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Abstract
Intensity–Duration–Frequency (IDF) curves are known as practical tools in the 
construction of infrastructures. However, developing such curves is restricted in many 
regions due to sparse and insufficient record length of in-site rainfall observations. It is 
hence recommended to generate the regional curves. According to the hydro-climate 
variability and change during the recent decades, it is essential to consider the non-
stationarity of hydro-climate variables. In this research, the Neural Gas network (NGN) 
coupled with ProNEVA have been applied to develop non-stationary regional IDFs. The 
l-moments approach was used to plot regional stationary IDF curves to compare the results 
of non-stationary IDFs for homogenous regions. The results showed that the regional 
nonstationary curves had overestimated rainfall intensity compared with the regional 
stationary curves which can attribute to the decreasing trend of rainfall over the study area. 
The average value of overestimation in the return period of 2 years was equal to 50 percent. 
This overestimation was more significant for lower return periods, which indicates that the 
nonstationary approach is more important for short-duration events. The return period of 
100 years is equal to 25 percent in region two, and in region one, it is equal to 20 and 43 
percent, respectively.
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1 Introduction

Global warming is known as one of the most important threats for ecosystem services 
and human societies. There will be an increase in the unpredictability of water flows, 
linked to more frequent and extreme weather events and temporal and spatial shifts in 
rainfall patterns resulting in more intense floods and droughts, severe forest fires, rising 
sea levels, flooding, melting polar ice, catastrophic storms and declining biodiversity 
(Tsakiris and Loucks 2023). Precipitation is among major climatic variables that affects 
the hydrological regime with temporal and spatial variations. Extreme rainfall can lead 
to floods causing damage to buildings, farmlands, and infrastructures. Estimating future 
rainfall intensity is hence required in the optimal design of hydraulic structures as well 
as reducing the potential damage such disasters can cause (Hardy 2003).

The Intensity–Duration–Frequency (IDF) curves are widely used to capture rainfall 
characteristics.

The atlas of IDFs has been developed in developed countries like USA by the 
American National Weather Service created the National Oceanic and Atmospheric 
Administration (NOAA) (Perica et  al.  2011). However, generating such curves in a 
desired area with no station is challenging and the application of regional curves instead 
of at-site has been suggested.

Several studies suggested that the application of regional techniques on extreme 
rainfalls can increasingly reduce the doubts about the estimations resulting from the 
at-site viewpoint (Lee and Maeng 2003; Alemaw and Chaoka 2016; Abdi et al. 2017; 
Mahmoudi et al. 2023). In addition, the IDF regionalization is useful in shortening the 
steps and required time for the calculations of the IDF curves. (Mahmoudi et al. 2023).

In the recent decades, extreme events have intensified due to global warming 
and human impacts (Tramblay et  al. 2012; Cavanaugh et  al. 2015; Xu et  al. 2015). 
Numerous investigations indicated a significant increase in extreme precipitation over 
North America (Westra et  al. 2014; Asadieh and Krakauer 2015), which has caused 
substantial structural and economic damages. Other studies reported increased extreme 
precipitation in Africa, Europe, and Asia (Lenderink and Van Meijgaard  2008; Singh 
et al. 2014; Jamali et al. 2022; Motamedi et al. 2023).

Given the importance of considering climate change and future trends in the design 
and construction of infrastructure, it is vital to consider the trends and nonstationary 
to improve the design parameters and minimize the anticipated damages to human 
societies (Li et  al. 2018; Vasiliades et  al. 2015). Therefore, a shift from stationary to 
nonstationary-based IDF curves is vital to capture non-monotonic trends in extreme 
precipitation (Veneziano and Yoon 2013; Cheng, and AghaKouchak 2014; Blanchet 
et al. 2016; Agilan and Umamahesh 2016).

Agilan and Umamahesh (2016) applied a multi-objective genetic algorithm (MOGA) 
to develop nonstationary GEV models by capturing nonlinear trends in the series. 
Using Bayesian inference, Ragno et  al. (2019) presented a generalized framework for 
estimating nonstationary IDF curves and their uncertainties.

