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Abstract
Evolutionary algorithms (EAs) have been used extensively for the optimal design of water 
distribution networks (WDNs). There is evidence in the literature that search space reduc-
tion is highly effective. However, practical methods that do not introduce extra computa-
tional requirements are lacking. A dynamic search space reduction methodology is pro-
posed to search the entire solution space without eliminating any part of the search space 
beforehand. The proposed methodology works on the information explored during the 
execution of the algorithm. Further, a self-adaptive penalty is suggested which is based on 
both flow and pressure deficits instead of only pressure deficit and is obtained using pres-
sure dependent analysis. In this study, the methodology is demonstrated using a Genetic 
Algorithm (GA). The effectiveness of the methodology is demonstrated on the Ramnagar 
Network of Nagpur City, India and two benchmark problems from the literature. The pro-
posed methodology resulted in a substantial reduction in the computational efforts and pro-
vided nine improved solutions as compared to the best solution available in the literature 
for one of the networks. The techniques proposed are generic and can be incorporated in 
other EAs.

Keywords Combined flow and pressure deficit penalty · Genetic Algorithm Optimization · 
Pressure dependent analysis · Water distribution network · Dynamic search space reduction 
(DSSR) · Self-adaptive penalty function

1 Introduction

Water distribution network (WDN) consumes 60–70% of the total outlay of a water supply 
project (Walski et al. 2003; Sarbu and Tokar 2018); thus, an efficient WDN design method-
ology is required that reduces its cost through optimization. Till the 1990s, researchers sug-
gested the use of various mathematical programming-based techniques to obtain the least-
cost design of WDNs. These techniques called “deterministic search techniques” begin the 

Highlights 
• A novel dynamic search space reduction methodology increases the efficiency of GA.
• New superior solutions achieved for a benchmark network.
• The proposed methodology is generic and can be used with other EAs.

Extended author information available on the last page of the article

http://orcid.org/0009-0000-2979-6872
http://orcid.org/0000-0002-4129-1671
http://orcid.org/0000-0002-6098-0595
http://orcid.org/0000-0001-8001-2295
http://orcid.org/0000-0003-3741-7689
http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-023-03648-0&domain=pdf


64 L. Gangwani et al.

1 3

search with a solution in the search space and progress to a better solution in an iterative 
manner. Such searches frequently result in a local optimum solution (Bhave 2003).

In the last two to three decades, several evolutionary algorithms (EAs) have been devel-
oped that starts with several initial randomly selected solutions to optimize an objective 
function by exploiting the search space. These methods are inspired by the biological or 
other natural phenomenon and use computational methods based on them for searching the 
entire search space and terminates usually when sufficient search is made. It is observed 
that evolutionary techniques have better capacity to reach to global optimal solution and 
provides several near optimal solutions. These algorithms have been reviewed and com-
pared from time to time by various researchers (Zecchin et al. 2007; Marchi et al. 2014; 
El-Ghandour and Elbeltagi 2018; Mala-Jetmarova et al. 2018; Moosavian and Lence 2018; 
Jain and Khare 2021). Moosavian and Lence (2018) compared 10 different EAs based on 
the final solution obtained with fixed number of functional evaluations and other prop-
erties. They observed that the covariance matrix evolution strategy (CMAES) and soc-
cer league competition (SLC) algorithm scored well over other algorithms on the bench-
mark networks considered. Recent EAs applied to WDN design are hybridized grey wolf 
optimization (Sankaranarayanan et  al. 2017), self-adaptive differential evolution (SADE) 
(Sirsant and Janga 2018), self-adaptive cuckoo search (SACS) (Pankaj et al. 2020), Jaya, 
Rao-I and Rao-II Algorithm (Palod et al. 2021), artificial intelligence algorithm (Hong and 
Thanh  2022) and Chaotic Sobol Sequence-based multi-objective evolutionary algorithm 
(MOEA) (Sirsant et al.2022).

