF daily, D: SVM daily, E: 
ANN monthly, F: GAM monthly, G: RF monthly, and H: SVM monthly
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models achieved high accuracy with performances similar to that of the FAO56-PM model. 
Nevertheless, ML models required a significantly longer computational time than the 
FAO56-PM model using software such as CropWat or Macro Excel. All ML models were 
executed in less than a minute, and the most accurate models for monthly and daily scales 
were ANN and SVM, respectively.

3.3.2 � ML Models for ET Estimation Using Different Input Combinations

Figure 7 illustrates the results of ML models utilizing various combinations of inputs as 
presented in Table 4. Overall, both R2 and RMSE values improved as more inputs were 
included, with the ANN model consistently outperforming other models across most 
combinations. ANN, GAM, RF, and SVM, respectively, exhibited higher accuracy when 
predicting on a monthly scale. When estimating on the daily scale, however, ANN, 
SVM, RF, and GAM were respectively more precise.

In terms of two-variable combinations, the ANN model incorporated  Tm and Ws 
and demonstrated the highest accuracy for daily predictions. For monthly predictions, 
the SVM utilizing Tm and Ws as well as the GAM employing Ws and VPD exhibited 
superior accuracy. These findings suggest the importance of Ws in estimating ET. By 
adding Sshn to the Tm and Ws, an accuracy very close to that of the models with all 
inputs was achieved by SVM on the monthly scale and ANN on the daily scale. Models 
using four variables achieved similar accuracy to models using all variables. Among 
different combinations, adding RH or VPD had an equivalent effect on the combination 
set of Tm, Ws, and Sshn, which is in line with the findings of Mohammadrezapour et al. 
(2018). Furthermore, by introducing Sshn to the Tm and Ws variables in the subsequent 
combination, a level of accuracy comparable to that of models employing all inputs was 
achieved. The SVM and ANN models displayed greater accuracy for monthly and daily 
predictions, respectively.

To summarize, ANN and SVM demonstrated superior performances when utilizing 
a smaller number of variables, whereas RF exhibited better results when incorporat-
ing a larger number of variables. Tm, Ws, and Sshn were identified as influential fac-
tors in enhancing the accuracy of the ML models. Consequently, models incorporating 
these three inputs can serve as a viable alternative to the FAO-56PM method. Fan et al. 
(2019) discovered that including solar radiation further improved the accuracy of the 
models, and Pandey et al. (2016) demonstrated that models utilizing Ws data achieved 
higher levels of accuracy.

3.3.3 � ML Models for ET Estimation Using the Same Input as Experimental Models

The findings of a comparison between ML models and experimental methods using 
the same input variables showed that ML models surpassed all experimental models in 
accuracy for both daily and monthly scales, as shown in Table 5. Specifically, the ANN 
employing identical inputs as Valiantzas-1 demonstrated a superior performance on the 
monthly scale, while the SVM utilizing the same inputs as Valiantzas-3 exhibited better 
results on the daily scale. As mentioned in the preceding section, the Valiantzas-2 and 
Priestley-Taylor models were determined to be appropriate for daily scale estimations, 
while the Abtew model was found to be suitable for monthly scale estimations. Among 
the ML models, the SVM aligned with the Priestley-Taylor model and the RF aligned 
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Fig. 7   Accuracy of ML models for ET estimation using different input combinations
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Table 4   Accuracy of the ML models with variables similar to the experimental models

