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Abstract
Several bridges failed because of scouring and erosion around the bridge elements. Hence, 
precise prediction of abutment scour is necessary for the safe design of bridges. In this 
research, experimental and computational investigations have been devoted based on 45 
flume experiments carried out at the NIT Warangal, India. Three innovative ensemble-
based data intelligence paradigms, namely categorical boosting (CatBoost) in conjunction 
with extra tree regression (ETR) and K-nearest neighbor (KNN), are used to accurately 
predict the scour depth around the bridge abutment. A total of 308 series of laboratory 
data (a wide range of existing abutment scour depth datasets (263 datasets) and 45 flume 
data) in various sediment and hydraulic conditions were used to develop the models. Four 
dimensionless variables were used to calculate scour depth: approach densimetric Froude 
number (Fd50), the upstream depth (y) to abutment transverse length ratio (y/L), the abut-
ment transverse length to the sediment mean diameter (L/d50), and the mean velocity to 
the critical velocity ratio (V/Vcr). The Gradient boosting decision tree (GBDT) method 
selected features with higher importance. Based on the feature selection results, two com-
binations of input variables (comb1 (all variables as model input) and comb2 (all variables 
except Fd50)) were used. The CatBoost model with Comb1 data input (RMSE = 0.1784, 
R = 0.9685, MAPE = 10.4724) provided better accuracy when compared to other machine 
learning models.
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1  Introduction

Scour is a natural phenomenon that occurs in alluvial streams as a result of the ero-
sive action of flowing water (Oliveto and Hager 2005; Eghlidi et al. 2020). Abutments 
are constructed near the stream banks for constructing and supporting a bridge. It is 
generally recognized that abutments are undermined by river-bed erosion and scour-
ing, which are the leading causes of abutment failure (Pandey et al. 2020; Afzal et al. 
2021). Natural processes or man-made interactions can cause local scour in streams 
(Barbhuiya and Dey 2004; Kothyari et al. 2007; Goyal and Ojha 2011). Abutments and 
other hydraulic structures are often failed by scour (Pandey et al. 2020). Earlier studies 
on scour around abutments tended to focus on the prediction of maximum, and time-
dependent scour depth (Barbhuiya and Dey 2004; Kothyari et  al. 2007). The Federal 
Highway Administration 1973 report illustrates that more than 400 bridges failed due to 
pier and abutment scour (Pandey et al. 2018). These collapsed bridges show the impor-
tance of realistic prediction of scour around the bridge elements (Kumar et  al. 2022). 
Scour around the abutments in natural streams is still a matter of alarm, while numerous 
researchers and engineers have proposed numerous mathematical and numerical mod-
els using laboratory and field studies (Barbhuiya and Dey 2004; Dey and Barbhuiya 
2005). Therefore, improving the abutment scour phenomenon and processes is vital to 
calculate the maximum abutment scour depth at equilibrium scour conditions. (Oliveto 
and Hager 2005) carried out an experimental study on abutment scour and stated that 
the minimum required laboratory dimensions to apply Froude number similarity. They 
also checked the influence of sloping abutments on scour. As long as the limitations of 
the computational approach are respected, the outcomes of their study could be applied 
in practice. (Dey and Barbhuiya 2005) completed an experimental flume study on abut-
ment scour and derived a semi-empirical method to calculate the abutment scour around 
a short vertical wall, semicircular, and 45° wing wall abutments (length/flow depth ≤ 1). 
By considering the horse-shoe vortex system as the prime agent of abutment scour, they 
followed the conservation of sediment mass for analyzing the experimental data. The 
maximum scour depth at equilibrium conditions around abutments is key to the river 
and bridge engineers (Barbhuiya and Dey 2004).

The scour processes and flow patterns around the abutments are so complicated; 
thus, it is hard to derive a general empirical relationship (Azamathulla et al. 2010, 2013; 
Singh et al. 2020). The scour depth around the abutment can be calculated using numer-
ous empirical relationships (Dey and Barbhuiya 2005; Mohammadpour et  al. 2017). 
Each relationship yields good agreements with experimental values just for the specific 
datasets. Previous studies show the importance of the prediction of abutment scour pre-
cisely. Further, insufficient field data would lead to uncertainty of abutment scour equa-
tions (Mohammadpour et al. 2016).