Genetic algorithm (GA), one of the oldest EAs (Goldberg 1989), was first applied to 
WDNs design optimization by Murphy and Simpson (1992). Since its first application 
on WDN design, there have been a lot of developments in GA by various researchers to 
improve the efficiency and effectiveness of GA. These include improvement in the cod-
ing system and string representation schemes (Saleh and Tanyimboh 2014; Tanyimboh 
2021), fitness functions, the penalty approach (Wu and Walski 2005; Kadu et  al. 2008; 
Siew and Tanyimboh 2012; Abdy Sayyed et al. 2019), GA parameters (Czajkowska 2016), 
and hydraulic analyzers (Abdy Sayyed et al. 2019).

The effectiveness of EAs depends upon the fine tuning of the values of their required 
parameters. One of the main problems associated with the use of EAs is high computa-
tional burden (Coelho and Andrade-Campos 2012). Therefore, research on the develop-
ment of new algorithms that converges rapidly and consistently is continued. Two key tech-
niques for increasing the computational efficiency are: (1) search space reduction; and (2) 
a self-adaptive penalty.

The search space depends on the number of pipes in the network and the number of 
available pipe sizes to select from. The search space for a network of 10 pipes and 14 com-
mercially available discrete pipe sizes will be  1410. With the increase in size of the network 
from 10 to 20 pipes, the search space will become  1420. Thus, the search space increases 
exponentially with the increase in number of pipes, and reduction in search space is desir-
able. For example, if there are 14 available sizes and 5 are selected for each of the 10 pipes 
to be sized, the reduced search space will be  510, which is only 0.003% of the total search 
space. Obviously, searching for the optimal solutions in the reduced search space would be 
much faster.

Vairavamoorthy and Ali (2005) considered relative importance of each pipe in a network 
using a pipe index vector to reduce the search space by limiting the number of candidate pipe 
diameters for each pipe. Initially, assuming some volume pipe flow rates and imposing mini-
mum and maximum velocity criteria, lower and upper bounds for each pipe were determined. 
These bounds were tightened during the GA process by repeatedly calculating pipe index 
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vector. Thus, calculation of pipe index vector increases the computational burden as it requires 
solution of linear equations several times in GA process.

Kadu et al. (2008) reduced the search space by selecting candidate pipe sizes using the crit-
ical path method (Bhave 2003). The critical path method involves several steps including the 
need to determine the critical path beforehand. The critical paths and sub-paths are obtained 
based on the available hydraulic slopes on different paths only, and some hydraulic parameters 
like pipe discharges and temporal variation in demands are not considered that may also affect 
critical node and critical path. Thus, determining the critical path beforehand is challenging if 
not practically impossible.

Haghighi et al. (2011) reduced the search space indirectly. The GA was coupled with inte-
ger linear programming (ILP). The looped WDN was converted to a branching configuration 
to identify loop-forming links. The GA was used to size the loop-forming links. The rest of the 
pipes were sized using ILP. This hybrid approach is observed to increase the efficiency of GA; 
however, it required two optimization algorithms to be iteratively used in sequence.

Zheng et al. (2011) used non-linear programming (NLP) and graph theory to find near-
optimal solutions that were then used to define the reduced search space. Barlow and Tanyim-
boh (2014) first executed the GA with full search space, and then the number of decision vari-
ables was reduced by removing those variables whose optimal values did not vary across the 
solutions obtained with full search space. Also, only three candidate pipe sizes were selected 
for the remaining decision variables. Reca et al. (2017) used quadratic programming to obtain 
two extreme flow-distributions along with minimum and maximum velocity criteria to limit 
the number of candidate pipe diameters for each pipe.

Tanyimboh and Czajkowska (2018) reduced the active search space dynamically in the 
optimization process by considering the most likely flow distribution based on the maximum 
entropy formalism (Jaynes 1957). Some of the above methodologies keep the reduced search 
space constant in the optimization run and can be termed as static search space reduction 
(SSSR) methodology. In SSSR, there are chances that the candidate sizes of some of the pipes 
are over-restricted and the reduced search space may not encompass a combination leading 
to the global optimal solution (Abdy Sayyed et  al. 2019). Thus, the dynamic search space 
reduction (DSSR) methodologies are better than SSSR. However, they require some external 
criteria like the pipe index vector and maximum entropy formalism, thereby increasing the 
computational efforts.

A new DSSR methodology is proposed herein that obviates the need for such additional 
considerations. The proposed methodology keeps on updating the reduced list of candidate 
pipe sizes as the evolutionary search progresses. The proposed DSSR methodology is generic 
and can be applied to any EA. Its properties are shown herein with a Genetic Algorithm (GA).