As in-site rainfall observations are sparse and have insufficient record length, the 
nonstationary IDFs should be regionalized to address these gaps in many regions around 
the world. Most of the earlier studies were focused on stationary regional IDF (Overeem 
and Syvitski 2010) and nonstationary IDF (Lima et al. 2016, Sarhadi and Soulis 2017), 
while investigations on developing regional nonstationary IDFs are generally lacking.
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In this study, we developed regional nonstationary IDF curves by employing non-
stationarity and clustering principles. The process-informed nonstationary extreme value 
analysis was applied to develop a newly-developed hybrid evolution Markov Chain Monte 
Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. 
(Ragno et al. 2019). The present study applies a Neural Gas Network (NGN) method to 
cluster the hydrological data and ascertain the homogeneous regions. The NGN is one of 
the competitive neural networks and uses an unsupervised teaching method (Fritzke 1995). 
This study aims to develop regionalized nonstationary IDF curves by integrating NGN 
and ProNEVA as a new framework named NGN-ProNEVA. The proposed framework can 
describe the changes in annual maximum precipitation in response to  CO2 emissions in the 
atmosphere and annual maximum sea levels over time.

2  Study Area

Khuzestan province is located between 47°41´ to 50°39´ eastern longitude and 29°58´ to 
33°04´ northern latitude. Despite having only 4% of the Iran’s total area, this province 
owns more than 30% of the country’s surface water. The annual rainfall of the study area 
is 284.3 mm. The highest rainfall is recorded in Izeh station (Northeast of the province), 
with 614.8 mm. Khuzestan province is surrounded from the north and east by the Zagros 
Mountain range. Moving towards the interior of the province, the height of these mountains 
decreases and gives its place to the Mahor hills. Khuzestan includes two mountainous and 
plain regions. Two-fifths of the area of this province is mountainous, and three-fifths is 
plain.

3  Dataset

This study used data from 18 rain gauge stations located in Khuzestan province, Iran 
(Fig.  1). The data was obtained from the Khuzestan Water and Electricity Organization 
(KWEO). The hourly rainfall data from 1978 to 2015 were obtained to quantify the 
changes in the selected stations. All the selected stations consider as automatic recording 
stations. In addition, geographical information of the selected stations including latitude, 
longitude, elevation from sea level were applied to determine the number of optimal 
clusters (Table 1).

4  Methodology

The main steps of this study include: (1) quantifying the trends in extreme precipitation 
of the selected stations; (2) determining the optimal number and clustering the stations; 
(3) defining GEV nonstationary models and select the best model; (4) developing 
Nonstationary IDF Curves for target clusters; (5) extracting regional stationary IDF curves. 
To extract the annual maximum rainfall time series for the region, the maximum rainfall 
for all duration and each year was extracted here to consider the same years in the stations 
belonging to each region,. Then, the model with the highest frequency among all duration 
was considered as the best one for the station.
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4.1  Trend Analysis

The Mann Kendal (M–K) test (Mann 1945; Kendall 1962) is a nonparametric statistical 
test to detect trends in time series, that has a long tradition of application in hydrology and 
has been applied in the case of extremes (Villarini et al. 2009; Cheng and AghaKouchak 
2014; Jamali et al. 2022; Gohari et al. 2022; Motamedi et al. 2023). The power of the M–K 
test depends on the pre-assigned significance level, the magnitude of the trend, the sample 
size, and the number of variations within the time series (Yue et al. 2002).

The M–K statistics (S) is computed as:

where, n is the number of data points, x is the data values in time series and the sgn 
function is defined as:

The standard value of the test statistics ( Z) can be calculated as:

(1)S =

N−1∑
i=1

N∑
j=i+1

sgn(xj − xi)

(2)Sgn(θ) = sgn
�
xj − xi

�
=

⎧⎪⎨⎪⎩

−1 𝜃 < 0

0 𝜃 = 0

1 𝜃 > 0

⎫⎪⎬⎪⎭

Khuzestan province elevation (m)

Fig. 1  The study area overview and location of the selected stations
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where, the var (variance) is computed as:

where p is the number of tied groups and ti is the number of data in the ith (tied) group. 
Negative Z values indicate the decreasing trends while positive values show the increasing 
trends. This study applied the M–K test at 95% and 90% confidence levels to detect trends 
in the intensity of annual maximum rainfall over the selected durations.

4.2  Clustering

4.2.1  The Number of Optimal Clusters

. Determining the number of optimal clusters is the first step in regionalization. Numerous 
methods, including Chou & Su CS (Chou et al. 2004), Silhouette (Rousseeuw 1987), and 
Caliński and Harabasz (1974) indices, have been widely used to determine the optimal 
number of clusters. The highest values in Silhouette and Calinski-Harabasz indices and the 
lowest one in CS indicate the optimal number of clusters.