With this in view, precise prediction of the abutment is cumbersome and needs to 
implement robust approaches like gene-expression programming (GEP), artificial neu-
ral network (ANN), generalized reduced gradient (GRG), genetic algorithm (GA), evo-
lutionary polynomial regression, modern multi-level ensemble approach and adaptive 
neuro-fuzzy inference system (ANFIS) to predict abutment scour (Azamathulla et  al. 
2010; Mohammadpour et  al. 2016; Mohammadpour 2017; Aamir and Ahmad 2019; 
Singh et al. 2022). Azamathulla et al. (Najafzadeh and Azamathulla 2013) applied soft 
computing approaches to calculate the pipeline scour and illustrated the best results 
with experimental datasets. (Mohammadpour et al. 2016) applied ANN and ANFIS to 
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calculate the abutment scour. They stated that the ANN and ANFIS could be success-
fully used to predict the scour depth at different bridge elements.

In this study, the authors aim to examine the existing maximum scour depth data at equi-
librium scour conditions for rectangular wall abutments. Existing abutment scour depth 
datasets (263 datasets) are collected from (Coleman et al. 2003) and (Dey and Barbhuiya 
2005). Further, 45 flume experiments are carried out at the National Institute of Technol-
ogy in Warangal, India. Previously proposed empirical relationships are also examined to 
analyze the performance based on available datasets (a total of 308 datasets). Although the 
applications of robust approaches in maximum scour depth prediction have been of interest 
to several investigators because of their accuracy and simplicity, no research work has been 
undertaken to develop a machine learning approach to predict the maximum scour depth 
at the bridge abutment. However, previous studies on other hydraulic structures scour have 
shown good agreements with observed values. Considering the significance of the concern 
of bridge abutment scour, which is mainly responsible for the scour hazards. An effort has 
been made to develop machine learning based models with a wide range of experimental 
data. The main objectives of this study are: 1- Application of the CatBoost model as new a 
machine learning approach to model abutment scour depth using a vast experimental data-
base, 2- Compare developed model with common machine learning approaches such as K 
nearest neighbor and extra tree models. 3- Compare existing empirical equations with the 
machine learning models.

2 � Methodology

2.1 � Maximum Scour Depth Relationships

Numerous studies are available on abutment scour. Most studies have examined the maxi-
mum scour at equilibrium scour conditions. At equilibrium conditions, maximum scour 
depth is influenced by flow properties, sediment characteristics, and abutment geometry 
(Barbhuiya and Dey 2004; Bressan et  al. 2011). The variables that influence the maxi-
mum abutment scour depth (dse) at equilibrium conditions in uniform sediment beds are 
as follows:

where dse is the maximum abutment scour depth, V is time-average flow velocity, y is the  
approach flow depth, � is the mass density of the fluid, � is the kinematic viscosity of  
fluid, d50 is the median diameter of sediment, Vc is the threshold velocity of sediment, �s is 
the mass density of sediment, L is the transverse length of the abutment and g is the gravi-
tational acceleration.

For sediment-fluid interaction, Eq.  (1) should not contain independent parameters 
�, �s and g (Dey and Barbhuiya 2005). (Dey and Barbhuiya 2005) gave a better representa-
tion of above mentioned parameters, and hence, Eq. (1) becomes

where, densimetric Froude number Fd50
=

V√
(S−1)gd50

 , S is the relative density of sediment.

(1)dse = f
(
V , y, �, �, d50,Vcr, �s, L, g

)

(2)dse = f

(
Fd50

,
V

Vcr

,
y

L
,
L

d50

)
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Many researchers derived mathematical relationships that calculate the maximum abut-
ment scour depth using various parameters (Kandasamy and Melville 1998; Melville and 
Coleman 2000). (Melville and Coleman 2000) proposed an abutment scour relationship on 
the basis of different empirical factors or K factors which show the influence of flow, sedi-
ment, and abutment characteristics. These K-factors can be calculated by the curve fitting 
method, and the maximum abutment scour depth (dse) expressed in terms of the product of 
K-factors is given as

where dse is the maximum abutment scour depth at equilibrium condition, Kd50 is the sedi-
ment gradation factor, KI is the flow intensity factor, Ks is the abutment shape factor, Kt is 
the time factor, Ky is the flow depth–abutment size factor, and K� is the abutment alignment 
factor. For vertical wall abutments, Ks and K� = 1.

K factors can be calculated using different empirical equations, given as

where Va is armor peak velocity.
Other abutment scour depth relationships for vertical-wall abutments under different 

regimes are given in Table 1.