The application of the proposed DSSR methodology using GA is demonstrated with two 
benchmark problems in the literature and a larger real-world network. The solutions obtained 
by the proposed methodology are compared with those obtained earlier using other evolution-
ary techniques.

2  Methodology

2.1  Optimization Model Formulation

The minimum cost design of a WDN involves solving non-linear hydraulic equations. The 
general optimization problem formulation for a WDN with J demand nodes, N pipes and Y 
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loops, can be formulated as below. The objective function consists of minimization of the 
initial pipe cost of the network. The constraints consist of satisfying the minimum residual 
pressure requirements at the demand nodes and the flow governing equations. The problem 
can be described as follows.

Subject to constraints:

where, Πj is the set of pipes connected to node j; Λy represents the pipes in loop y; J is the 
number of demand nodes; c (Dn) is unit cost of pipe n having diameter Dn ; L = length of 
pipe; Q = pipe discharge; qj

req = nodal demand; h = head loss in pipe; Ep = energy added to 
water by a pump; Hj

avl = available head at node j, Hj
des = minimum desirable head at node 

j, above which the demands are satisfied in full; and Dmin and Dmax = minimum and maxi-
mum diameter of available pipes, respectively. Equation (1) is for the minimization of capi-
tal cost of the network, Eqs. (2) and (3) are flow continuity and energy conservation equa-
tions, respectively. Equation (4) assures that the available head is more than the minimum 
desirable head at each demand node, and Eq. (5) allows the selection of commercial pipe 
sizes only.

2.2  GA Model Formulation

The constrained optimization problem shown above is converted to an unconstrained one 
by using the penalty approach. Constraints defined by Eqs. (2) and (3) can be handled 
using EPANET 2.0 hydraulic solver (Rossman 2000). Constraint defined by Eq.  (5) will 
be satisfied as the selection of pipe sizes will be made from the list of commercial pipe 
sizes only. However, Eq. (4) is not necessarily satisfied with any selected set of pipes, as 
the available pressure at one or more nodes may be less than the desirable values. Thus, the 
objective function in Eq. (1) is modified to include a penalty cost, thereby reducing the fit-
ness of an infeasible solution.

A high penalty cost may eliminate the infeasible solutions too quickly from the popula-
tion and prevent their further exploration subsequently. On the other hand, a very small 
penalty costs may make infeasible solutions seem better than some of the feasible solutions 
in the population and may finally produce an infeasible solution. Therefore, application 
of a proper penalty approach is essential. Wu and Walski (2005) compared various pen-
alty approaches and recommended self-adaptive penalty approach in which penalty factors 
were improved periodically using certain rules. Kadu et al. (2008) suggested a penalty fac-
tor based on capitalized energy cost to lift the unit quantity of water by unit head. Abdy 

(1)Minimize f
(

D1,… ,DN
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=
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)
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Sayyed et al. (2019) modified the penalty by considering the deficiencies in the nodal pres-
sures as well as nodal flows using pressure dependent analysis (PDA) to obtain more accu-
rate values of penalties on constraint violation.

Abdy Sayyed et  al. (2019) recommended pressure dependent analysis (PDA) to iden-
tify accurately: (a) the pressure-deficient nodes; and (b) the corresponding outflow and 
pressure deficits. The nodal outflow in PDA is modelled considering the node head-flow 
relationship and depends on the available pressure. There are various node-head-flow rela-
tionships that can be used (Bhave and Gupta 2006). The most widely used relationship sug-
gested by Wagner et al. (1988) and Chandapillai (1991) was adopted here:

where, qavl
j

 is available flow at node j; qreq
j

 is required flow at node j; Havl
j

 is head available 
at node j; Hmin

j
 is minimum head required, below which there is no outflow at node j; and 

Hdes
j

 is head desirable at node j, above which the demand is fully satisfied. The exponent n 
in Eq. (7) is usually taken as either 1.5 or 2 (Gupta and Bhave 1996).

Therefore, the unconstrained optimization problem can be written as

where, δj is a penalty multiplier (Kadu et al. 2008). The penalty cost in Eq. (9), i.e., the 
second term, represents an equivalent cost of energy required to lift the outflow deficit by 
the head deficit (Abdy Sayyed et al. 2019). Herein, accordingly, the penalty cost has the 
advantage that it is generic; it does not require prior setting or calibration.

