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Abstract
This study investigates the influence of rainfall variability in time and space, as well as 
the location of storm center, on catchment outflow hydrograph. Synthetic data of over 600 
rainfall events were generated for the Walnut Gulch catchment in Arizona using two rain-
fall generation models. After calibrating the distributed MIKE-SHE rainfall-runoff model 
for a sub-catchment in the basin, we subsequently used it to simulate the entire catchment 
behavior by employing the generated synthetic rainfall data with predetermined character-
istics. The findings demonstrate that the storm center location has a significant impact on 
the characteristics of the outflow hydrograph, with closer proximity to the outlet resulting 
in increased peak magnitude and decreased time to peak. The spatiotemporal resolution of 
the monitoring network also affects the hydrograph characteristics, particularly the peak 
magnitude, with lower resolutions leading to underestimation of peak and overestimation 
of time to peak. The impact of spatial resolution on hydrograph characteristics increases as 
the correlation of rainfall events in space decreases. However, the effect of rainfall tempo-
ral resolution on catchment response remains almost consistent regardless of temporal cor-
relation. Ultimately, the results imply that accurate estimation of the outflow hydrograph 
requires a monitoring network with relatively high spatial and temporal resolutions.

Keywords Rainfall temporal variability · Rainfall spatial variability · Stochastic rainfall 
generation · MIKE System Hydrological European (MIKESHE)

1 Introduction

Floods are one of the most costly and deadliest natural disasters, annually affecting tens of 
millions of lives and causing catastrophic damage worldwide. Despite higher absolute eco-
nomic losses from flooding in developed countries, it is observed that developing countries 
have always experienced the highest fatality rates and economic losses associated with floods 
(Singh 2016). Consequently, gaining more knowledge about the flood-related processes, par-
ticularly by introducing various synthetic scenarios (e.g., synthetic rainfall input) into physi-
cally-based rainfall-runoff models, to come up with applicable flood mitigation methods and 
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develop reliable flood forecasting and warning systems, has always been an important research 
agenda among the hydrologists in different countries (Blöschl et al. 2019).

Rainfall exhibits significant variabilities in both time and space (Carvalho and Woodroffe 
2015). These variations have been identified as the primary source of uncertainty in rainfall-
runoff models and flood forecasting (Beven 2012; Lin et al. 2022). This might explain why 
nearly 50% of the 23 unanswered questions in hydrological sciences journal concern with 
the spatial and temporal variabilities in the processes of the hydrological cycle (Blöschl et al. 
2019). Therefore, understanding the impact of spatiotemporal variations in rainfall input on 
catchment response is crucial, as inconsistent findings in the existing literature necessitate a 
thorough investigation into the influence of these variabilities on hydrologic response.

A review of the literature on the effect of rainfall spatial characteristics on catchment response 
reveals varied approaches employed by researchers. Several scholars have examined the influ-
ence of rainfall monitoring network density, encompassing both ground-based and remotely-
sensed data, on outlet hydrograph (Bell and Moore 2000; Hohmann et al. 2021; Krajewski et al. 
1991; Lobligeois et al. 2014; Lopes 1996; Meselhe et al. 2009; Ochoa-Rodriguez et al. 2015; 
Rafieeinasab et al. 2015; Schuurmans and Bierkens 2007; Senan et al. 2022; Terink et al. 2018). 
Others have made efforts to ascertain the impact of the coefficient of variation of precipitation 
fields on catchment response (Caracciolo et al. 2014; Zhang and Han 2017; Zhang et al. 2018). 
Additionally, certain investigators have explored how the spatial correlation of precipitation 
fields affects the surface runoff characteristics (Paschalis et al. 2014; Wilson et al. 1979). Even-
tually, numerous studies have been dedicated to the effect of spatial patterns of the precipita-
tion field and storm center location on outlet hydrograph characteristics (Beven and Hornberger 
1982; Chen et al. 2023; Nicótina et al. 2008; Younger et al. 2009). Despite the broad literature on 
the relationship between spatial characteristics of rainfall and the catchment response, the con-
clusions have been conflicting. This is particularly evident when considering factors such as the 
size of the catchment under investigation (Michaud and Sorooshian 1994; Nicótina et al. 2008; 
Segond et al. 2007; Zhou et al. 2021), the imperviousness of the catchment surface and its spatial 
distribution (Gabellani et al. 2007; Paschalis et al. 2014; Pechlivanidis et al. 2017).