Models Models Input R2 RMSE MAE R2 RMSE MAE
Monthly Daily

Temperature-based
Hargreaves–Samani Ra, Tm, Tmax, Tmin 0.94 7.42 6.36 0.85 7.16 6.07
RF Tmax, Tmin, Tm 0.90 0.78 0.6 0.83 1.26 0.94
SVM Tmax, Tmin, Tm 0.93 0.67 0.64 0.83 1.24 0.93
ANN Tmax, Tmin, Tm 0.93 0.65 0.51 0.84 1.20 0.9
GAM Tmax, Tmin, Tm 0.92 0.69 0.52 0.83 1.23 0.93
Blaney-Criddle 0.99 5.22 4.05 0.85 1.39 1.08
RF Ws, Sshn, Tm, RHmin, elev 0.98 0.38 0.27 0.97 0.51 0.35
SVM Ws, Sshn, Tm, RHmin, elev 0.99 0.30 0.29 0.97 0.49 0.34
ANN Ws, Sshn, Tm, RHmin, elev 0.98 0.32 0.22 0.97 0.49 0.34
GAM Ws, Sshn, Tm, RHmin, elev 0.97 0.39 0.29 0.94 0.71 0.51
Radiation-based
Makkink Rs, T 0.96 0.99 0.66 0.82 1.95 1.34
RF Sshn, Tm, pm 0.96 0.53 0.4 0.89 0.99 0.71
SVM Sshn, Tm, pm 0.96 0.52 0.46 0.88 1.03 0.74
ANN Sshn, Tm, pm 0.95 0.58 0.4 0.89 1.00 0.73
GAM Sshn, Tm, pm 0.95 0.52 0.45 0.88 1.03 0.75
Jensen–Haise Rs, T 0.94 8.86 6.71 0.88 8.81 6.85
RF Sshn, Tm 0.93 0.64 0.48 0.84 1.21 0.89
SVM Sshn, Tm 0.94 0.61 0.49 0.86 1.24 0.84
ANN Sshn, Tm 0.94 0.61 0.46 0.87 1.20 0.82
GAM Sshn, Tm 0.94 0.62 0.47 0.86 1.11 0.89
Priestley–Taylor Rn, T 0.91 1.57 1.18 0.79 1.41 1.02
RF Sshn, Tm, pm, Tmax, Tmin, RHm 0.95 0.55 0.4 0.92 0.86 0.61
SVM Sshn, Tm, pm,Tmax, Tmin, RHm 0.96 0.47 0.46 0.89 0.97 0.62
ANN Sshn, Tm, pm, Tmax, Tmin, RHm 0.95 0.55 0.36 0.90 0.93 0.67
GAM Sshn,Tm, pm, Tmax, Tmin, RHm 0.96 0.49 0.37 0.89 0.92 0.71
Abtew Rs, Tmax 0.93 0.78 0.57 0.82 2.76 1.14
RF Tmax, Sshn 0.92 0.71 0.52 0.83 1.27 0.94
SVM Tmax, Sshn 0.93 0.67 0.53 0.85 1.18 0.87
ANN Tmax, Sshn 0.93 0.66 0.51 0.85 1.15 0.85
GAM Tmax, Sshn 0.93 0.67 0.51 0.85 1.17 0.87
Irmak Rs, T 0.94 1.12 1.26 0.86 2.05 1.45
RF Tm, Sshn 0.93 0.64 0.48 0.84 1.21 0.89
SVM Tm, Sshn 0.94 0.61 0.49 0.86 1.13 0.84
ANN Tm, Sshn 0.94 0.61 0.46 0.87 1.10 0.82
GAM Tm, Sshn 0.94 0.62 0.47 0.86 1.11 0.83
Mass transfer-based
Penman Ws, es-es 0.89 8.11 7.13 0.05 4.17 17.36
RF Ws, VPD 0.89 0.87 0.65 0.18 2.86 2.28

SVM Ws, VPD 0.88 0.86 0.63 0.27 2.64 2.13
ANN Ws, VPD 0.89 0.82 0.61 0.28 2.60 2.15
GAM Ws, VPD 0.94 0.59 0.45 0.27 2.60 2.16



1936	 S. Amani et al.

1 3

with the Abtew model demonstrated superior accuracy compared to the other models. 
Notably, both of these models relied on radiation as a key input. These findings cor-
respond with those of similar studies conducted by Heramb et  al. (2023), Ünes et  al. 
(2020), and Pendey et al. (2016), in which radiation-based models consistently demon-
strated better performances.

Extensive research has consistently demonstrated the superior performance of ML 
models over empirical methods, a trend that was also observed in the present study. For 
example, Salam et al. (2020) reported the superiority of various ML models over empiri-
cal models  (e.g., Ritchie, Thornthwaite, and Valiantzas) in predicting ET0. Mehdizadeh 
et al. (2017) showed that ML models (SVM, GEP, and MARS) consistently outperformed 
empirical methods in estimating ET0 across 44 meteorological stations in Iran. Addition-
ally, Alazba et al. (2016) employed the temperature-based Hargreaves model and the radi-
ation-based Priestley-Taylor model to estimate ET0 using local meteorological data; they 
found that the ML-based model yielded the most accurate results among all the approaches 
considered.

Table 4   (continued)