2.2 � Description of Collected Data from Literature and Present Experimental Work

A wide range of existing abutment scour depth datasets (263 datasets) have been collected 
from (Coleman et al. 2003) and (Dey and Barbhuiya 2005). In addition, 45 flume experi-
ments have been carried out at the NIT Warangal, India. Additional tests were completed in 
a fixed bed masonry rectangular flume. Flume dimensions were 16.0 m long, 1.0 m wide, 
and 0.40 m deep. The flume’s test section started 8.0 m from its entrance and had dimen-
sions of 3.0 m long, 0.80 m wide, and 0.25 m deep. Uniform sand with a median diameter 
of 0.27 mm and a geometric standard deviation of 1.17 was used as the sediment bed. We 
used vertical wall abutment models with transverse lengths viz. 5.0, 6.8, 7.5, 8.4, 9.8, 10.6, 
12.5, 15.0, 17.5 and 19.0 cm. All tests were conducted under non-submerged conditions. 
A valve was fixed into the flume inlet pipe to control the flowrate. At the downstream end 

(3)dse = Kd50
KIKSKyK�

(4)
Kd50

�
L∕d50 ≤ 25

�
= 0.57 log

�
2.24

L

d50

�

Kd50

�
L∕d50 > 25

�
= 1

⎫⎪⎬⎪⎭

(5)
KI =

V −
�
Va − Vcr

�
Vc

, for
V −

�
Va − Vcr

�
Vcr

< 1

KI = 1, for
V −

�
Va − Vcr

�
Vcr

≥ 1

⎫⎪⎪⎬⎪⎪⎭

(6)

Ky(L∕y ≤ 1) = 2L

Ky(1 < L∕y < 25) = 2(yL)0.5

Ky(L∕y ≥ 25) = 10y

⎫⎪⎬⎪⎭
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of the flume, a tail gate and a pre-calibrated rectangular notch were fixed to maintain the 
flow depth and measure the flowrate, respectively. The experiments were performed until 
they reached an equilibrium scour, i.e., no change in scour geometry over time. All tests 
in this study were carried out for 20 h. Experimentally, it was observed that the maximum 
scour depth (dse) at equilibrium condition is located at the upstream nose of the abutment. 
The Vernier point gauge was used to determine the maximum abutment scour depth under 
equilibrium conditions. Due to the fact that all experiments were conducted in clear-water 
scour, the threshold velocity ratio was always less than one.

The vertical-wall abutment model was fixed in the test section at the right side of the 
flume prior to the start of the experiment (as can be seen in Fig. 1), i.e., located 9.5 m from 
the flume entrance. The sand bed was leveled perfectly with the bed slope and then covered 
with a 3 mm acrylic sheet to avoid unwanted scouring around the abutment. We achieved 
desired flow conditions using the inlet valve and flume tail gate. The acrylic sheet was  
sensibly removed after getting the desired flow conditions. Table  2 summarizes several 
parameters that influence the maximum abutment scour depth.

Fig. 1   a Flume layout, b photometric view of running the experiment
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Table  3 summarizes the statistical analysis of all data utilized in this investigation. 
According to the values of kurtosis and skewness presented in Table  3, the densimetric 
Froude number ( Fd50 ) has an approximately normal distribution. However, other dimen-
sionless input variables do not follow the normal distribution. The dimensionless output 
parameter ( dse∕L ) also approximately follows the normal distribution.

Correlation and regression analyses should be utilized to determine which variables 
influence the target variable. Using Pearson correlation coefficients, Fig. 2 depicts the rela-
tionship between the dimensionless abutment scour depth ( dse∕L ) and the input compo-
nents. Correlation coefficients with a positive value suggest a direct association between 
two variables, while those with a negative value imply an inverse relationship. According 
to Fig. 2, the ratio of depth to transverse length of the abutment ( y∕L ) with a correlation 
coefficient of + 0.75 is the most effective input variable in predicting scour. The densimet-
ric Froude number ( Fd50 ) with a correlation coefficient of + 0.51 is the second effective 
variable. The lowest correlation coefficient + 0.4 belongs to the mean velocity to critical 
velocity ratio ( V∕Vc ). The ratio of transverse length of the abutment to the diameter of 
sediment particles with a correlation coefficient of -0.45 has the opposite effect on scour 
depth, and with increasing it, the amount of scour decreases.