The impact of temporal characteristics of rainfall on outflow response has received less 
attention compared to spatial characteristics (Li et al. 2020). Aronica et al. (2005) inves-
tigated the influence of temporal resolution on the response of an urban catchment and 
concluded that rainfall data with low temporal resolution inevitably leads to an underes-
timation of the peak flow. Furthermore, the findings of several studies demonstrate that 
refining the temporal resolution leads to improved accuracy in simulating floods (Bruni 
et al. 2015; Chow et al. 2021; Hou et al. 2020; Huang et al. 2019; Li et al. 2022). In a simi-
lar study, Lyu et al. (2018), in addition to the aforementioned result, reported that the peak 
flow in comparison with the runoff volume is more sensitive to the temporal resolution of 
input rainfall data. As a result, there is still a need for further research to fully comprehend 
the influence of rainfall spatiotemporal variabilities on catchment response to either con-
firm or refuse the existing findings.

In this study, our aim is to comprehensively assess the effects of rainfall spatiotemporal 
variabilities on catchment response using a physically-based, fully distributed rainfall-runoff 
model, along with two rainfall generation models. We examined almost any factor that comes 
to mind when considering rainfall variabilities such as the location of the storm center, spa-
tiotemporal resolutions of rainfall, and correlation length of rainfall fields in both space and 
time. The innovative aspect of this research lies within: 1- Developing two brand new simple 
rainfall generation models to address the research questions. 2- Simultaneously investigating 
the effect of rainfall resolution and rainfall correlation length in both time and space on catch-
ment response. The main research questions were: (1) What would be the impact of storm 
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center location on catchment response? (2) How does the catchment respond to rainfall with 
different levels of spatial and temporal resolutions? (3) What would be the impact of rainfall 
correlation in time and space on catchment response?

2  Study Area and Data

2.1  Study Area

The study was focused on the Walnut Gulch Experimental Watershed (WGEW), a well-
equipped catchment covering an area of 150  km2 in Southeastern Arizona, USA (see 
Fig. 1). The climate of the region is classified as semi-arid, with mean annual tempera-
ture of 17.7 °C and mean annual precipitation of 350 mm. The precipitation regime is 
dominated by the North American Monsoon during July, August, and September. Eleva-
tion above mean sea level of the watershed ranges from 1250 to 1585 m.

The runoff characteristics of the WGEW are similar to those of many other semi-arid 
regions in the world, where the channels remain dry for most of the year (Stone et al. 
2008). The streamflow regime is intermittent, lacking a base flow component, and the 
hydrographs exhibit a "flashy" nature primarily due to intense rainfall inputs. Conse-
quently, the flood peak arrives rapidly with a steep rising limb in the flow hydrograph 
(Keppel and Renard 1962).

2.2  Rainfall and Runoff Data

The original rainfall and runoff measurement instruments on the WGEW were installed 
in 1950s. Currently, rainfall and runoff data in the catchment are collected via 97 opera-
tional tipping bucket rain-gauges and 16 hydrometric stations. The spatial distribution 
of these stations is shown in Fig. 1. Stream flows are monitored with one-minute tem-
poral resolution, while precipitation is observed with variable temporal resolutions. In 
this research, data from 88 rain-gauges (See Table 5 in the Appendix A) with a consid-
erable record length are used to parameterize the proposed stochastic rainfall generation 
model. Hydrometric station #7, documented in Table  6 in the Appendix A and illus-
trated in Fig. 1, drains a sub-catchment with a drainage area of 13.4  km2. Considering 
hydrometric station #7 as the calibration point, this small sub-catchment, along with the 
data from 11 rain-gauges with symbol * in Table 5 in the Appendix A, is used in the 
actual calibration and verification phase of the employed rainfall-runoff model, MIKE-
SHE (See appendix B for more details on the calibration and verification phase).

3  Methodology

3.1  Hydrologic Model

As the flow of water over the land phase of the hydrologic cycle is considered to be a 
distributed process, the estimates of flow rate and water level at important location(s) 
within the catchment can be obtained via a distributed flow routing model. With no 
exception, these types of models are based on partial differential equations (i.e., the 
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Saint–Venant equations for one-dimensional flow) that allow the flow rate and water  
level to be computed as functions of space and time (Chow et al. 1988). The nature of 
hydrologic numerical experiments calls for rainfall-runoff models which can accommodate  
both spatial and temporal variabilities of rainfall into account. As such, we used a phys-
ically-based, deterministic, and fully distributed hydrologic model called MIKE-SHE. 
MIKE-SHE is able to simulate all of the major hydrologic processes, including evapo-
transpiration, infiltration, overland flow, unsaturated flow, groundwater flow, and chan-
nel flow, as well as their interactions (Abbott et al. 1986). Depending on the goals of the 
modeling, the availability of field data, and the modeler’s objectives, each of the cited  
processes can be represented at different levels of spatial distribution and complexity 

Fig. 1  Geographical location of Walnut Gulch Experimental Watershed and Spatial distribution of the rain-
gauges and hydrometric stations
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(Butts et  al. 2004). As an example, the precipitation input can be incorporated by 
assuming it to be uniform, station-based or fully distributed (grid-based).