Models Models Input R2 RMSE MAE R2 RMSE MAE
Monthly Daily

WMO Ws, es-ea 0.27 2.62 1.99 0.16 3.58 2.8
RF Ws, VPD 0.89 0.87 0.65 0.18 2.86 2.28
SVM Ws, VPD 0.88 0.86 0.63 0.27 2.64 2.13
ANN Ws, VPD 0.89 0.82 0.61 0.28 2.60 2.15
GAM Ws, VPD 0.94 0.59 0.45 0.27 2.60 2.16
Combined
Valianlzas1 Rs, T, RH 0.96 0.55 0.4 0.89 1.39 0.97
RF Tm, Sshn, RHm 0.98 0.33 0.44 0.88 1.04 0.75
SVM Tm, Sshn, RHm 0.99 0.62 0.47 0.88 1.04 0.75
ANN Tm, Sshn, RHm 0.99 0.25 0.44 0.88 1.02 0.74
GAM Tm, Sshn, RHm 0.98 0.34 0.46 0.88 1.06 0.76
Valianlzas2 Rs, T, Tmin 0.95 0.53 0.37 0.87 1.33 0.9
RF Tm, Tmin, Sshn 0.93 0.64 0.5 0.87 1.02 0.81
SVM Tm, Tmin, Sshn 0.93 0.65 0.51 0.87 1.10 0.81
ANN Tm, Tmin, Sshn 0.94 0.59 0.47 0.88 1.06 0.78
GAM Tm, Tmin, Sshn 0.93 0.63 0.46 0.87 1.09 0.82
Valianlzas3 Rs, T, RH, Ws 0.98 1.27 0.97 0.96 1.24 0.95
RF Tm, RHm, Ws, Sshn 0.94 0.61 0.27 0.97 0.52 0.36
SVM Tm, RHm, Ws, Sshn 0.95 0.54 0.29 0.96 0.53 0.37
ANN Tm, RHm, Ws, Sshn 0.98 0.32 0.23 0.97 0.52 0.36
GAM Tm, RHm, Ws, Sshn 0.97 0.43 0.32 0.94 0.74 0.54
Doorenbos and Pruitt Rn, Ws, VPD, 0.68 14.39 11.31 0.47 11.99 9.49
RF Sshn, Tm, pm, RHm, Ws, VPD 0.97 0.37 0.27 0.97 0.48 0.33
SVM Sshn, Tm, pm, RHm,Ws, VPD 0.97 0.44 0.29 0.97 0.47 0.33
ANN Sshn, Tm, pm, RHm, Ws, VPD 0.98 0.29 0.21 0.97 0.48 0.33
GAM Sshn, Tm, pm, RHm, Ws, VPD 0.97 0.35 0.27 0.94 0.71 0.52
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3.4 � Variable Importance in ML Models for ET Estimation

Figure 8 illustrates the ten most important variables in ML models for estimating daily 
and monthly ET0. In the ANN model, Tm was the  most important for both daily and 
monthly scales, followed by Ws for the monthly scale and RHm for the daily scale. In the 
GAM model, variables such as Pm, VPD, and Tm had the most substantial impact on both 
temporal scales, with Ws being the third influential factor for the daily scale. As for the 
RF model, Ws emerged as the most important for both scales, followed by Sshn for the 
daily scale and Pm for the monthly scale. Similarly in the SVM model, temperature exhib-
ited the greatest effect on both temporal scales. In the daily scale, the three primary vari-
ables were Tm, Tmin, and Tmax, which aligns with the findings of Wu et al. (2019), who 
studied eight ML models with daily temperature and precipitation data from 14 differ-
ent weather stations in China. The researchers recommended SVM models be used with 
temperature data only to predict daily ET0 throughout China. Additionally, Yunfei et al. 
(2023) identified temperature and humidity as the most important factors in estimating ET 
in arid regions.

In monthly estimations, the variable Tm appeared most frequently with four repetitions, 
followed by Ws and Pm, each with two repetitions. Additionally, Tmax, Sshn, and precipi-
tation 24 hour (P24) were deemed important, each with one repetition. For daily scale esti-
mations, Tm was the most frequently repeated variable, followed by Tmax and Ws. Tmin, 
Sshn, and VPD variables were also considered important. Overall, it can be concluded that 
Tm, Ws, VPD, and Sshn had the most important impact on forecasting, highlighting their 
importance in ET estimation.

Fig. 8   Variable importance for ET estimation using ML models
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4 � Conclusion

The present study assessed the accuracy of thirteen experimental methods and four ML mod-
els for daily and monthly ET0 estimation during drought, wet, and normal years and compared 
their performances against the FAO56-PM method, which served as a benchmark model. The 
study aimed to identify those variables that impact ET0 estimation notably. The experimental 
models were categorized into four groups, among which the combined methods exhibited the 
best performances, while methods based on mass transfer demonstrated weaker performances. 
Notably, the performance of the experimental models varied across different time intervals. 
Consequently, the Valiantzas-3, Valiantzas-1, Abtew, Makkink, and Jensen-Haise models were 
identified as more suitable for monthly scale ET0 estimation. For daily scale ET0 estimation, 
however, the Valiantzas-3, Blaney-Criddle, Valiantzas-2, and Priestley-Taylor models were 
considered more appropriate. For cases with minimal input, the Abtew and Makkink mod-
els are recommended for monthly scale, while the Valiantzas-2 and Priestley-Taylor models 
are suggested for daily scale estimations. Nevertheless, the ML and FAO-56PM models per-
formed similarly and exhibited comparable accuracy on both daily and monthly scales. Overall, 
SVM showed higher accuracy at the monthly scale, while ANN performed better at the daily 
scale. Furthermore, both ANN and SVM achieved better accuracy when using fewer variables, 
whereas RF had greater accuracy with a larger number of variables.

In sum, our findings indicate that Tm, Ws, and Sshn contribute positively to enhancing 
the accuracy of ML models, and ML models can serve as an alternative to the FAO56-PM 
method. Additionally, with similar inputs, ML models outperformed experimental meth-
ods in both daily and monthly scales. In general, Tm, Ws, VPD, and Sshn were found to 
have the most significant influence on predicting ET0. The present study was conducted 
in arid and semi-arid regions of Iran. Therefore, it is recommended this research be repli-
cated under different climatic conditions to assess the applicability and performance of this 
research in diverse regions.
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