2.3 � Gradient Boosting Decision Tree (GBDT) for Feature Selection

Many machine learning algorithms have been proposed and utilized to solve classification 
and regression problems over the year. But, the gradient boosting decision tree (GBDT) is 
one of the most popular algorithms for handling the classification and regression issues 
based on weak decision trees integration (Friedman 2002). In other words, the GBDT 
model is an ensemble of decision trees that assimilate a series of weak base learners with 

Table 2   Summary of influencing 
parameters for all datasets

Parameters Present study (Dey and 
Barbhuiya 
2005)

(Coleman et al. 2003)

V (m/s) 0.16–0.24 0.18–0.67 0.17–1.54
l (m) 0.05–0.19 0.05–0.30 0.05–0.60
d50(mm) 0.22 0.26–3.10 0.60–3.30
y (m) 0.1–0.13 0.05–0.60 0.048–0.60

Table 3   Descriptive statistics for 
all variables

Statistics V∕Vc Fd50 y∕L L∕D
50

dse∕L

Mean 0.869 2.732 1.370 455.77 1.266
Std. Deviation 0.306 0.542 1.144 920.646 0.781
Skewness 4.323 0.201 0.897 4.309 0.893
Kurtosis 28.284 -0.202 -0.149 19.827 0.779
Minimum 0.460 1.467 0.007 8.333 0.781
25% Percentile 0.729 2.343 0.371 81.818 0.673
Median 0.880 1.724 1.000 166.667 1.090
75% Percentile 0.950 3.074 2.000 375 1.772
Maximum 3.512 4.069 4.166 6388 4.080
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many leaf nodes and avoid the overfitting problem (Tao et al. 2022). The amount of error 
in each node is measured using the weak learners, and a test function is utilized for split-
ting the node (Fan et al. 2018). The comprehensive background of GBDT can be obtained 
from Friedman (2002). In this study, the GBDT algorithm is exploited for feature selection 
and to predict the abutment scour depth (ASD).

2.4 � Machine Learning Approaches

2.4.1 � Categorical Boosting (CatBoost)

CatBoost is a new machine learning algorithm that was exposed by Prokhorenkova et  al. 
(2018) for dealing the categorical features. It is a subset of the gradient boosting decision 
tree (GBDT) family but is different in working style. CatBoost is more powerful than other 
machine learning algorithms, i.e., XGBoost (extreme gradient boosting) and LightGBM (gra-
dient boosting machine)(Ke et al. 2017), in handling complex and noisy data. Recently, the  
CatBoost algorithm has been widely used in hydrological modeling like reference evapotran-
spiration estimation (Bian et al. 2020), pan-evaporation estimation (Dong et al. 2021), and  
prediction of flash flood susceptibility (Saber et  al. 2021). The enhancement of CatBoost 
comprises the following aspects:

1.	 Manage categorical features during the training period instead of pre-processing period. 
In training, the complete dataset is permitted by CatBoost. The Greedy target-based 
statistics (Greedy TBS) method is used for handling categorical features with the least 
information loss. Precisely, for each sample, a random permutation of the dataset was 
performed by CatBoost to calculate an average label value for the sample with the same 
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category value positioned before the given one in the permutation. Assume a dataset of 
observations D =

{
Xi, Yi

}
i = 1,… , n and if a permutation is � =

(
�1, �2,… , �n

)T
n
 , it is 

changed with (Prokhorenkova et al. 2018):

Here, � = weight of prior, P = prior value. In the dataset, the prior is the average label 
value, which helps in reducing the low-frequency category noise.

2.	 Feature combinations. CatBoost integrates all categorical features and their combinations 
in the current tree with all categorical features in the dataset using a greedy method.

3.	 Unbiased boosting with categorical features. CatBoost used an ordered boosting method 
to overcome the gradient bias (Prokhorenkova et al. 2018) and improve the generaliza-
tion ability of the model.

4.	 Fast scorer. CatBoost uses oblivious trees as base predictions since they use the same 
splitting criterion across the tree’s levels. These trees are less prone to overfitting and 
have a more balanced growth pattern. Each leaf index in oblivious trees is represented 
as a binary vector with a length equal to the tree’s depth. This rule is employed to 
compute model predictions in CatBoost model evaluators because all binaries comprise 
float, statistics, and one-hot encoded features. Figure 3 shows the architecture of the 
CatBoost algorithm.

2.4.2 � K‑Nearest Neighbor (KNN)

K-nearest neighbor (KNN) is a non-parametric regression technique that was first proposed 
by Fix and Hodges (1951) for optimizing classification and prediction problems (Karlsson 
and Yakowitz 1987). The background history of the KNN exposes its effective application 
in hydrology (Sikorska-Senoner and Quilty 2021). In KNN, the independent variables (or 
predictors) are the input for the prediction objective.