The hydrologic processes simulated in this study were: overland flow, channel flow, and infil-
tration which were all triggered by a fully distributed precipitation input in all numerical experi-
ments. As for infiltration, we utilized the Green-Ampt infiltration equation and its validity to 
convert raw rainfall to excess rainfall hyetograph was ensured via incorporation and independent 
verification of a rainfall temporal pattern (results are not included). We employed the two dimen-
sional diffusive wave approximation of the Saint–Venant equations to route the overland flow 
process, and the major contribution to channel flow was assumed to be due to Hortonian 
overland flow [DHI (2014b), V.2 p.267]. For routing the upstream inflow hydrograph and 
the distributed lateral inflow caused by overland flow in the river corridor toward the mouth 
of the watershed, the fully dynamic version of MIKE-11 with suppression of convective 
term was utilized [DHI (2014a), p.457]. A Conventional finite difference method and the 
six-point Abbott-Ionescu scheme were respectively used to convert diffusion wave into alge-
braic equations for each spatial pixel in the catchment and to route the fully dynamic wave 
Saint–Venant equations in the river corridor[DHI (2014a), p.461]. The input parameters 
were considered to be precipitation, topography, Green-Ampt model infiltration parameters 
(i.e., saturated hydraulic conductivity, soil suction at wetting front, porosity, initial water con-
tent), overland and channel flow Manning roughness coefficients. All the data sources such 
as digital elevation model, channel network, ARC-GIS data layers, etc. used in the current  
study are available at https:// www. tucson. ars. ag. gov/ dap/.

3.2  Rainfall Generation Models

Rainfall generation models are typically categorized into various types based on their intended 
purpose. In this study, we pursued two primary objectives: first, to examine how the spatial 
location of the storm center influences the characteristics of the outflow hydrograph in the 
catchment, and second, to assess the impact of spatiotemporal variabilities of rainfall on these 
characteristics. To achieve these objectives, two straightforward rainfall generation models 
were developed and described in detail below.

3.2.1  Deterministic Rainfall Generation Model

One of the main objectives of this study is to examine how the spatial location of the storm 
center affects the outflow hydrograph of the catchment. To achieve this, it is imperative to 
generate events that share the same spatiotemporal pattern and volume, but with a significant 
change in the storm center location. For this purpose, we employed the bivariate normal distri-
bution function as a mechanism to generate rainfall with the same spatial pattern and volume. 
The function ordinate of the mentioned distribution can be stated as follows:

Once again, it should be noted that in this study, this relationship was used only as a 
function of x and y coordinates to generate rainfall spatial patterns of a specified coverage 
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and duration. �x and �y are the parameters that determine the location of the function max-
ima in x and y axes, respectively. �x and �y control the degree of sharpness or flatness of 
the peak. In this study, � , which dictates the degree of symmetry of the field, was assumed 
to be 0 in order to create symmetry in all directions in the generated spatial pattern. Need-
less to say, the pixel value for a particular x and y coordinates is considered to be the cumu-
lative rainfall in that pixel. One of the features of this function is that the volume under the 
spatial pattern equals 1, meaning the function can be multiplied by any arbitrary number 
(V) to produce cumulative rainfall of a predefined volume. Assuming a triangular rainfall 
temporal pattern, we utilized the rainfall dimensionless temporal pattern documented in 
Fig. 2 to disaggregate the pixel value into a time-wise variation. As such, the duration of 
rainfall in all pixels is the same, but their total depth could be different.

3.2.2  Stochastic Rainfall Generation Model

This research aims to examine how the variability of rainfall in space and time affects the 
catchment outflow hydrograph. To this end, it is important to generate events with similar 
spatiotemporal correlation and volume. We employed the multivariate normal distribution 
function to generate rainfall events that share the same spatiotemporal structure and vol-
ume. The subsequent sections will provide a theoretical background and a detailed descrip-
tion of the rainfall generation model.

Fig. 2  The rainfall dimensionless temporal pattern used to convert cumulative rainfall to excess rainfall 
hyetograph
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According to Bras and Rodríguez-Iturbe (1976), rainfall intensity as a function of space 
and time in a typical event can be defined as follows:

where I(x, y, t) is the rainfall intensity at a point (x, y) and at time t in the catchment, 
I�(x, y, t) is the mean deterministic component of rainfall intensity and W(x, y, t) is the sto-
chastic noisy residual with a zero mean and variance �2

w
 . It is generally accepted that the 

mean temporal rainfall pattern of the same type in a specific region can be represented in  
dimensionless form, as documented elsewhere (Eagleson 1970; Pilgrim and Cordery 1975). 
Therefore, one can compute I�(x, y, t) using rainfall data of any arbitrary gauged catchment. 
In this study,  I�(x, y, t) was considered to be independent of space and only a function of 
time. In this regard, Eq. (2) can be rewritten as:

Now, by computing I�(t) using historical rainfall data in a gauged catchment, it will be 
possible to generate a random event for the catchment by modeling W(x, y, t) stochastically, 
as it is discussed in the next paragraph.