(3)Z =

⎧⎪⎨⎪⎩

s−1√
var(s)

s > 0

0 s = 0
s+1√
var(s)

s < 0

⎫⎪⎬⎪⎭

(4)var(s) =
n(n − 1)(2n + 5) −

∑p

i=1
ti(ti − 1)(2ti + 5)

18

Table 1  Characteristics of selected stations in this study

Station 
number

Station name Elevation (m) Latitude Longitude MAP (mm) MDP (mm) Record 
length 
(Years)

1 Abasspoor 820 32°04’ 49°36’ 552 5.1 32
2 Abdolkhan 40 31°50’ 48°23’ 226.9 3.7 31
3 Ahvaz 20 31°20’ 48°41’ 219.4 4 42
4 Andika 500 33°02’ 49°24’ 547.7 6.2 22
5 Arabhasan 33 31°51’ 48°53’ 269.2 3 28
6 Baghmalek 675 31°33’ 49°52’ 563.9 6.4 39
7 Chamgaz 38 32°57’ 47°49’ 481.3 4.8 26
8 Dehmola 32 30°30’ 49°40’ 220.6 3.7 31
9 Dezfool 142 32°25’ 48°27’ 362.9 3.9 28
10 Gotvand 75 32°15’ 48°49’ 384.5 4.7 31
11 Idanak 560 30°57’ 50°25’ 617 8.3 29
12 Izeh 764 31°49’ 49°51’ 603.7 5.5 32
13 Kampjarahi 8 30°43’ 49°11’ 187.6 3.1 24
14 Lali 150 32°17’ 49°03’ 425.1 3.6 26
15 Poleshaloo 700 31°45’ 50°08’ 762.8 6.7 30
16 Saddez 525 32°33’ 48°27’ 476.2 5.3 31
17 Sadeshohada 333 30°40’ 50°17’ 340.8 3.8 42
18 Susan 600 31°59’ 49°52’ 766.6 6.1 31
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The silhouette value calculates how similar an object is to its cluster (cohesion) 
compared to other clusters (separation). The silhouette ranges from − 1 to + 1, where a high 
value denotes that the object is well matched to its cluster and inadequately matched to 
neighboring clusters. The clustering configuration is appropriate if most objects have a high 
value. The silhouette can be calculated with any distance metric, such as the Euclidean or 
Manhattan distances (Rousseeuw 1987).

The Calinski-Harabasz ( CH ) index for K number of clusters on a dataset 
D = [d1, d2, d3,… dN] is defined as,

where, nk  and ck  are the number of points and centroid of the  kth cluster respectively, c is 
the global centroid, N is the total number of data points.

The CS measure is then defined as

where d
(
xi.xq

)
 is a function of the distance between two points in the i cluster, k is the 

number of clusters, Ni is the number of members in each cluster, and mi is the center of 
each cluster.

4.2.2  Neural Gas Network (NGN)

In this study, the selected stations were divided into homogenous regions using NGN. The 
rule of learning in NGN is as follows:

where wi is a gas molecule formed on data space (the number of these molecules is initially 
assumed as a value, and eventually, it is revised to have the logical and optimal function 
of the algorithm); �i is a parameter that specifies the learning rate and depends on ki , and 
� ; ki refers to the superior neuron to the neuron i ; � is a constant number that controls the 
learning rate. If λ tends to infinity, learning of the whole neurons would be equal, and if 
it tends to zero, then the nearest neuron begins to learn. The extreme modes of λ are not 
suitable alone, and usually, a mode between them is chosen.

An edge function is defined to create a neighborhood between the first and second 
neurons in terms of proximity. For each neuron, there is ci.j�{0.1} showing that weather 
there exists an edge or not. The ti.j�{0.1.2… .} also indicates the age (time intervals) from 
the last meeting or re-edge, if it exceeds more than one size, the neighborhood will be 
broken. This approach helps the neural network to learn topology. Generally, the NG 
algorithm can be summarized as: (Step-1) creation of A random position ( wi ) in the data 
space; (Step-2) selection of an input (x) from the expected data; (Step-3) calculation of the 
distance between x, and the centers of wi and ki aging for each center; (Step-4) Adaption or 
learning step as Eq. (9):