The penalty multiplier δj can be calculated as detailed below, where δj is the capitalized 
energy cost per unit of flow and per unit of head. This is expressed as (Kadu et al. 2008)

where, PWF is the present worth factor;  cue = unit cost of the energy in monetary units 
per kWh; w = specific weight of water (9,810 N/m3); and η = overall efficiency of pump. 
 tp = total time of the pump operation in a year (hours).

The PWF can be calculated as

where,  ir = interest rate, expressed as a fraction of one; m = design life of the WDN. Con-
sidering,  ir = 0.08 (i.e., 8%); m = 30  years;  cue = 4.5 (Rs /kWh); and η = 0.6; the penalty 
multiplier is obtained as δj= 7.261 ×  106 (Kadu et  al. 2008) for discharge in  m3/min and 
head in m.
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2.3  Dynamic Search Space Reduction Methodology

The basic principle of GA is to choose an initial population of solutions that are dispersed at 
random in the search space. These solutions are modified iteratively to obtain better solutions 
with the help of GA operators, such as selection, crossover, mutation, and elitism. The itera-
tive process is terminated when the required stopping criteria is met.

A dynamic search space reduction (DSSR) methodology is developed in which the active 
solution space is reduced after a predefined number of generations. Subsequently, the active 
search space is updated based on the frequency of selection of a particular diameter for a par-
ticular pipe in the best solutions of previous generations. For example, in the best solutions 
of the last 30 generations, if a 500 mm diameter is selected 20 times for a particular pipe, its 
frequency of selection becomes 2/3. A maximum of five candidate diameters are selected for 
each pipe. Select the first diameter having the highest frequency of selection in the best solu-
tions of previous generations, then select two diameters immediately below and two diameters 
immediately above to that size. If there is only one or no diameter below or above the first 
diameter, then less than five diameters are selected for the reduced active search space. Fig-
ure 1 shows the flowchart for the DSSR GA methodology.

3  Computer Code Development

A general GA code available from IIT Kanpur GA Lab, (http:// www. iitk. ac. in/ kangal/) and 
EPANET 2.0 were integrated on the C platform Visual Studio for the optimal design of WDN 
using the proposed methodology. As EPANET 2.0 does not have PDA facility, the modelling 
approach with a series of additional artificial elements as suggested by Abdy Sayyed et al. 
(2015) at each demand node is used to get a solution in a single run of EPANET 2.0. This 
requires modification in the input file for the network and can be done using a separate C code 
proposed by Gupta et al. (2018). However, as EPANET 2.2, a modified version having PDA 
facility is now available, it can be used as an alternative. Other PDA methods are available in 
the literature also (Sivakumar et al. 2023).

The GA code downloaded from IIT Kanpur GA lab is a general code which works on both 
the constrained and the unconstrained optimization problems. The GA operators used are selec-
tion, crossover, mutation and elitism. Implementations can be done using both binary and real 
coding and user is asked to specify the type of coding. In this study, real coding is used. In case 
of real coding, it uses restricted tournament selection operator, simulated binary crossover, and 
polynomial mutation. The inputs to the program are: population size; number of generations; 
crossover and mutation probabilities and the objective function in mathematical form defined 
using the decision variables. Further, a seed number is given that helps in regenerating the same 
initial population. The above GA code was modified to integrate the PDA, self-adaptive penalty 
and the DSSR methodology. The code is written to perform a predefined number of runs and 
provides the best solution from these runs.The information about the RSS for each pipe at the 
end of the run is passed on to next run to reduce the computational efforts. 

4  Application of Methodology

Different benchmark networks of varying sizes and complexities were solved using 
the proposed methodology. Results of a two-source network (Kadu et al. 2008) and the 
GoYang Network of Kim et al. (1994) are presented herein, along with the real-world 

http://www.iitk.ac.in/kangal/
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network of Ramnagar Zone in Nagpur City, India. The computation environment was as 
follows Dell  10th GEN, 8 GB RAM, Intel(R) Core (TM) i7-10510U, CPU @ 2.30 GHz.