Assuming W(x, y, t) to be a random process distributed in space and time, implies that at 
every point in space and at an instant in time, there is a random variable in the catchment. 
Suppose that the catchment can be spatially divided into m number of evenly distributed 
pixels with predefined dimensions and the event consists of n number of time-steps with 
predefined length. Therefore, there will be N = m × n random variables. Assuming the 
probability density function of these random variables (Xi;i = 1, 2, 3,… ,N) to be normal, 
their joint distribution function will be a multivariate normal distribution:

where x is a real N-dimensional column vector, � is the mean vector and 
∑

 is an N × N 
variance–covariance matrix which are defined as follow:

In which:

In Eqs. (4),  (5),  (6) and (7) E[] is the expectation operator, COV
(
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)
 is the covari-

ance of Xi and Xj , �i is the standard deviation of Xi , and �(Xi,Xj) is the correlation function 
between Xi and Xj . As a result, after specifying the parameters of the distribution func-
tion [i.e., the mean vector and the variance–covariance matrix, N(�, �, �) ], it is feasible to 
sample the field of W(x, y, t) stochastically, and generate various realizations of a typical 
random field with a specified spatial and temporal correlation.

As W(x, y, t) is a zero mean random field, the members of the mean vectors are all zero. 
Specifying the entries of the covariance matrix, according to Eq. (7), requires knowing the 
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standard deviation of each random variable and the correlation between the random vari-
ables Xi and Xj . We extensively utilized rainfall data of WGEW in time and space to estab-
lish parameters of the variance–covariance function. Then, the separation distance and lag 
between pixels were used to obtain entries of the variance–covariance matrix.

To find the correlation between the random variables Xi and Xj at two different instances, 
the following spatiotemporal correlation structure was employed (Porcu et al. 2020):

where Δh and Δt are the separation distance and time lag between Xi and Xj , respectively. � 
and � are the autocorrelation lengths in space and time, controlling the spatial and temporal 
variations of the attribute under consideration over the study area. Once again, observed 
rainfall data of WGEW were used to extract correlation parameters in time and space and 
delineate the spatiotemporal experimental and subsequently theoretical variograms. Need-
less to say, we assumed that the random field is stationary (i.e., mean and variance are 
independent of space and are constant) and isotropic (i.e., the theoretical variogram’s 
parameters would not change with direction).

3.3  Calibration and Verification of MIKE‑SHE Model for a Sub‑Watershed of Walnut 
Gulch Catchment

The main focus of this study was to utilize the WGEW for numerical experiments and 
to examine how the spatiotemporal variabilities of rainfall affect catchment response. The 
purpose of conducting actual model calibration and subsequent verification was not to cali-
brate the model for practical applications, but rather to ensure that we as the potential user 
understand the underlying logic of the simulation program. Appendix B provides a brief 
description of the calibration and independent verification of the MIKE-SHE model.

3.4  Detail of Numerical Experiments Design

In this subsection, a rational will be provided on how the data for each research question 
was generated. For this purpose, synthetic rainfall events were generated using the two 
rainfall generation models introduced earlier. In all cases, the catchment area was divided 
into 591 pixels of size 500 m × 500 m, and the generated hyetograph for each pixel was 
used in the modeling. Additionally, in all the experiments, the rainfall-runoff process has 
been modeled in the entire Walnut Gulch catchment with a basin area of 150  km2, using a 
reasonable but not calibrated set of parameters. We executed the rainfall-runoff model in 
a forward manner with a synthetic forcing function (i.e., rainfall input), hypothetical soil 
hydraulic properties compatible with watershed characteristics, watershed topographic pat-
tern, etc. (See Table 1). It should be noted that all these values were chosen reasonably, 
taking into account the real physical characteristics of the catchment.

(8)�(Δh,Δt) = exp (−
Δh

�
) × exp (−

Δt

�
)
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3.4.1  Test Case #1

The main aim of test case #1 was to examine how the location of the storm center influ-
ences the characteristics of the outflow hydrograph. For this purpose, ten synthetic rain-
fall events were generated using the deterministic rainfall generation model. These events 
shared the same spatial pattern, nearly the same volume, but different storm center loca-
tions. In this particular case, the watershed was assumed to be impermeable, meaning that 
the original rainfall hyetograph was excess rainfall. To determine the location of the storm 
center relative to the outlet of the catchment, we employed the index Ipcp, introduced by 
Smith et al. (2004), as a numerical measure. This index is defined as follows:

In which:

where, Np is the number of input rainfall pixels (in this case 591), Pi is the amount of event 
cumulative rainfall depth for pixel i, Ai is the area covered by pixel i (which is the same for 
all pixels), Li is the hydraulic distance between pixel i and the catchment outlet, calculated 
via ArcMap.