(5)CH =

�∑K

k=1
n
k
‖c

k
− c‖2

K − 1

�
∕

�∑K

k=1

∑nk

i=1
‖d

i
− c

k
‖2

N − K

�

(6)CS =

1

k

∑k

i=1
[
1

Ni

∑
xi∈Ci

maxxq∈Ci
{d(xi.xq)}]

1

k

∑k

i=1
[minj∈k.j≠i{d(mi.mj)}]

=

∑k

i=1
[
1

Ni

∑
xi∈Ci

maxxq∈Ci
{d(xi.xq)}]

∑k

i=1
[minj∈k.j≠i{d(mi.mj)}]

(7)wnew
i

= wold
i

+ �i(x − wold
i
)

(8)�i = �e
−ki

�
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As the algorithm progresses, the learning speed should be reduced during the training 
period; otherwise, the neural network will be repeated leading to an incorrect cycle. For 
this purpose, the amount of � and � should be decreased as learning progresses according 
to Eq. (10):

where i  and f  show the parameter values at the beginning and the end of the learning 
process, respectively.

Afterwards, an edge between the first two ranks in terms of proximity and age of this 
edge is considered equal to zero (create a neighborhood) as Step-5. By increasing the 
age of all edge ( ti.j → ti.j + 1 ), it is assumed that ki = 0 and for each j when ti.j > T  , it is 
considered as ci.j = 0 .T should be increased during the learning period to reduce the degree 
of rigidity, which means the edges are allowed to last longer (Step-6). If the termination 
conditions (e.g., the maximum quantity of neurons or any amount of performance) are not 
met, Step-2 is repeated, Otherwise, algorithm would be finished.

4.2.3  L‑Moments

L-moments were presented by Hosking (1990), and it has been found to have great 
application in many regional hydro-climatic analyses. The most crucial applications of 
L-moments include identifying the homogeneous regions, detecting the discordant sites, 
and selecting the appropriate distribution function over a larger range of distributions.. 
They also better display the outlier events (Rao and Hamed 1997). L- moments were used 
here to check regional homogeneity and discordant stations and determine appropriate 
regional distribution.

4.3  Nonstationary IDF Curves

The time series of extreme rainfall intensity in various durations were formed based on 
annual maxima throughout the record. According to the extreme value theory, the behavior 
of these annual maxima values can generally be described by one of the three extreme 
value distributions, including Gumbel, Fréchet, and Weibull. The generalized extreme 
value (GEV) distribution, a single parametric family, represents those mentioned above 
three extreme distributions (Agilan and Umamahesh 2016). The cumulative distribution 
function of the GEV is described (Hosking and Wallis 1993) as Eq. (11):

where: � , � , and � are the location, scale, and shape parameters, respectively (Smith 2001). 
Under stationary assumption, it is assumed that the GEV parameters, θ = {μ, σ, ξ}, are not 

(9)wnew
i

= wold
i

+ �e
−ki

� (x − wold
i
)

(10)G(t) = Gi

(
Gf

Gi

) t

tmax

𝜆i > 𝜆f , 𝜀i > 𝜀f , Ti < Tf

(11)FGEV (x|�, �, �) = exp

[
−
(
1 + �

(x − �

�

)) −1

�

]

FGEV(x) is def ined for {x ∶ 1 + ξ(x − μ)∕σ > 0}, −∞ < μ < ∞, σ > 0, and −∞ < ξ < ∞
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changing over time. However, the parameters and characteristics of the GEV distribution 
become time-dependent under nonstationary conditions. To integrate the nonstationary 
effects, the nonstationary GEV model is defined by considering its parameters as a 
covariate of time ( xt|�t , �t, ~GEV ( �t , �t , ξ)):

According to the Eq. (12), different nonstationary models were defined in this study to 
capture the non-stationarity in rainfall characteristics over the case study (Table 2).

4.3.1  Parameter Estimation

In this study, the ProNEVA was applied to estimate the parameters of the extreme value 
distribution under both stationary and non-stationary assumptions using a Bayesian 
method, to address uncertainties derived from input errors and model selection.

A Bayesian Markov Chain Monte Carlo (BMCMC) approach was applied to 
characterized the uncertainty of time-varying IDFs. More information about BMCMC can 
be found in Gilks et al. (1995).

4.3.2  Model Diagnostics and Selection

We applied different metrics for Goodness Of Fit (GOF) assessment and model selection, 
including quantile and probability plots as a visual assessment along withthe Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC). The AIC (Akaike 
1974; Aho et al. 2014) is formulated as Eq. (13):

where D is the number of parameters in the statistical model and L̂ is the log-likelihood 
function evaluated at the vector of parameters. The BIC (Schwarz 1978) is also defined as:

where N is the length of records. The model associated with a lower AIC and BIC is 
considered as a better fit.