2.4.3 � Extra Tree Regression (ETR)

Geurts et  al. (2006) proposed the idea of extra tree regression (ETR), which is a new 
ensemble machine learning model to perform regression or classification tasks based on 
many united decision trees (DT). A classical top-down procedure is used to construct the 
ETR model (Geurts et  al. 2006). Many applications of the ETR model have been found 
in different fields (Heddam et  al. 2020; Seyyedattar et  al. 2020; Asadollah et  al. 2021). 
The ETR is a highly randomized version of random forest (RF) with two main differences. 
The K (the number of features randomly nominated at each node), and nmin (the minimum 
sample size for splitting a node) are the two main parameters of the ETR, which avoids the 
overfitting and enhance the prediction accuracy of the model (Asadollah et al. 2021). In 
this research, ETR model was developed in scikit-library of Python programming for ASD 
prediction by tuning its parameters.

(7)x�p,k =

∑p−1

j=1

�
x�j,k = x�p,k

�
× Y�j + � × P

∑p−1

j=1

�
x�j,k = x�p,k

�
+ �
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2.5 � Performance Indicators

he efficacy of the applied machine learning paradigms i.e., KNN, Extra Tree, and CatBoost, 
for predicting the abutment scour depth (ASD) was evaluated by employing the five different 
performance indicators, including MAPE (mean absolute percent error), RMSE (root mean 
square error), R (coefficient of correlation), IA (Willmott agreement index) (Willmott 1982), 
and U95% (uncertainty coefficient with 95% confidence level) (Patino and Ferreira 2015). The 
mathematical formulas of R, RMSE, MAPE, IA, and U95% indicators are listed as follows:

Fig. 3   The flow diagram of the CatBoost model
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Here, ASDmeas,i and ASDpred,i are measured and predicted abutment scour depth (ASD) 
values for ith data points, values; ASDmeas and ASDpred are means of measured and predicted 
ASD values, SD is the standard deviation, and N is the total number of observations.

2.6 � Model Development and Configuration

The data were normalized using the following equation to equalize the data scale:

where xmax and xmin denote the maximum and minimum values of the dataset used to gener-
ate the prediction models, respectively. Then 70% of the data for training and 30% of the 
data for evaluating the models’ performance were considered test data sets.

The CatBoost model was used to predict scour depth around the bridge abutment in 
the present study. Two powerful models, including Extra Tree Regression (ETR) and 
KNN models, were used to compare the performance of the CatBoost model. The Gradi-
ent Boosting Decision Tree (GBDT) method was used to select the effective features in 
scouring prediction. Figure 4 shows the importance of each of the input variables in the 
scour estimation. According to Fig. 7, the y∕L ratio is the most effective factor in predict-
ing scouring, and Fd50 is the least important compared to other input variables. As a result, 
according to the feature selection results, two combinations, namely: comb1 (all variables 
( V∕Vc , Fd50 , y∕L , L∕D50 )) and comb2 (all variables except Fd50 ( V∕Vc , y∕L , L∕D50)), were 
considered.

The proper adjustment of model parameters is one of the most important aspects of using 
machine learning models. Fine-tuning the parameters leads to higher accuracy. The grid search 
method was used to find the optimal value of machine learning model parameters. All models 
are implemented in a PC with an Intel-core i7-10750H 2.6 GHz processor and 32 GB of RAM. 

(8)R =

∑N

i=1

�
ASDmeas,i − ASDmeas

��
ASDpred,i − ASDpred

�
�∑N

i=1
(ASDmeas,i − ASDmeas)

2 ∑N

i=1
(ASDpred,i − ASDpred)

2

(9)RMSE =

√√√√ 1

N

N∑
i=1

(ASDmeas,i − ASDpred,i)
2

(10)MAPE =
1

N

N∑
i=1

|||||
ASDmeas,i − ASDpred,i

ASDmeas,i

|||||

(11)IA = 1 −

⎡
⎢⎢⎢⎣

∑N

i=1

�
ASDpred,i − ASDmeas,i

�2
∑N

i=1

����ASDpred,i − ASDmeas
��� +

���ASDmeas,i − ASDmeas
���
�2

⎤⎥⎥⎥⎦

(12)U95 = 1.96
√
SD2 + RMSE2

(13)xnormal =
x − xmin

xmax − xmin
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Extra Tree Regression (ETR) and KNN and the feature selection algorithm were developed in 
the Scikit-Learn package (Pedregosa et al. 2011), and the CatBoost package (Dorogush et al. 
2018) in Python was used to implement the CatBoost model. In the CatBoost model, the four 
main learning rate (learning_rate), tree depth (depth), number of iterations (iterations), and L2 
regularization (l2_leaf_reg) parameters must be set. In the present study, the range of learn-
ing rates [0.001–0.5], depth [2–20], iterations between [200–2000], and L2 regularization in 
the range [0.5–1.5] were considered. Table 4 presents the optimal parameters of the CatBoost 
model for the two input combinations, comb1, and comb2. In the Extra Tree model, there are 
two important parameters, the number of trees in the forest (n_estimators) and the maximum 
depth of the tree (max_depth), that need to be adjusted. The maximum depth of the tree ​​was 
considered between [2–20], and the number of trees in the forest was set between [10–150]. 
Table 4 presents the optimal parameters of the ETR model for both input combinations. The 
only parameter of the KNN model is the number of neighbors, which is considered between 
[1–10], and its optimal values are presented ​​in Table 4 for both input combinations. Figure 5 
indicates the schematic flowchart of the present study.