The closer Ipcp is to 1, the closer the storm center is to the catchment center. Values greater 
than 1 indicate that the storm center is closer to the upstream, while values less than 1 imply 
that the storm center is closer to the downstream. All 10 events were modeled using MIKE-
SHE and the values   of time to peak and peak magnitude were compared, considering Ipcp of 
events and excluding runoff volume due to its invariance property for all events.

3.4.2  Test Case #2

The purpose of designing test case #2 was to investigate the effect of rainfall spatiotempo-
ral variabilities (i.e., rainfall spatial and temporal measurement scales and correlation length 
in time and space) on the characteristics of outflow hydrograph. Rainfall spatial and temporal 
measurement scales represent themselves in resampling the spatial and/or temporal resolutions.

To achieve this objective, we generated three sets of rainfall events using the stochastic 
rainfall generation model, with each set consisting of 25 synthetically generated realiza-
tions, all with similar rainfall volume and spatiotemporal resolution. However, the sets dif-
fered in their spatiotemporal correlation structures. The parametric characteristics for each 
set of events are summarized in Table 2.

We used events from series #1 and #2 to investigate the effect of rainfall spatial resolu-
tion, for two correlation lengths in space, on catchment response. To this end, 1 km × 1 km, 
1.5 km × 1.5 km, 2 km × 2 km, 3 km × 3 km, 6 km × 6 km and spatially uniform versions 

(9)Ipcp =
Cpcp

Cbasin

(10)Cpcp =

∑Np

i=1
PiAiLi

∑Np

i=1
PiAi

(11)Cbasin =

∑Np

i=1
AiLi

∑Np

i=1
Ai
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of each event, were obtained by spatial aggregation of benchmark event (i.e., 500  m × 
500 m spatial resolution, temporal resolution remains at 10-min). Finally, by considering 
the simulated outflow hydrographs for 500 m × 500 m scenario as the reference hydro-
graphs, we compared the characteristics of outflow hydrographs of the 6 remaining ver-
sions of each event for series #1 and #2 with the reference hydrographs. In order to validate 
the difference in the spatial correlation of the two series, Moran’s I index was employed, 
which is defined as follows (Zhang and Han 2017):

where Np is the number of points or pixels (in this case 591), Pi is the cumulative depth of 
precipitation for pixel i, P is the average depth of precipitation over the catchment area and:

In which rij is the spatial distance between pixels i and j.
Similarly, we investigated the impact of rainfall temporal resolution on the character-

istics of the outflow hydrograph using events from series #1 and #3. To do this, different 
versions of each event were created by temporally aggregating the benchmark event (which 
has a 10-min temporal resolution) into 20-min, 30-min, and 40-min versions. The spatial 
resolution remains constant at 500 m × 500 m. Consequently, we compared the characteris-
tics of the outflow hydrographs for the three upscaled versions of each event from series #1 
and #3 with the reference hydrographs. Considering the existing literature in mind, in the 
following section, the results of each experiment and their practical implications in opera-
tional hydrology, will be presented.

(12)I =
NP

WP

∑
i

∑
j wij(Pi − P)(Pj − P)

∑
i(Pi − P)

(13)
wij = r−1

ij
for i ≠ j

wij = 0 for i = j

(14)Wp =
∑

i

∑
j
wij

Table 2  Characteristics for each series of generated events

Event series number

1 2 3

Number of events 25 25 25
Reference spatial resolution 0.5 km × 0.5 km 0.5 km × 0.5 km 0.5 km × 0.5 km
Reference temporal resolution 10 min 10 min 10 min
Correlation length in space 15.6 km 5.2 km 15.6 km
Correlation length in time 18.3 min 18.3 min 55 min
Resampled spatial resolution 1 km × 1 km

1.5 km × 1.5 km
2 km × 2 km
3 km × 3 km
6 km × 6 km
Uniform

1 km × 1 km
1.5 km × 1.5 km
2 km × 2 km
3 km × 3 km
6 km × 6 km
Uniform

-

Resampled temporal resolution 20 min
30 min
40 min

- 20 min
30 min
40 min
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3.5  Measures of Accuracy

In this research, two measures of goodness, namely NRMSE (Normalized Root Mean 
Square Error) and Relative Error, were utilized to compare and evaluate various scenarios 
emerging from the experimental design. They are defined as follows:

where yr
i
 is the reference value for event i, ys

i
 is the simulated value for event i, E is the 

number of events, y is the average of the reference values (the values could be peak magni-
tude, time to peak, and runoff volume).

4  Results and Discussion

4.1  Test Case #1

Figure 3a and b display the spatial pattern of cumulative rainfall events for two extreme 
scenarios, namely events #1 and #10. It is evident from these figures that the only differ-
ence among the generated patterns lies within the location of the storm center. It is hypoth-
esized that despite having the same spatiotemporal pattern and rainfall volume, these 
events would result in completely different outflow hydrographs due to variations in the 
storm center location.