(12)fxt

(
xt|�t, �t, �

)
=

1

�t

[
1 + �

(
xt − �t

�t

)]− 1

�
−1

exp

[
−

(
1 + �

(
xt − �t

�t

))−
1

�

]

(13)AIC = 2.

(
D − L̂

)

(14)BIC = D.ln(N) − 2.L̂

Table 2  The defined nonstationary GEV models

Model Description Function

M0 A stationary GEV model with all the parameters being constant f
x
t
=

(
x
t
|�, �, �)

M1 The location parameter with time covariate f
x
t
=

(
x
t
|�

t
, �, �

)
M2 The scale parameter with time covariate f

x
t
=

(
x
t
|�, �

t
, �
)

M3 The location and the scale parameters with time covariate f
x
t
=

(
x
t
|�

t
, �

t
, �
)

M4 The location parameter with  CO2 covariate f
x
t
=

(
x
t
|�

co2
, �, �

)
M5 The scale parameter with  CO2 covariate f

x
t
=

(
x
t
|�, �

co2
, �
)

M6 The location and scale parameters with  CO2 covariate f
x
t
=

(
x
t
|�

co2
, �

co2
, �
)

5588 M. R. Mahmoudi et al.



1 3

5  Results and Discussions

5.1  Trend Analysis

In order to investigate the trends in the study area, all 18 stations and 11 selected durations 
were studied using the M–K test. Due to the negative values of Z for most time series in 
different stations (Table 3), it can be declared that the rainfall trend in short durations is 
decreasing over the study area.

Khuzestan Province is one of the most water-rich provinces in Iran, where large rivers 
flow. Therefore, its water resources planning and management should be updated according 
to the effects of climate change. According to the results, the trend of rainfall in the most 
of the time duration in this region has decreased, leading to a negative effect on available 
water resources. Jamali et al. (2022) reported that most stations throughout Iran showing 
drying features with higher temperatures, which is in agreement with the presented results. 
Generally, most regions over Iran implied a reduction in the annual precipitation.

Due to the detected tendency in the precipitation during the different durations, 
extracting the IDF curves based on the nonstationary assumption is essential. Although 
most of the durations do not have significant trends, the recent studies highlight the need to 
go beyond subjective criteria for significance analysis (Rosner et al. 2014), as most ground-
based stations do not exhibit a statistically significant non-stationary behavior (Westra 
et al. 2014; Cheng and AghaKouchak 2014).

Table 3  The z value for detecting trends in different time series at 90% and 95% confidence levels

The durations with marked with * reveal trends with 95% confidence level and durations with marked with 
+ reveal trends with 90% confidence level

Station name Duration (min)

15 30 45 60 90 120 180 360 720 1080 1440

Abasspoor -2.01* -1.44 -1.23 -1.44 -1.64 -1.72+ -1.91+ -2.03* -2.21* -1.98* -0.31
Abdolkhan -1.31 -1.31 -1.43 -1.63 -1.22 -1.29 -1.11 -0.29 0.31 0.14 0.41
Ahvaz -1.24 -1.06 -1.30 -1.54 -1.47 -1.70+ -1.67+ -2.21* -2.51* -2.48* -2.01*
Andika 1.06 0.57 0.79 1.48 1.30 1.06 1.27 1.57 1.84+ 1.70+ 1.63
Arabhasan -0.10 -1.28 -1.32 -1.52 -2.13* -2.23* -2.67* -2.31* -1.98* -2.27* -1.07
Baghmalek 1.35 0.36 0.82 0.18 -0.10 -0.15 -0.69 -1.37 -1.79+ -1.81+ -1.52
Chamgaz 0.62 -0.29 -0.48 -0.31 -0.88 -0.71 -0.57 -1.06 -1.15 -1.46 -1.48
Dehmola -0.77 -0.82 -0.70 -0.41 -0.20 0.19 0.29 0.32 -0.02 -0.36 -0.39
Dezfool 0.79 0.95 0.73 1.01 0.89 0.57 0.32 -0.02 -0.42 -0.38 1.19
Gotvand -1.38 -1.26 -1.84+ -1.82+ -1.78+ -1.89+ -1.84+ -1.92+ -1.87+ -2.21* -0.44
Idanak 1.48 1.09 1.31 1.05 0.94 0.88 1.28 1.33 0.75 0.73 0.38
Izeh 1.78+ 1.83+ 1.85+ 1.80+ 1.80+ 1.88+ 2.13* 1.48 0.88 0.45 1.69+