3 � Results and Discussion

In this research, a comprehensive ML-based investigation was performed on the nor-
malized scour depth ( dse∕L ) of the abutments in uniform bed based on four dimension-
less input features, namely V∕Vc , Fd50 , y∕L , and L∕D50 . The feature selection process 
was addressed to determine the most significant candidate input combinations using a 

Fig. 4   The importance of input 
variable based on GBDT feature 
selection
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Table 4   Model tuning parameters 
for abutment scour prediction

Study site Models Tuning parameter models

Comb1 CatBoost l2_leaf_reg = 1.2, iterations = 1000, 
learning_rate = 0.15, depth = 5

Extra Tree n_estimators = 140, max_depth = 15
KNN n_neighbors = 1, weights = (’distance’)

Comb2 CatBoost l2_leaf_reg = 1, iterations = 1000, 
learning_rate = 0.15, depth = 3

Extra Tree max_depth = 15, n_estimators = 140
KNN n_neighbors = 2, weights = (’distance’)
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tree-based, namely the Tree decision FS method. The outcomes of pre-processing indi-
cate that two scenarios comprised all features (Comb1) and all features except the Fd50

(Comb2) were considered to feed the ML model to model the normalized scour depth 
around abutments. Table 5 summarizes the goodness-of-fit statistics of the simulation of 
the normalized scour depth at the abutment. According to Table 5, the CatBoost model in 
Comb 1 (comprised of all features), regarding the best accuracy in training (R = 0.9993, 
RMSE = 0.0290, MAPE = 0.5069%, and U95% = 0.0569) and testing (R = 0.9685, 
RMSE = 0.1784, MAPE = 10.4724%, and U95% = 0.0612) outperformed the Extra Tree 
(R = 0.9491, RMSE = 0.2236, MAPE = 11.3301%, and U95% = 0.0979 for the testing phase) 
and KNN models (R = 0.9251, RMSE = 0.2778, MAPE = 18.4478%, and U95% = 0.1503 for 
the testing phase). Moreover, in the second variant of input combination (i.e., Comb 2), 
the CatBoost model owing to the highest values of R = 0.9608 and IA = 0.9790 and least 
diagnostic metrics (RMSE = 0.1995, MAPE = 12.2251%, and U95% = 0.0759) in the test-
ing stage had the best performance among three considered models followed by Extra 
Tree (R = 0.9378, RMSE = 0.2482, MAPE = 12.4341%, and U95% = 0.1193), and KNN 

Fig. 5   The flowchart of the present study
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(R = 0.9122, RMSE = 0.2936, MAPE = 21.3313%, and U95% = 0.9545) models, respec-
tively. Overall, regarding the goodness-of-fit statistics reported in Table 5, it can be con-
cluded that the predictive performance of Comb 1, including all input features, is superior 
to Comb 2.

For validation of the provided model to the estimation of the normalized scour depth 
at the abutment, several infographic tools, and diagnostic analyses were addressed in 
the forms of scatter plots, Rug-Histograms density distribution function, trend variation 
graphs, Taylor diagrams, and the violin plots of residual and relative deviation error.