The GA search depends on the values of GA parameters like crossover probability, 
mutation probability, population size and number of generations. The DSSR GA code 
needs adjustment of these parameters for each example depending upon the size and 
complexity of the problem.  The optimum range for cross over probability was 0.7 to 
0.95, and for the mutation probability the range was in between 0.001 to 0.1. The pro-
gram was executed initially to adjust these GA parameters by selecting them randomly 
in the range as above with different population sizes and number of generations, by 
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Fig. 1  Flow chart of DSSR Genetic Algorithm
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keeping the seed number same. The adjustment process was terminated when the con-
sistent results were obtained.

4.1  Two‑Source Network (Kadu et al. 2008)

A two-reservoir network from Kadu et al. (2008) with 34 pipes, 24 nodes, and 9 loops is 
shown in Fig. 2(a). Nodes 1 and 2 are the source nodes having reservoir water levels of 
100  m and 95  m, respectively. A set of 14 commercial pipe diameters was used in this 
design problem. Pipe data, node data, available pipe sizes, and their respective unit costs 
can be found in Kadu et al. (2008).

Kadu et al. (2008) used the Hazen-Williams pipe friction head loss formula

where,  hl = head loss; ω, α, and β are constants; and  CHW = Hazen-Williams pipe roughness 
coefficient. Kadu et al. (2008) considered values of ω, α, and β as 2.234 ×  1012, 1.85 and 
4.87 for the discharge in  m3/min, and diameter in mm in the hydraulic analysis software 
they developed. Later, other researchers used EPANET for hydraulic simulation with the 
default values of these constants as set in EPANET. The default values in current version 
of EPANET 2.0 (Build 2.00.12.01) for ω, α, and β are 10.667, 1.852 and 4.871 for the dis-
charge in  m3/s, and diameter in m.

The GA results for the network with the FSS were obtained after fine tuning of the 
parameters by varying the seed number. The following GA parameters provided the best 
solution: population size = 320, number of generations = 1000, crossover probability = 0.72, 
and mutation probability = 0.003.

The network cost obtained was Rs. 125,209,860 in 157,760 function evaluations, and 
the time required for that run was 254.81  s. This solution is cheaper than the first fea-
sible best-known solution reported in the literature of Rs.125,460,980, obtained by Siew 
et al. (2014) in 436,000 function evaluations. It is also less expensive than the current best-
known solution in the literature (Rs. 125,434,170  in 19,700 function evaluations (Palod 
et al. 2021) as shown in Table 1.

Further, the GA results for the network were obtained by the proposed DSSR method-
ology also. The search space was modified after every 50 generations using the proposed 
methodology. The best result was obtained with the following GA parameters: population 
size = 300, number of generations = 400, crossover probability = 0.72, and mutation proba-
bility = 0.003. The optimal cost was Rs.125,019,790 in 1,125,300 function evaluations, and 
the time required was 261.488 s. This solution is cheaper than the solution obtained with 
FSS. The second-best solution has a cost of Rs. 125,076,190 in 267,000 function evalua-
tions. The third-best solution has a cost of Rs.125,254,880 obtained in 397,800 function 
evaluations. In total, eight solutions that are superior to the previous best solution were 
achieved as detailed in Tables S1 and S2. These solutions have not been reported in the 
literature to date.

Thus, based on the best solutions achieved herein, it can be stated that overall the com-
bined flow and pressure deficit penalty approach performed better than the penalty-free 
approach (Siew et al. 2014) in terms of the cost of the final solution and the required num-
ber of function evaluations with both FSS and DSSR. While the number of function evalu-
ations for Rao II (Palod et al. 2021) is smaller (Table 1), the solution is more expensive 
than the nine new solutions achieved in total.

(12)hl =
�LQ�

C�
HW

D�
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The progress of the feasible solutions in the FSS and DSSR is shown in Fig. 3(a) and 
(b) respectively. Figure 3(b), (d) and (f) show only the run with the best solution. Also, 
the pipe diameters and available nodal heads achieved are shown in supplementary 
material in Figs. S1(a) and S2(a), respectively. The variation of penalty cost is shown in 
Fig. S3, and details of GA progress runs for FSS and DSSR are shown in Figs. S4 and 
S5,respectively. As expected, the average penalty cost reduced very fast in the initial 

a) b)

c)

Fig. 2  Layout of Water Distribution Networks: a Kadu’s Network; b Goyang Network; c Ramnagar Net-
work
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few generations and remained relatively stable for the rest of the generations. Also, 
closer examination of the penalty costs seems to provide evidence of renewed further 
exploration whenever the reduced search space was updated.