Kampjarahi -1.14 -1.07 -1.56 -1.44 -1.12 -1.34 -1.46 -1.56 -1.96* -1.99* -0.87
Lali -0.26 0.35 0.24 0.00 -0.07 -0.07 -0.02 -0.31 -0.13 -0.40 -0.88
Poleshaloo 1.97* 1.59 1.15 1.44 1.37 1.56 1.37 1.07 0.00 -0.38 -0.36
Saddez -0.14 0.19 -0.09 -0.17 -0.37 -0.39 -0.56 -0.31 -0.71 -0.48 -0.20
Sadeshohada 0.33 1.01 0.78 0.85 0.78 0.83 1.03 1.26 0.51 0.37 0.28
Susan 1.11 1.28 0.77 0.73 0.48 0.43 0.30 -0.05 -0.80 -0.89 -0.48
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5.2  Clustering of Rainfall Stations

Figure  2 shows the number of optimal clusters in a range of clusters. The results 
indicated that the optimal number of homogeneous regions under all three methods was 
equal to 2.

In this study, rainfall station clustering was performed using NGN based on the 
optimal number of clusters. Figure 3 shows the results of clustering the study area into 
two separate regions. Region 1 occupied the eastern areas, and region 2 occupied the 
central and western parts of the province. The results revealed that the stations with the 
higher altitudes in the eastern cluster and the lower stations in the western cluster were 
divided into separate clusters, which confirms the proper functioning of NGN in terms 
of topographic detection of the data space. The results of our study.

5.3  Nonstationary Models

According to Table  4, the best regional nonstationary model was M2 in the case of 
using time covariate and M5 in the case of using  CO2 covariate for both homogenous 
regions. The scale parameter was variable in both selected models, and the location and 
shape parameters were constant.

The uncertainty in the risk estimation of extreme precipitation in different durations 
because of replacing model M2 with M1 to capture non-stationarity for regions one and 
two are demonstrated in Fig. 4, respectively. The results showed that with an increasing 
return period, the values of uncertainty also increased, which is expected. As illustrated 
in Fig. 4, the uncertainty of ignoring M2 with M1 with a range of confidence level equal 
to 95 percent in region one and 85 to 95 percent in region two.

The uncertainty indicates that the M2 model, constructed by the scale parameter 
as a covariate in the GEV parameters, can capture non-stationarity effects. Gao 
et  al. (2016) conducted a nonstationary extreme value analysis for annual maximum 
daily precipitation (AMP) at 631 meteorological stations over China for the period 
1951–2013. They showed that the nonstationary GEV distributions performed better 
than their stationary equivalents. Likewise, Dixit and Jayakumar (2022) indicated 
that non-stationary analysis will be helpful in the accurate estimation of the drought 
characteristics under climate change.

To validate the results for each region, the selected model was examined for each 
station belonging to the homogenous regions and compared with the regional results. 
The results indicated that the best regional model for region one was considered the 
best-fitted model for all stations. However, the best regional model was M2, but the best 
model in some stations was considered M1 in region II (Table 4).

Comparing Fig.  4 with Table  4, it is apparent that the 95% confidence level for 
Region I and the average 90% confidence level for Region II are reasonable. Because in 
all Region I stations, the best model is M2, but for some stations in Region II, the best 
model is M1.

5.4  IDF Curves

The developed nonstationary and stationary IDF curves were extracted under different 
return periods and durations for both regions. It should be noted that the developed 
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IDFs using time and  CO2 covariates were similar. This indicates that the effect of 
 CO2 concentration on rainfall intensity was not significant in the study area. However, 
it is crucial to study the effect of  CO2 on rainfall intensity in different climate 
characteristics. The results showed that the nonstationary IDF curves have consistently 
overestimated precipitation values compared to the stationary curves (Figs.  5  and  6). 
The overestimation of nonstationary curves could be attributed to the decreasing trend 
in rainfall over the study area. Since, this detected trend was not considered in the 
stationary curves. The overestimation of regional nonstationary curves compared to the 
corresponding at-site nonstationary curves could be also due to the difference in climate 
characteristics and topography between the regions.