Figure  6 demonstrates the scatter plots of Comb 1 to compare the predicted and 
measured values of normalized scour depth at the abutments. According to Fig. 6a, it 
can be seen that all three models in the training phase of Comb 1 have perfect per-
formance regarding the best fitness with actual values of dse∕L . Although in the test-
ing phase, the Catboost model representation with green color (R = 0.9685) led to the 
best agreement with actual values of dse∕L compared with the Extra Tree (R = 0.9491) 
and KNN (R = 0.9251) approaches. Besides, in Comb 2, (Fig. 6b) the best compatibil-
ity between the predicted and measured dse∕L is related to both ensemble-based ML 
models (CatBoost and Etra Tree) and KNN stands on the last rank of accurateness of 
simulation. A closer comparison of scatter plots indicates that the performance of all 
three methods in Comb 1 is better than Comb 2 due to the better alignment around the 
45° line. In this stage of evaluating the capability of the models, the Taylor diagrams in 
Fig. 7 are employed to qualitatively assess the accuracy of the representatives of each 
model in comparison with the actual values, which criterion are the correlation coef-
ficient and standard deviation (Xu et al. 2016). Based on Fig. 7, it can be seen that the 
representative of the CatBoost method for both combinations is located in the range of 
0.95 to 0.99 from a smaller physical distance than other methods with a reference point. 
Although, the precision of Comb 1 for all three considered models is superior to Comb 
2 for estimating the dse∕L values. Figure  8 displaces the box plot of residual error in 
the testing stage, which reveals that the CatBoost models regarding the lowest residual 
error range in Comb 1 (1.08) and Comb 2 (1.37) yielded the most reliable outcomes 
than KNN (Comb 1|1.486 and Comb 2|1.575) and Extra Tree (Comb 1|1.634 and Comb 
2|1.616). Overall, the diagnostic analyses evident that Comb 1 results in more accurate 

Table 5   Statistical metrics of the predicted abutment scour depths for Comb 1 and 2

Bold font: The superior predictive model

Models Phase R RMSE MAPE IA U95%

Comb 1 KNN Training 0.9983 0.0481 0.4290 0.9991 0.0937
Testing 0.9251 0.2778 18.4478 0.9609 0.1503

Extra Tree Training 0.9993 0.0291 0.4642 0.9996 0.0571
Testing 0.9491 0.2236 11.3301 0.9730 0.0979

CatBoost Training 0.9993 0.0290 0.5069 0.9996 0.0569
Testing 0.9685 0.1784 10.4724 0.9833 0.0612

Comb 2 KNN Training 0.9993 0.0303 0.3938 0.9996 0.0595
Testing 0.9122 0.2936 21.3313 0.9545 0.1701

Extra Tree Training 0.9993 0.0299 0.6115 0.9996 0.0588
Testing 0.9378 0.2482 12.4341 0.9656 0.1193

CatBoost Training 0.9989 0.0375 2.4707 0.9994 0.0738
Testing 0.9608 0.1995 12.2251 0.9790 0.0759
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Fig. 6   a Scatter plots of computed and observed values of dimensionless scour in comb 1 for the training 
and test data. b Scatter plots of computed and observed values of dimensionless scour in comb 2 for the 
training and test data
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outcomes than Comb 2, and the Extra Tree as the second-best predictive model can be 
considered a reliable model for precise modeling of the dse∕L values. Furthermore, the 
results presented in this research showed that the novel ensemble-based machine learn-
ing methods (CatBoost and Extra Tree) have a good performance in solving significant 
non-linear scour depth estimation problems at the hydraulic structures, which is also 
confirmed by previous research.

Fig. 7   Taylor diagrams of models in combs 1 and 2
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Fig. 8   Box plots of residuals for different models in comb 1 and 2
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3.1 � Extra Discussion and Comparison

Here, the performance of provided ML models in the superior candidate input combina-
tion is examined for the prediction of the normalized scour depth at abutments. Figure 9 
displaces the trend variation of predicted dse∕L values using CatBoost, Extra Tree, and 
KNN versus the measured dse∕L . Best performance in capturing non-linear behavior of 
the scour depth data points ( dse∕L ) in the testing phase is related to the CatBoost method, 
and the Extra Tree and KNN methods are in the next ranks, respectively. Also, the resid-
ual distribution indicates that the KNN model has the highest oscillation among the three 
ML approaches. Figure 10 depicted the Rug-Histogram of the predicted normalized scour 
depth ( dse∕L ) obtained by the CatBoost, Extra Tree, and KNN models vs. the measured 
dse∕L for the superior input combination for whole data points. Here, the density distribu-
tion function of the CatBoost model appeared to be more matched with the measured dse∕L 
in comparison with the Extra Tree and KNN models. Also, the greater conformity of the 
compression band of the predicted and actual data in the CatBoost model ascertains a bet-
ter performance than the other methods in estimating scour depth at abutments.