Figure  3c, d illustrate the peak magnitude and time to peak as a function of Ipcp for 
various events. As expected, an increase in Ipcp, which corresponds to an increase in the 
distance between the storm center and the outlet, leads to substantial variations in both 
peak magnitude and time to peak, following a clearly defined trend. Specifically, as the 
storm center moves away from the catchment outlet, the outflow hydrograph attenuates, 
resulting in a decrease in peak magnitude. Additionally, an increase in Ipcp leads to a longer 
travel time for the flood peak, resulting in an increase in time to peak (Smith et al. 2004). 
Regarding the time to peak, Chen et al. (2023) also achieved similar results. However, in 
terms of peak magnitude, they reported a different behavior (i.e., a double peak hydrograph 
for the case with the storm center locating in the downstream), possibly due to variations in 
topography and the asymmetric nature of the events being studied. Michelon et al. (2021) 
similarly indicated that the distance between the rainfall center and the outlet can have a 
significant impact on the hydrologic response.

Figure 3e further demonstrates how the change in storm center location affects the 
outflow response in two ways: attenuation and translation of peak discharge. This is 
evident in events #1 and #10, which represent the farthest and nearest scenarios to the 
catchment outlet, respectively. Event #1 exhibits a considerable amount of attenuation 
and an increase in lag time of the hydrograph. These observations have practical impli-
cations for defining worst-case scenarios in designing hydraulic structures and deter-
mining the optimal spatial location for flood-mitigating structures, such as check dams.

(15)
NRMSE =

�∑E

i=1
(ys

i
−yr

i
)2

E

y

(16)Relative Error =
ys
i
− yr

i

y
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4.2  Test Case #2

Test case #2 is divided into two parts. Firstly, it examines the influence of rainfall spa-
tial variability (i.e., resolution and correlation in space) on catchment response. This 
involves modeling rainfall observations at a 500 m grid spacing and 10-min intervals, as 
well as the resampled version at coarser resolutions (i.e., series #1 and #2). The result-
ing runoff hydrographs are then assessed.

Fig. 3  a, b Accumulated rainfall spatial pattern for two extreme scenarios–Events #1 and #10, variation of 
peak magnitude and time to peak against Ipcp c Flood peak magnitude, d time to peak, e Outflow hydro-
graphs for two extreme scenarios–Events #1 and #10
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Secondly, the test case evaluates the impact of rainfall temporal variability (i.e., reso-
lution and correlation in time) on catchment response. This is done by modeling rainfall 
observations at a 500 m grid spacing and 10-min intervals, and the resampled versions 
at lower temporal resolutions (i.e., series #1 and #3). The subsequent runoff hydro-
graphs are then critically evaluated.

4.2.1  Impact of Rainfall Spatial Variability

Figures 4a–f, g–l, m–r indicate the variation of flood peak magnitude, time to peak, and 
runoff volume, respectively, obtained from upscaled events in space compared to the refer-
ence spatial resolution for both series #1 and #2, considering two correlation lengths in 
space. For a fixed correlation length in space, increasing the spatial measurement scale 
(resampling in space) initially has minimal impact on the peak magnitude, time to peak, 
and runoff volume. However, at higher resampling resolutions, particularly with uni-
form sampling, there is a considerable departure from the benchmark solutions, leading 
to underestimation of flood peak magnitude (Fig.  4a–f) and runoff volume (Fig.  4m–r), 
and overestimation of time to peak (Fig.  4g–l). The underestimation of peak magnitude 
has been observed in previous studies (Arnaud et al. 2011; Kim and Kim 2020; Krajewski 
et al. 1991; Li et al. 2020; Lobligeois et al. 2014; Meselhe et al. 2009) and is attributed 
to the smoothing of rainfall patterns for upscaled events, resulting in the replacement of 
high-intensity pixels with lower ones. The literature lacks a clear consensus on the effect 
of spatial resampling on the time to peak. For instance, Cristiano et  al. (2019) obtained 
similar findings to the current research, while Bruni et al. (2015) discovered that spatially 
upscaled events can lead to either an increase or decrease in the time to peak, depending on 
specific event characteristics. Therefore, it remains challenging to make a definitive state-
ment regarding this Issue. Furthermore, resampling in space leads to underestimation of 
runoff volume, potentially due to increased infiltration as rainfall intensity decreases below 
the potential infiltration rate (Sapriza-Azuri et al. 2015).