In addition, the differences between nonstationary and stationary curves were notable 
in the lower return period, while this difference was reduced with increasing the return 
periods, indicating that the nonstationary approach is more important for short-duration 
events. Ganguli and  Coulibaly (2017) investigated non-stationarity and trends in the 
short-duration precipitation extremes in selected urbanized locations in Southern 
Ontario, Canada. They reported that the stationary vs. nonstationary models do not 
exhibit any significant differences in the design storm intensity despite apparent signals 

Fig. 3  Location of stations in the cluster identified by NGN and K-means
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of non-stationarity in precipitation extremes in all locations. Yang et  al. (2020) reported 
that rainfall depth under non-stationarity was greater for return periods less than 10 years, 
however, the stationary rainfall depth was higher when the return period was over 20 years.
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Fig. 4  a Uncertainty of ignoring M2 with M1 with a confidence level of 95% b Uncertainty of ignoring M2 
with M1 with a confidence level of (60 and 360 min; 90%, 720 min; 85%, and 1080 min; 95%)
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The regional nonstationary curves had overestimated rainfall intensity compared with 
the corresponding in-site nonstationary curves. The regional stationary curves, on the other 
hand, provided more accurate estimates for the study area, which indicates the importance 
of considering the local characteristics in developing IDF curves.

Although the regional stationary curves are, in some cases, underestimated the values of 
their corresponding stationary at-site curves, their differences were insignificant. In contrast, 
the difference between stationary and nonstationary IDF curves decreased over higher return 
periods. This could be because higher return periods represent rare events that are less 
affected by short-term climate variability and more influenced by long-term climate trends, 
which are better captured by stationary curves. The average values of overestimation (regional 
nonstationary and regional stationary) in the return period of 2 years is equal to 50 percent, 
in the return period of 100 years is equal to 25 percent in region two, and in region one is 
equal to 20 and 43 percent, respectively (Fig. 5). The difference between the two regions is 
not considerable. However, the existing difference can be caused by the lower uncertainty in 
region one and the climate characteristics and topography between the regions. The difference 
between stationary and nonstationary IDF curves decreased over higher return periods. This 
could be because higher return periods represent rare events less affected by short-term climate 
variability and more influenced by long-term climate trends, better captured by stationary 
curves. This exactly corresponds to the result of Mohan et  al. (2023). They demonstrated 
higher levels of non-stationarity were observed in Coastal regions and Eastern parts of India 
compared to the central parts. Also, the comparison of spatial patterns of rainfall intensity 
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Fig. 5  a Overestimation values of regional nonstationary compared to the registationary method in region 
1. b Overestimation values of regional nonstationary compared to the regional stationary method in region 2
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estimates under stationary and nonstationary showed that about 23% of grids showed an 
overestimation of nonstationary rainfall over their stationary counterparts by at least 15%. The 
nonstationary curves still show higher estimates, which will increase confidence in applying 
these curves in hydrological studies.

6  Conclusions

The intensity–Duration–Frequency (IDF) curve is one of the most popular tools in water 
resources engineering, which can be utilized as an input in designing, planning, and 
exploiting water resources projects. One of the fundamental problems in many countries is 
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Fig. 6  The developed stationary and nonstationary IDF curves for return periodes of 2,10,20,50 and 100 
years in Ahvaz station
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the scattered or inadequate networks of the required meteorological stations such that their 
data are considered the main bases for IDF construction. This study applied a new model 
of NGN and nonstationary concepts to develop the regional IDF curves. For this purpose, 
taking into account the characteristics of longitude, latitude, average annual rainfall, 
altitude, and maximum 24-h annual rainfall for each station, and using three indicators and 
CS, Silhouette, and Calinski-Harabasz(CH), the Khuzestan Province was clustered into 
two separate and possibly homogenous regions.

Regional IDF curves have been proposed based on the stationary concept in the studies 
published. In this research, we confirmed that most of the stations across the Khuzestan 
Province exhibited a nonstationary condition, so extreme rainfalls with different durations 
were significantly affected. The results indicated that the nonstationary IDF curves have 
consistently overestimated precipitation values compared to the stationary curves due to 
to the decreasing trend in rainfall over the study area. The difference between stationary 
and nonstationary IDFs decreased over higher return periods. This could be because higher 
return periods represent rare events that are less affected by short-term climate variability 
and more influenced by long-term climate trends, which are better captured by stationary 
curves.
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