The results obtained by the proposed methodology and those reported by other 
researchers for FSS and DSSR are provided in Table  1 for comparison. Siew et  al. 
(2014) observed that the solutions reported by Kadu et  al. (2008) and Haghighi et  al. 
(2011) have negative value of residual pressure head considering the original values of 
constants used by Kadu et al. (2008). Herein, the feasibility of all the reported solutions 
has been checked using EPANET 2.0 (Build 2.00.12.01) as most of the researchers used 
EPANET as hydraulic simulator. The detailed simulation results are given in the sup-
plementary material in Tables S1 and S2. From the analysis using EPANET 2.0, it is 
observed that the solutions reported by Kadu et al. (2008) for RSS and that by Haghighi 
et  al. (2011) have negative value of residual pressure head and cannot be considered 
as feasible solutions. Abdy Sayyed et al. (2019) revised the solution using the penalty 

(a) (b)

(c) (d)

(e) (f)

Fig. 3  Progress of the costs of the feasible solutions: a FSS for Kadu’s Network; b DSSR for Kadu’s Net-
work; c FSS for Goyang Network; d DSSR for Goyang Network; e FSS for Ramnagar Network; f DSSR for 
Ramnagar Network
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method suggested by Kadu et al. (2008) and EPANET 2.0 for hydraulic simulation. The 
revised solution is feasible and has a cost of Rs. 128,381,245 as given in Table 1.

Thus, in over 15 years since Kadu et al. introduced the network in 2008 and to the best 
of our knowledge this is only the third occasion where new feasible best-known solutions 
have been reported. It is observed, also, that Barlow and Tanyimboh (2014) obtained a 
solution in which EPANET 2.0 was used as hydraulic solver with pipe friction head loss 
parameters ω, α, and β as 10.6668, 1.852 and 4.871, respectively, for the discharge in  m3/s, 
and diameter in m). This solution is also given in Table 1 and has a cost of Rs. 124,693,590 
obtained in 142,000 function evaluations. With the above default values, residual pressure 
at all the nodes were found above the minimum required values, with a minimum of 0.04 m 
at node 12, by Barlow and Tanyimboh (2014). However, when the simulation is carried out 
with the current EPANET 2.0 (Build 2.00.12.01), this solution showed deficiency in pres-
sure at node 24 by 0.39 m.

4.2  GoYang Network

The GoYang Network was first presented by Kim et  al. (1994). It includes 30 pipes, 22 
demand nodes, and a constant head pump of 4.52 kW linking to reservoir with a head of 
71 m, as shown in Fig. 2(b). The Hazen-Williams roughness coefficient for each new pipe 
is 100. The minimum required pressure head above the ground elevation at each node is 
15 m. A set of 14 commercial pipe diameters was used in this design problem. The node 
and pipe data are available in Geem (2006).

The GA results for the network were obtained by the proposed FSS and DSSR meth-
odology. The best result was obtained with the following GA parameters in both cases: 
population size = 10, number of generations = 300, crossover probability = 0.79, and muta-
tion probability = 0.089. The optimal cost obtained is 177,010,355 won, obtained in 630 
function evaluations and the time required was 3.75 s with full search space and in 3340 
function evaluations in 18.23 s with dynamic search space reduction. The progress of the 
feasible solutions in FSS and DSSR is shown in Fig. 3(c) and (d) respectively. Also, the 
pipe diameters and nodal heads achieved are shown in Figs. S1(b) and S2(b) respectively.

The results obtained by proposed methodology and those reported by other research-
ers for FSS and RSS are provided in Table 2 for comparison. It can be observed that the 
solution obtained by Jain and Khare (2021) and Palod et al. (2021) obtained using FSS are 
the same but have more function evaluations as compared to that obtained using proposed 
method. The advantage of search space reduction is not particularly seen in this network 
as 23 out of 28 pipes are of minimum size of 80 mm as can be observed from Fig. S1(b). 
Detailed results are given in supplementary material in Tables S3 and S4.