The impact of spatial density of the monitoring network (i.e., spatial measurement 
scale) on hydrograph characteristics is influenced by the spatial correlation of rainfall. 
Higher spatial correlation leads to a lower impact of spatial measurement scale on the 
peak magnitude (Bell and Moore 2000). This has implications for rain-gauge network 
design, particularly when considering spatiotemporal variations to refine flood hydro-
graph characteristics (Attar et al. 2020; Shahidi and Abedini 2018; Soroush and Abedini 
2019). Furthermore, a higher spatial correlation diminishes the influence of spatial den-
sity on the time to peak. However, this effect is not as pronounced as the impact on the 
magnitude of the peak. This implies that rainfall spatial information has less impact on 
overestimation of time to peak compared to underestimation of peak magnitude. Assign-
ing a uniform spatial distribution of rainfall to flood warning systems, while converting 
rainfall into runoff, appears to be misleading and could potentially lead to severe prop-
erty damage and human casualties (Lin et al. 2022).

The results can be further explained by utilizing an index known as NRMSE. A lower 
value of this index indicates a closer match between the simulated values (obtained from 
upscaled events) and the benchmark values. Table  3 displays the NRMSE values for 
peak magnitude, time to peak, and runoff volume for both low and high spatially corre-
lated events. It is evident that resampling in space results in an increase in NRMSE. The 
rate of increase for peak magnitude is particularly notable compared to other hydrograph 
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Fig. 4  Effect of spatial upscaling on a-f peak magnitude g-l time to peak m-r runoff volume for events with 
both high (events series #1) and low (events series #2) spatial correlation
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characteristics, consistent with the earlier explanations. In general, spatial aggregation of 
events leads to a decrease in peak magnitude, an increase in time to peak, and a decrease 
in runoff volume. This is illustrated in Fig. 5a, which showcases a hydrograph for a typi-
cal event alongside its corresponding resampled event in space. It is crucial to note that 
underestimation of peak magnitude and runoff volume, as well as overestimation of time 
to peak, can all contribute to greater flood damage. Therefore, the density of the rainfall 
monitoring network plays a significant role in mitigating losses associated with floods.

A more detailed examination of the information presented in Table 3 suggests that events 
with higher spatial correlation exhibit lower NRMSE values compared to events with lower 
spatial correlation. In other words, the impact of monitoring network density on the outlet 
hydrograph is closely tied to the spatial correlation of the event. Consequently, the magnitude 
of this impact is expected to be influenced by the climatic conditions and rainfall regime of 
the region, which determine the characteristics of the rainfall events. Therefore, the required 
density of the monitoring network to accurately estimate the catchment outlet hydrograph will 
vary depending on the catchment and its specific climatic conditions.

To further support the findings of this study, Figs. 6a–f, g–l demonstrate the variation in 
relative error of peak values and time to peaks against variation in the coefficient of vari-
ation (CV) and Moran’s I, respectively. In these figures, the ordinate of relative error for 
both peak and time to peak values is demonstrated with different colors. Zhang and Han 
(2017) attempted to classify rainfall spatial variability based on simultaneous variations in 

Fig. 5  a WGEW’s outlet hydrograph for a typical reference event. Spatial resolution: 500 m × 500 m, Tem-
poral resolution: 10-min along with other resampled hydrographs with various spatial resolution (1 km × 
1 km, 1.5 km × 1.5 km, 2 km × 2 km, 3 km × 3 km, 6 km × 6 km and spatially uniform) b WGEW’s outlet 
hydrograph for a typical reference event. Spatial resolution: 500 m × 500 m, Temporal resolution: 10-min 
along with other resampled hydrographs with various temporal resolution (20-min, 30-min and 40-min)
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indices such as the CV and Moran’s I. According to their classification, a complex event is 
characterized by low values of Moran’s I and high values of CV, while a simple event has 
high values of Moran’s I and low values of CV. Other alternatives are considered medium 
events. It is important to note that the color bar will vary depending on the resampling 
scale. As observed, for all spatial resolutions, events with lower values of Moran’s I and 
either lower or higher values of CV exhibit greater relative error in both peak magnitude 
and time to peak. This suggests that the relative error is more sensitive to changes in the 
Moran’s I index compared to the CV. This discrepancy can be attributed to the fact that the 
CV, unlike the Moran’s I index, is not closely linked to the spatial pattern of precipitation.

Fig. 6  Variation of relative error in a-f peak magnitude and g-l time to peak as a function of Moran’s I 
index and coefficient of variation
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4.2.2  Impact of Rainfall Temporal Variability

Figure 7a–c, d–f, g–i show the variation in flood peak magnitude, time to peak, and runoff 
volume obtained from resampled events in time compared to the corresponding values at 
the reference temporal resolution for both series #1 and #3, considering two correlation 
lengths in time. The results of the numerical experiments indicate that peak magnitude and 
runoff volume are lower, while time to peak is higher, in the temporally upscaled events 
compared to the reference hydrographs generated using 10-min events. This can be argued 
by the smoothing of the temporal pattern of rainfall in the upscaled events, resulting in 
a reduction in high-intensity hyetographs. This is depicted in Fig. 5b, which illustrates a 
hydrograph for a typical event and its corresponding resampled events in time. These find-
ings are in line with earlier research studies (Aronica et al. 2005; Hou et al. 2020; Huang 
et  al. 2019). Similar to the spatial upscaling, the coarser the temporal resolution is, the 
lower the peak magnitudes and the higher the time to peaks are, compared to the refer-
ence values. Similar behavior is observed elsewhere (Cristiano et al. 2019; Lyu et al. 2018; 
Ochoa-Rodriguez et al. 2015).