3.2 � Comparison of Previously Proposed Relationships and Present Approaches

A comparison has also been done using experimental and computed scour depths for previ-
ously proposed empirical relationships, viz. Melville and Coleman (Melville and Coleman 
2000) and Dey and Barbhuiya (Dey and Barbhuiya 2005) and soft computing approaches 
viz. CatBoost, ETR, and KNN. Figure 11a illustrates scatter plots between observed and 
computed values of normalized maximum scour depth around the abutment with the error 
line bands of ± 20%. One can easily identify that novel ensemble-based data-intelligence 
paradigms, viz. CatBoost, ETR, and KNN predict abutment scour depth more precisely 
than empirical relationships. Melville and Coleman (Melville and Coleman 2000) equation 
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Fig. 9   Comparison of results and residuals for different models in comb 1
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overestimates the abutment scour depth and shows maximum error for used datasets, as can 
be seen in Fig. 11a. Figure 11b illustrates the variation between the error and total datasets. 
For CatBoost, ETR, and KNN, approximately 95% of the datasets were found to have less 
than ± 20% error than whereas more than 60% of datasets for Dey and Barbhuiya (Dey and 
Barbhuiya 2005) were found to have less than ± 30% error, while only 40% datasets for 
Melville and Coleman (Melville and Coleman 2000) were found to have less than ± 40% 
error, as can be seen in Fig. 11b.

4 � External Validation

Tropsha et al. (Tropsha et al. 2003) established new criteria for model external validation. 
These criteria are derived from the known prediction performance of the model. The vali-
dation criteria and supporting data for the suggested models are summarized in Table 6. K 
and K’ must be between 0.85 and 1.15, and m and n must be smaller than 0.1 to meet the 
requirements. For the test dataset, CatBoost’s correlation coefficient (R) is 0.968, while for 
the training dataset, it is 0.999. CatBoost’s m and n coefficients (n = -0.064 and m = -0.061 
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Fig. 11   a Comparison between observed and computed normalized abutment scour depth. b Variation of 
percentage error v/s total datasets
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for the test dataset) are greater than those of the other models. As seen in Table 6, all three 
models in the training and testing datasets met all important criteria, demonstrating that 
the models’ predictive quality and significant connection between goal and output are not 
coincidental.

5 � Conclusion

The purpose of this work was to undertake a complete machine learning analysis to predict 
the scour depth around the bridge abutment. Three machine learning models were created 
for this purpose: CatBoost, Extra Tree Regression (ETR), and K-nearest neighbor (KNN). 
The models were developed using 308 samples series of laboratory data (a wide range of 
existing abutment scour depth datasets (263 datasets) and 45 flume experiments data at 
the NIT Warangal, India). Four dimensionless parameters including upstream densimetric 
Froude number (Fd50), the upstream depth (y) to abutment transverse length ratio (y/L), the 
abutment transverse length to the sediment mean diameter ( L∕d50 ), and the mean veloc-
ity to the critical velocity ratio ( V∕Vc ) were considered as the model inputs, and the nor-
malized scour depths ( dse∕L ). Based on the GBDT feature selection method, two com-
binations: comb1 ( V∕Vc,Fd50,y∕L , L∕D50 ) and comb2 ( V∕Vc,,y∕L , L∕D50 ), were selected 
as input for models. The results of this study showed that the use of input combination 1 
(comb1), which includes all input variables, provided more accurate results. Comb1 has 
provided better results in the test phase in all three models used. The CatBoost model per-
formed best in predicting scour depth in both input combinations 1 and 2 (RMSE = 0.1784 
and R = 0.9685 for comb1 and RMSE = 0.1995 and R = 0.9608 for comb2). In the ET 
model, input combination 1 (RMSE = 0.2236 and R = 0.9491) also performed better than 
input combination 2 (RMSE = 0.2482 and R = 0.9378). The ET model performed worse 
than the CatBoost. The KNN model has the weakest results among the models used 
(RMSE = 0.2778 and R = 0.9251 for comb1 and RMSE = 0.2936 and R = 0.9122 for 
comb2). Additionally, a comparison of purposed intelligent models to prior empirically-
based research demonstrates the superiority of all established machine learning models. 

Table 6   External validation parameters for the created models

Model Phase K K′ m n R

CatBoost Training 0.999 1.001 -0.001 -0.001 0.999
Testing 0.966 1.019 -0.061 -0.064 0.968

ETR Training 0.999 1.001 -0.001 -0.001 0.999
Testing 0.962 1.014 -0.108 -0.109 0.949

KNN Training 0.995 1.003 -0.003 -0.003 0.998
Testing 1.007 0.957 -0.168 -0.159 0.925

Formula
K =

n∑
i=1

Ti×Pi

P2

i
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Condition 0.85 < K < 1.15

0.85 < K′
< 1.15

m < 0.1

n < 0.1

R > 0.8
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Finally, external validation established that all prediction techniques were constrained to 
values of0.85 < K,K

′

< 1.15 , and(m, n) < 0.1 . The performance of the created model on 
test data reveals its ability to generalize effectively.
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