4.3  Ramnagar Network

The methodology was also applied to a real-world water distribution network in the Ram-
nagar zone, located in Nagpur City, Maharashtra, India. The network consists of 375 pipes, 
292 junctions, and a Ground Service Reservoir with a constant head of 327.205 m. The 
layout of the network is shown in Fig. 2(c). The minimum pressure that is allowable at the 
demand nodes is 8 m. A set of 16 commercial pipe diameters was used in this design prob-
lem; the costs of the available diameters are presented in Table S5 of the supplementary 
materials.
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The best GA solution for the network with FSS was obtained with the follow-
ing GA parameters: population size = 800, number of generations = 1200, crossover 
probability = 0.78, and mutation probability = 0.004. The network cost obtained is Rs 
37,837,223.72, obtained in 881,600 function evaluations, and the time required for that run 
was 6,377.917 s (106.30 min).

The GA results for the network were obtained by the proposed DSSR methodology also. 
The search space was modified after every 50 generations. The best result was obtained 
with the following GA parameters: population size = 500, number of generations = 500, 
crossover probability = 0.8, and mutation probability = 0.02.

The optimal cost obtained was Rs 34,289,227.43 in 382,500 function evaluations, and 
the time required was 2240.46 s (37.34 min). The progress of the feasible solutions in FSS 
and DSSR is shown in Fig. 3(e) and (f) respectively. Also, the available pipe diameters and 
nodal heads achieved are shown in Figs. S1(c) and S2(c) respectively. The details are given 
in supplementary material (Tables S6 and S7.)

The results as obtained by proposed methodology for FSS and DSSR are provided in 
Table 3. The network cost, total number of function evaluations, time required, the maxi-
mum and minimum values of residual pressures at demand nodes are given in columns 2 
to 6, respectively. The advantage of DSSR methodology can be seen very clearly with this 
network. The best FSS cost was Rs. 37.837 million obtained with 881,600 function evalu-
ations in 106.30 min of run time. DSSR provided 9.38% cheaper solution in 382,500 func-
tion evaluations in 37.34 min of run time.

5  Summary and Conclusions

SSR was suggested by different researchers using some algorithms based on the pipe index 
vector, critical path method, flow entropy, graph theory and NLP techniques to improve 
the efficiency of EAs. If the reduced search space is set beforehand, this may eliminate 
the global optimum solution. An effective DSSR approach that does not require prior ini-
tialization or configuration of the reduced solution space is proposed. The reduced search 
space accelerates the search around the active constraint limits after workable solutions 
have been found in the initial stage, which places a priority on exploration. The approach is 
universal, self-adaptive and clubbed herein with self-adaptive penalty approach, based on 
the deficiency in meeting the demand and pressure at the demand nodes using PDA. The 
application of DSSR is demonstrated with GA here. However, it can be applied to other 
EAs also. In terms of cost, CPU time, and function evaluations, the results produced by 
the DSSR algorithm were better than those from the entire solution space. Additionally, 

Table 3  Comparison of Solutions for Ramnagar Network

Method used Optimal Cost (Rs.) Total Number 
of Function 
Evaluations

Time 
Required 
(Minutes)

Residual Heads at 
nodes in EPANET 
2.0 (m)

Maximum Minimum

GA with adaptive penalty 37,837,223.72 881,600 106.30 18.72 8.03
GA with adaptive penalty 

and DSSR
34,289,227.43 382,500 37.34 15.92 8.07
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convergence was consistently quick for both FSS and DSSR. The method proves to be an 
important contribution in solving large networks. Finally, with no additional esoteric fea-
tures, the algorithm is effective, computationally efficient, practical, and the utility of the 
artificial modelling elements approach to PDA is thus demonstrated also. The advantages 
of DSSR over both FSS and SSR methodologies are seen with the solution of Kadu’s net-
work. The smaller solution space yielded eight new best-known solutions that were not 
achieved in the FSS.

The application of DSSR to a real-life Ramnagar network showed both reduction in time 
and number of function evaluations. With DSSR, a 9.38% cheaper solution was obtained in 
56.61% fewer functional evolutions and 64.87% less time as compared to FSS.
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