Fig. 7  Effect of temporal upscaling on a-c peak magnitude, d-f time to peak magnitude and g-i runoff vol-
ume for events with both low (events series #1) and high (events series #3) temporal correlation
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It is important to note that the differences between the reference hydrographs and the hydro-
graphs of events that have been upscaled temporally are more prominent than the differences 
between the reference hydrographs and the hydrographs of events that have been upscaled spa-
tially. This suggests that temporal aggregation has a greater impact on hydrograph characteris-
tics compared to spatial aggregation (Liu et al. 2021; Ochoa-Rodriguez et al. 2015).

Table 4 presents the NRMSE values for peak magnitude, time to peak, and runoff vol-
ume for low and high temporally correlated events. The NRMSE values for events with 
different levels of temporal correlation do not exhibit significant differences. However, it is 
important to note that reaching a definitive conclusion on this matter requires more exten-
sive research, as there is a lack of similar studies in the existing research literature for com-
parative analysis.

5  Conclusions

This research intended to investigate the impact of storm center location, spatiotemporal 
variabilities, and correlation structure of rainfall in time and space on the catchment out-
flow response. For the first objective, 10 events with almost the same volume and tempo-
ral pattern but different storm center locations were generated using deterministic rainfall 
generation model, and the resulting hydrographs were compared. The findings showed that 
when the storm center was closer to the catchment outlet, the peak magnitude increased 
significantly while the time to peak decreased. This has implications for designing hydrau-
lic structures and flood mitigation measures within a typical catchment.

For the second objective, the impact of rainfall spatial variability on catchment response was 
explored using two sets of events with different spatial correlation structures and almost the 
same volume and temporal correlation structure, generated by a stochastic rainfall generation 
model. The results showed that the spatial density of the monitoring network had a significant 
impact on the hydrological response of the catchment, particularly on the peak magnitude. The 
effect of spatial density was lower for events with higher spatial correlation.

Similarly, the impact of rainfall temporal variability on outlet discharge was investi-
gated using two sets of events with different temporal correlation structures and almost the 
same volume and spatial correlation structure, generated by a stochastic rainfall generation 
model. The time step of the monitoring network had a considerable effect on the outflow 
hydrograph characteristics, with temporal resolution having a greater impact than spatial 

Table 4  NRMSE error index for peak magnitude, time to peak and runoff volume in events with high tem-
poral correlation (events series #3) and events with low temporal correlation (events series #1)

Temporal resolutions

20 min 30 min 40 min

Peak magnitude—Low correlation in time 0.18 0.37 0.41
Peak magnitude—High correlation in time 0.23 0.48 0.36
Time to peak—Low correlation in time 0.07 0.15 0.2
Time to peak—High correlation in time 0.09 0.22 0.19
Runoff volume—Low correlation in time 0.12 0.26 0.3
Runoff volume—High correlation in time 0.17 0.34 0.29
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resolution. This implies call for a more refined resolution in time compared to space. The 
results also indicate that the peak magnitude was the most sensitive component to temporal 
resolution, and the effect of temporal resolution was not significantly influenced by tempo-
ral correlation.

The results of this study have the potential to improve flood monitoring and warning 
systems, as well as optimize the design of rain gauge networks and drainage systems, spe-
cifically in urban catchments. This is achieved by highlighting the importance of having a 
rainfall measurement system that is both spatially and temporally dense. In this research, the 
density of the rainfall measurement system is assumed to be relatable to the spatial resolu-
tion of rainfall while one can generate rainfall events at irregular points in space (repre-
senting the irregular nature of rain gauges’ distribution) using the developed rainfall-runoff 
model and carry out similar experiments to put the findings of this study on a sounder argu-
ment. In this regard, the main difference would be the fact that upscaling means averaging 
some piece of information whereas crossing gauges out of a network means losing informa-
tion. However, one limitation is that the study used synthetic data, and further research is 
needed to verify the results using real-world catchment data and address other sources of 
uncertainty and interactions between spatiotemporal variability of soil hydraulic properties. 
In summary, this study highlights the importance of a dense rain-gauge network with a short 
monitoring time step to accurately capture the spatiotemporal correlation structure and pat-
tern of rainfall for reliable estimation of the outflow hydrograph.
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